基于色谱质谱联用技术的大肠癌代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠癌(colon cancer)包括结肠癌和直肠癌,因此又称为结直肠癌(colorectal cancer),是一种常见的消化道恶性肿瘤,死亡率在世界范围内居各种肿瘤的第三位,在西方居第二位。在我国随着人们饮食结构的改变,高蛋白食物摄入量的增加,大肠癌的发病率和死亡率正在逐步上升。大肠癌的发生和发展受到基因和环境等多种因素的影响,其病理发生的机制比较复杂,从单一的基因突变和分子通道的变化难以全面理解大肠癌的发生机制,给大肠癌的治疗带来困难。另外,大肠癌的治疗效果与病理分期有很大的关系,晚期患者的术后5年存活率小于8%,而早期患者术后5年存活率可以达到90%以上。然而令人遗憾的是目前为止还没有一个快速、准确而又适合于大规模筛查的大肠癌早期诊断方法,价格昂贵而又对人体伤害较大的内窥镜检查仍然是大肠癌诊断的金标准,这严重限制了大肠癌的早期诊断。
     代谢组学(metabonomics/ metabolomics)是继基因组学、转录组学、蛋白质组学之后提出的一门新的学科,是系统生物学中的一个重要组成部分,近年来已经迅速成为生命科学研究的热点之一。生物机体在受到外界病源或环境改变的刺激时,会产生多层次、多器官和多组织的应答反应,这些应答反应最终将影响到终端代谢水平的变化,代谢组学正是研究这种机体在受到内因、外因的刺激(或是病灶)时,机体内的终端小分子代谢物(通常指分子量小于1000Da)的变化规律的科学,从整体上动态地阐述生理或病理状态下机体对外界刺激的应答和动态系统性的变化过程,为全面理解多因素影响下的大肠癌的发生机制研究将提供一个新的视角。同时,从整体上考察人体的生理状态,能得到更多的疾病相关信息,有利于大肠癌的早期诊断。另外,代谢组学技术分析的样本主要是尿液和血液,其采集过程对人体无伤害或是有极小的伤害,因此代谢组学的方法将有利于大肠癌的大规模筛查。
     本论文建立了基于色谱质谱联用技术的大肠癌尿样和血清的代谢组学研究方法,考察了大肠癌癌前病变模型大鼠以及中药干预下的大鼠尿样的代谢组学变化;并分析了临床大肠癌病人与正常对照人群尿液和血液的代谢谱的差异,主要内容和结果如下:
     1、采用氯甲酸乙酯(ECF)衍生,气相色谱质谱联用(GC/MS)分析的代谢组学方法,考察了大鼠在二甲肼(DMH)诱导下形成异常病灶腺窝(ACF)过程以及中药干预下内源性小分子代谢物谱的变化,找出了与大肠癌癌前病变发生密切相关的代谢通路并探讨了中药的作用靶点。用主成分分析(PCA)的方法,能清晰地将造模七周后的大鼠尿液样本与同一时间点的正常对照组样本区分开,而中药治疗组的动物的代谢谱与正常对照组比较接近,这一结果与组织病理学研究结果中的ACF数值相一致。通过研究影响最小方差判别分析法(PLS-DA)模型中的权重较大的变量,实验中发现伴随着ACF的形成,大鼠体内的能量代谢、色氨酸代谢、多胺代谢以及肠道菌群的结构等与实验大鼠大肠癌癌前病变高度相关。对中药黄连和吴茱萸生物碱提取物干预下的大鼠尿样代谢组的研究结果表明环氧化酶-2(COX-2)和细胞色素酶P450以及肠道菌群可能是中药干预的靶点。
     2、采用氯甲酸乙酯衍生和气相色谱质谱联用的代谢组学技术,分析了大肠癌病人和正常对照人群的尿液中代谢谱的差异,利用非监督的PCA方法,能得到正常人与大肠癌患者代谢谱的分离趋势。进一步利用监督的正交偏最小方差判别分析(OPLS-DA)的方法能清晰地观察到大肠癌患者与正常对照之间的代谢轮廓的差异,其中包括5例病理分期为Ⅰ期的病人也能与正常人完全分开,说明以GC/MS分析为基础的尿液代谢组学的研究对大肠癌的诊断甚至早期诊断有很大的潜力。利用OPLS-DA的方法,试验中观察到大肠癌患者不同病理分期(Ⅱ,Ⅲ患者)之间的区分趋势,说明基于尿液的代谢组学方法对于大肠癌的病理分期有一定的判别作用。通过寻找对区分大肠癌病人和正常对照之间的OPLS-DA模型贡献较大的变量,可以得到与大肠癌临床病理相关的代谢通路的变化,主要包括色氨酸的代谢、组氨酸的代谢和三羧酸循环以及肠道菌群的变化。
     3、在优化的条件下,采用超高效液相四级杆串联飞行时间质谱联用仪(UPLC/QTOFMS)技术的代谢组学方法分析了大肠癌患者与正常对照的代谢组学差异。试验中得到与基于GC/MS代谢组学分析类似的结果,也能清晰地区分大肠癌病人和正常对照尿样,并且对于不同病理分期的病人(Ⅱ,Ⅲ病人)的之间的区分要稍好于基于GC/MS代谢组学分析的结果。同时,本实验进一步观察到与大肠癌相关的代谢通路变化――酪氨酸代谢、同型半胱氨酸代谢等。
     4、建立了基于三甲基硅烷(TMS)衍生、气相色谱飞行时间质谱(GC/TOFMS)分析的血清代谢组学研究方法。该方法通过线性、重复性、稳定性和回收率等方法学的实验考察,结果表明该方法稳定可靠。利用基于GC/TOFMS的分析方法,分析了大肠癌患者与正常对照人群血清样本的代谢物变化。通过OPLS-DA模型分析,实验中能清晰地观察到大肠癌患者和正常人样本代谢谱之间的分离,并观察到处于Ⅱ、Ⅲ期的大肠癌患者代谢谱的分离趋势,区分效果与基于UPLC/QTOFMS的尿样分析的代谢组学研究结果类似。同时,对大肠癌和正常人OPLS-DA模型贡献最大的代谢物的研究表明,油胺代谢、有氧和无氧能量代谢、鸟氨酸循环以及一些其它的氨基酸代谢在大肠癌患者血清中的含量有着显著的变化。
     本论文的研究结果能够得出了以下几点结论:
     1、基于氯甲酸乙酯衍生的GC/MS分析方法适合于化学诱导剂诱导的大肠癌癌前病变动物实验、中药干预动物模型实验以及临床大肠癌病人的尿液代谢组学研究。
     2、基于GC/MS和UPLC/QTOFMS技术的代谢组学分析方法能够准确地将包括早期病人在内的大肠癌病人与正常人的尿样区分开,并且能观察到不同病理分期下的病人代谢轮廓的分离趋势,表明基于色谱质谱的尿样代谢组学方法在大肠癌的早期诊断甚至分期上有很大的潜力。
     3、本研究中建立的基于GC/TOFMS的血清代谢组学方法学稳定可靠,并且能很好地区分大肠癌病人与正常人的血清代谢谱(其中包括一些早期病人),并观察到Ⅱ、Ⅲ病人之间的差别。
     4、癌前病变的模型动物实验和大肠癌临床病人的尿样和血样的代谢组学研究结果表明与大肠癌密切相关的代谢通路变化包括油胺代谢、能量代谢、色氨酸的代谢、多胺的代谢以及肠道菌群结构的变化。
Colon cancer, also known as colorectal cancer (CRC), is one of the most common malignant tumors in the digestive tract. CRC represents the third leading deaths among the cancers worldwide, and the second in the Western developed countries. In China, the number of new cases and deaths of CRC are rapidly increasing along with the elevation of living standards and the increased consumption of high protein diet. As a multi-factorial and polygenic condition, CRC has complex molecular mechanisms which are not well understood by biomedical scientists and pathologists, and therefore, necessitate systematic investigations. Meanwhile, the clinical efficacy on CRC treatment is highly correlated with the pathological stages of the disease. For example, the five-year survival rate of stage I patient is about 93%, and this number sharply decreases to only about 8% for the stage IV patients. Despite of the apparent benefit on early treatment, there are few proper measures to detect CRC at early stage. The current“golden diagnostic tool”, colonoscopy, is not suitable for most of the population due to the cost and inconvenience in clinic use. It is therefore of vital importance to develop alternative or complementary measures for early diagnosis of CRC.
     Metabonomics/ metabolomics is a newly developed approach, as an integral part of the systems biology encompassing a number of omics sciences such as genomics, transcriptomics and proteomics, and has become one of the hottest subjects worldwide. Metabonomics uses multivariate statistical technique to analyze highly complex data sets generated by high-throughput spectroscopy such as nuclear magnetic resonance (NMR) and mass spectrometry (MS) of biological samples to capture metabolic variations in response to genetic modifications and environmental stimuli. As metabolites in serum and urine contain the general functional information generated by the biochemical regulatory systems in the whole body, metabonomics reveals a systems and dynamic outcome of the development of a pathological state. Therefore, the high-flux metabolic information originated from variations of global metabonome reveals important clues to disease onset and development, and thus, can be used for diagnostic applications such as CRC detection. Meanwhile, the noninvasive or less invasive bio-fluid sample (urine and serum) collection makes such a methodology easy to be adopted in clinical diagnosis or in routine physical examination.
     In this study, we try to establish chromatography in hyphenation with mass spectrometry metabonomic technology to investigate metabolic variations in precancerous colon rats and CRC patients and to investigate the applicability of such metabonomics method in CRC diagnosis.
     Main methods and results:
     1. We used ethyl chloroformate derivatization and gas chromatography-mass spectrometry (GC/MS) based metabonomic analysis of urines from 1,2-dimethylhydrazine (DMH)-induced precancerous colon rats, herbal medicine treated rats and healthy controls. The time-dependent variations of metabolite profile showed a progressive deviation of the metabolism in the model group from the initial pattern over time and a systemic recovery of the metabolism in the treatment group, which is consistent with the histological results. Additionally, the in-depth study of these metabolite alterations also allowed the simultaneous identification of key sites and pathways, such as gut microflora, COX 2 and cytochrome P450, which were closely associated with the herbal medicine treatment.
     2. We used a GC/MS-based metabonomic approach to investigate the CRC-related pathophysiological variations of the urinary metabolite profiles from 51 CRC patients in comparison to those from 39 age-matched volunteers. A group of metabolites significantly differed in CRC patients from the healthy controls were identified including the decreased levels of succinate, butyrate, citrate, histidine and 2-hydroxyhippurate, and the increased levels of histamine, hippurate, 5-hydroxyindoleacetate and glycine. In addition, such a GC/MS-based metabonomic approach was able to clearly recognize five patients (stage I) from the healthy controls and appeared to reveal a different metabolic pattern of patients at different pathological features (stage II and stage III).
     3. UPLC/QTOFMS based urinary metabolic profiling method was basically established. By comparing different solvent and dilution fold, we selected 2 fold diluting with pure water of urine as the final pretreatment method. Through this method, the similar separation between urines from CRC patients and healthy controls with GC/MS analysis and a slight better separation between stage II and stage III patients was obtained.
     4. The GC/TOFMS based serum metabonomic analysis method was optimized. The method validations revealed a wide linearity range, good repeatability and acceptable recovery rate for the proposed method. Based on the established method in this study, sera from CRC patients and healthy controls were analyzed to detect metabolite variations associated with CRC morbidity. The similar separation results were obtained with urine metabolic profiles. After identification of metabolites significantly varied in the CRC patients, oleamide metabolism, anaerobic and aerobic energy metabolism, ornithine metabolism and some other amino acids metabolism were associated with CRC morbidity.
     Conclusions:
     1. Using ethyl chloroformate derivatization and GC/MS analysis based urinary metabonomic study, we can visualize time-dependent variations in the DMH-induced precancerous colon rat and the reversal effect of herbal medicine, which reveals great potential of metabonomics used in detection of insight pathological variations and in tracking of the effect of drug intervention.
     2. Based on GC/MS and UPLC/QTOFMS urine metabonomic analysis, we can precisely distinguish CRC patients from healthy controls including 5 patients of early stage (stage I) and can generally differentiate patients of different pathological stage (stage II and stage III), which reveals great potential of urine metabolic profile in CRC diagnosis.
     3. The established GC/TOFMS based serum metabonomic analysis method in this research was reliable and stable. Using this method, we can clearly visualize the metabonomic differences in the OPLS-DA model between CRC patients and healthy controls and can even tell apart from patients of different pathological stages (stage II and stage III).
     4. From the results of urine metabolic profile of DMH induced precancerous colon rats and biofluids (urine and serum) from CRC patients, we found that oleamide metabolism, energy supply metabolism, tryptophan metabolism, polyamine metabolism, and the altered gut flora structure are closely related to CRC morbidity.
引文
1. Huerta S, Goulet EJ, Livingston EH. Colon cancer and apoptosis. American journal of surgery 2006;191(4):517-26.
    2. Ahmed FE. Colon cancer: prevalence, screening, gene expression and mutation, and risk factors and assessment. Journal of environmental science and health 2003;21(2):65-131.
    3. http://www.cancer.gov/cancertopics/types/colon-and-rectal. 2007.
    4.董志伟,乔友林,李连弟等.中国癌症控制策略研究报告.中国肿瘤2002;11(5):250-60.
    5. Lynch HT, Watson P, Smyrk TC, et al. Colon cancer genetics. Cancer 1992;70(5 Suppl):1300-12.
    6.http://emice.nci.nih.gov/emice/mouse_models/organ_models/gastro_models/human_colorectal_cancer.
    7. Labianca R, Beretta G, Gatta G, de Braud F, Wils J. Colon cancer. Critical reviews in oncology/hematology 2004;51(2):145-70.
    8. Fujise T, Iwakiri R, Fujimoto K. [Dietary habit and colon cancer]. Nippon Shokakibyo Gakkai zasshi The Japanese journal of gastro-enterology 2006;103(5):508-14.
    9. Moghaddam AA, Woodward M, Huxley R. Obesity and Risk of Colorectal Cancer: A Meta-analysis of 31 Studies with 70,000 Events. Cancer Epidemiol Biomarkers Prev 2007;16(12):2533-47.
    10. Colditz GA, Cannuscio CC, Frazier AL. Physical activity and reduced risk of colon cancer: implications for prevention. Cancer Causes Control 1997;8(4):649-67.
    11. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer. The New England journal of medicine 2005;352(5):476-87.
    12. http://www.rjh.com.cn/docpage/c1330/200604/0410_1330_6119.htm.
    13.史晓辉,,贡昌春.大肠癌的早期诊断方法.中国校医2004;18(3):3.
    14.张渊智,李世荣.大肠癌早期诊断新技术.世界华人消化杂志2004;12(5):1202-6.
    15. Moertel CG, O'Fallon JR, Go VL, O'Connell MJ, Thynne GS. The preoperative carcinoembryonic antigen test in the diagnosis, staging, and prognosis of colorectal cancer. Cancer 1986;58(3):603-10.
    16. Fletcher RH. Carcinoembryonic antigen. Annals of internal medicine 1986;104(1):66-73.
    17. Wolpin BM, Meyerhardt JA, Mamon HJ, Mayer RJ. Adjuvant treatment of colorectal cancer. CA Cancer J Clin 2007;57(3):168-85.
    18. Kelly C, Cassidy J. Capecitabine in the treatment of colorectal cancer. Expert Rev Anticancer Ther 2007;7(6):803-10.
    19. Iyer L, Ratain MJ. Clinical pharmacology of camptothecins. Cancer chemotherapy and pharmacology 1998;42 Suppl:S31-43.
    20. Kim GP, Erlichman C. Oxaliplatin in the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol 2007;3(2):281-94.
    21. Hoy SM, Wagstaff AJ. Panitumumab in the treatment of metastatic colorectal cancer: profile report. BioDrugs 2007;21(2):135-7.
    22. Macdonald JS. Carcinoembryonic antigen screening: Pros and Cons. Seminars in Oncology 1999;26(5):556-60.
    23. Lindon JC, Holmes E, Nicholson JK. Metabonomics: systems biology in pharmaceutical research and development. Current opinion in molecular therapeutics 2004;6(3):265-72.
    24. Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drugtoxicity and gene function. Nature reviews 2002;1(2):153-61.
    25. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999;29(11):1181-9.
    26. Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant molecular biology 2002;48(1-2):155-71.
    27. Weckwerth W. Metabolomics in systems biology. Annual review of plant biology 2003;54:669-89.
    28. Fiehn O. Metabolic networks of Cucurbita maxima phloem. Phytochemistry 2003;62(6):875-86.
    29. Fiehn O, Kopka J, Trethewey RN, Willmitzer L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical chemistry 2000;72(15):3573-80.
    30. Williams RE, Major H, Lock EA, Lenz EM, Wilson ID. D-Serine-induced nephrotoxicity: a HPLC-TOF/MS-based metabonomics approach. Toxicology 2005;207(2):179-90.
    31. Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM. HPLC-MS-based methods for the study of metabonomics. Journal of chromatography 2005;817(1):67-76.
    32. Plumb RS, Stumpf CL, Gorenstein MV, et al. Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun Mass Spectrom 2002;16(20):1991-6.
    33. Harada K, Fukusaki E, Kobayashi A. Pressure-assisted capillary electrophoresis mass spectrometry using combination of polarity reversion and electroosmotic flow for metabolomics anion analysis. Journal of bioscience and bioengineering 2006;101(5):403-9.
    34. Soga T. Capillary electrophoresis-mass spectrometry for metabolomics. Methods Mol Biol 2006;358:129-38.
    35. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical chemistry 2006;78(3):779-87.
    36. Idborg H, Zamani L, Edlund PO, Schuppe-Koistinen I, Jacobsson SP. Metabolic fingerprinting of rat urine by LC/MS Part 2. Data pretreatment methods for handling of complex data. J Chromatogr B Analyt Technol Biomed Life Sci 2005;828(1-2):14-20.
    37. Jonsson P, Johansson ES, Wuolikainen A, et al. Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS data--a potential tool for multi-parametric diagnosis. Journal of proteome research 2006;5(6):1407-14.
    38. Yang J, Song SL, Castro-Perez J, Plumb RS, Xu GW. [Metabonomics and its applications]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2005;21(1):1-5.
    39. Holmes E, Nicholson JK, Tranter G. Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. Chemical research in toxicology 2001;14(2):182-91.
    40. Ebbels TM, Keun HC, Beckonert OP, et al. Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. Journal of proteome research 2007;6(11):4407-22.
    41. Chen M, Su M, Zhao L, et al. Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. Journal of proteome research 2006;5(4):995-1002.
    42. Mitchell S, Holmes E, Carmichael P. Metabonomics and medicine: the Biochemical Oracle. Biologist (London, England) 2002;49(5):217-21.
    43. Dieterle F, Schlotterbeck G, Ross A, Niederhauser U, Senn H. Application of metabonomics in a compound ranking study in early drug development revealing drug-induced excretion of choline into urine. Chemical research in toxicology 2006;19(9):1175-81.
    44. Wessels LF, van Welsem T, Hart AA, van't Veer LJ, Reinders MJ, Nederlof PM. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 2002;62(23):7110-7.
    45. Perroud B, Lee J, Valkova N, et al. Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer 2006;5:64.
    46. Denkert C, Budczies J, Kind T, et al. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res 2006;66(22):10795-804.
    47. Yang J, Xu G, Zheng Y, et al. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B Analyt Technol Biomed Life Sci 2004;813(1-2):59-65.
    1. Rodrigues, M.A., et al., Aberrant crypt foci and colon cancer: comparison between a short- and medium-term bioassay for colon carcinogenesis using dimethylhydrazine in Wistar rats. Braz J Med Biol Res, 2002. 35(3): p. 351-5.
    2. Agner, A.R., et al., DNA damage and aberrant crypt foci as putative biomarkers to evaluate the chemopreventive effect of annatto (Bixa orellana L.) in rat colon carcinogenesis. Mutat Res, 2005. 582(1-2): p. 146-54.
    3. Fontana, M.G., et al., Distribution of 1,2 DMH-induced colonic aberrant crypt foci after administration of a gastrin receptor antagonist (CR2945), in the murine model. Ann Ital Chir, 2001. 72(2): p. 221-5.
    4. Newell, L.E. and J.A. Heddle, The potent colon carcinogen, 1,2-dimethylhydrazine induces mutations primarily in the colon. Mutat Res, 2004. 564(1): p. 1-7.
    5. Bird, R.P., Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer Lett, 1995. 93(1): p. 55-71.
    6. Nicholson, J.K., et al., Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov, 2002. 1(2): p. 153-61.
    7. Fukutake, M., et al., Inhibitory effect of Coptidis Rhizoma and Scutellariae Radix on azoxymethane-induced aberrant crypt foci formation in rat colon. Biol Pharm Bull, 1998. 21(8): p. 814-7.
    8. Moon, T.C., et al., A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm Res, 1999. 48(12): p. 621-5.
    9. Fukuda, K., et al., Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells. J Ethnopharmacol, 1999. 66(2): p. 227-33.
    10. Bird, R.P., Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett, 1987. 37(2): p. 147-51.
    11. Qiu, Y., et al., Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta, 2007. 583(2): p. 277-83.
    12. Li, H., et al., Pharmacometabonomic phenotyping reveals different responses to xenobiotic intervention in rats. J Proteome Res, 2007. 6(4): p. 1364-70.
    13. Fiala, E., Investigations into the metabolism and mode of action of the colon carcinogen 1, 2-dimethylhydrazine. Cancer, 1975. 36(6 Suppl): p. 2407-12.
    14. Lasko, C.M., et al., Energy restriction modulates the development of advanced preneoplastic lesions depending on the level of fat in the diet. Nutr Cancer, 1999. 33(1): p. 69-75.
    15. Laviano, A., et al., Tumor-induced changes in host metabolism: a possible role for free tryptophan as a marker of neoplastic disease. Adv Exp Med Biol, 2003. 527: p. 363-6.
    16. Mossner, R. and K.P. Lesch, Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav Immun, 1998. 12(4): p. 249-71.
    17. Kubota, S., et al., Urinary polyamines as a tumor marker. Cancer Detect Prev, 1985. 8(1-2): p. 189-92.
    18. Parker, M.T. and E.W. Gerner, Polyamine-mediated post-transcriptional regulation of COX-2. Biochimie, 2002. 84(8): p. 815-9.
    19. Nowak, A. and Z. Libudzisz, Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria. Anaerobe, 2006. 12(2): p. 80-4.
    20. Rechner, A.R., et al., Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med, 2004. 36(2): p. 212-25.
    21. Stella, C., et al., Susceptibility of Human Metabolic Phenotypes to Dietary Modulation. J Proteome Res, 2006. 5(10): p. 2780-2788.
    22. Selmer, T. and P.I. Andrei, p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem, 2001. 268(5): p. 1363-72.
    23. Moore, W.E. and L.H. Moore, Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol, 1995. 61(9): p. 3202-7.
    24. Reddy, B.S., T. Narisawa, and J.H. Weisburger, Colon carcinogenesis in germ-free rats with intrarectal 1,2-dimethylhydrazine and subcutaneous azoxymethane. Cancer Res, 1976. 36(8): p. 2874-6.
    25. Kumarakulasingham, M., et al., Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis. Clin Cancer Res, 2005. 11(10): p. 3758-65.
    26. Ueng, Y.F., et al., Induction of cytochrome P450-dependent monooxygenase in mouse liver and kidney by rutaecarpine, an alkaloid of the herbal drug Evodia rutaecarpa. Life Sci, 2001. 70(2): p. 207-17.
    27. Thuille, N., M. Fille, and M. Nagl, Bactericidal activity of herbal extracts. Int J Hyg Environ Health, 2003. 206(3): p. 217-21.
    28. Chae, S.H., et al., Growth-inhibiting effects of Coptis japonica root-derived isoquinoline alkaloids on human intestinal bacteria. J Agric Food Chem, 1999. 47(3): p. 934-8.
    29. Mazmanian, S.K., et al., An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 2005. 122(1): p. 107-18.
    30. Perdigon, G., R. Fuller, and R. Raya, Lactic acid bacteria and their effect on the immune system. Curr Issues Intest Microbiol, 2001. 2(1): p. 27-42.
    31. Schiffrin, E.J. and S. Blum, Interactions between the microbiota and the intestinal mucosa. Eur J Clin Nutr, 2002. 56 Suppl 3: p. S60-4.
    1.徐富星.大肠癌研究现状.国际消化杂志2006;26(6):365-6.
    2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. Ca-A Cancer Journal for Clinicians 2007;57(1):43-66.
    3. Munro Neville A, Laurence DJR. Report of the workshop on the carcinoembryonic antigen (CEA): the present position and proposals for future investigation. International Journal of Cancer 1974;14(1):1-18.
    4. Ward DG, Suggett N, Cheng Y, et al. Identification of serum biomarkers for colon cancer by proteomic analysis. British journal of cancer 2006;94(12):1898-905.
    5. Fletcher RH. Carcinoembryonic antigen. Annals of Internal Medicine 1986;104(1):66-73.
    6. Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature medicine 2002;8(12):1439-44.
    7.http://emicencinihgov/emice/mouse_models/organ_models/gastro_models/human_colorectal_cancer.
    8. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999;29(11):1181-9.
    9. Saito K, Horie M, Nakazawa H. Determination of urinary excretion of histamine and 1-methylhistamine by liquid chromatography. J Chromatogr B Biomed Appl 1994;654(2):270-5.
    10. Garcia-Caballero M, Neugebauer E, Campos R, Nunez de Castro I, Vara-Thorbeck C. Increased histidine decarboxylase (HDC) activity in human colorectal cancer: results of a study on ten patients. Agents Actions 1988;23(3-4):357-60.
    11. Garcia-Caballero M, Neugebauer E, Rodriguez F, et al. Changes in histamine synthesis, tissue content and catabolism in human breast cancer. Agents Actions 1989;27(1-2):227-31.
    12. Masini E, Fabbroni V, Giannini L, et al. Histamine and histidine decarboxylase up-regulation in colorectal cancer: correlation with tumor stage. Inflamm Res 2005;54 Suppl 1:S80-1.
    13. Norrby K. Evidence of a dual role of endogenous histamine in angiogenesis. International journal of experimental pathology 1995;76(2):87-92.
    14. Cianchi F, Cortesini C, Schiavone N, et al. The role of cyclooxygenase-2 in mediating the effects of histamine on cell proliferation and vascular endothelial growth factor production in colorectal cancer. Clin Cancer Res 2005;11(19 Pt 1):6807-15.
    15. Granerus G, Ahlman H. Histamine metabolism in patients with foregut carcinoid tumours. Agents and Actions 1993;38(SPEC. ISS. II).
    16. Huang A, Fuchs D, Widner B, Glover C, Henderson DC, Allen-Mersh TG. Tryptophan and quality of life in colorectal cancer. Advances in experimental medicine and biology 2003;527:353-8.
    17. Muscaritoli M, Meguid MM, Beverly JL, Yang ZJ, Cangiano C, Rossi-Fanelli F. Mechanism of early tumor anorexia. The Journal of surgical research 1996;60(2):389-97.
    1. Plumb, R., et al., Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 2004. 18(19): p. 2331-7.
    2. Plumb, R.S., et al., A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice. Analyst, 2005. 130(6): p. 844-9.
    3. Plumb, R.S., et al., The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 2006. 20(19): p. 2800-6.
    4. Yin, P., et al., Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). J Proteome Res, 2006. 5(9): p. 2135-43.
    5. Craven, R.J., et al., Receptor tyrosine kinases expressed in metastatic colon cancer. Int J Cancer, 1995. 60(6): p. 791-7.
    6. Shaheen, R.M., et al., Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res, 2001. 61(4): p. 1464-8.
    1.样小玲.气相色谱衍生试剂的研究进展.中国科技信息2005;7:25.
    2. Fraser AD, Bryan W, Isner AF. Urinary screening for midazolam and its major metabolites with the Abbott ADx and TDx analyzers and the EMIT d.a.u. benzodiazepine assay with confirmation by GC/MS. Journal of analytical toxicology 1991;15(1):8-12.
    3. Matsunaga S, Kawamura K. Determination of alpha- and beta-hydroxycarbonyls and dicarbonyls in snow and rain samples by GC/FID and GC/MS employing benzyl hydroxyl oxime derivatization. Analytical chemistry 2000;72(19):4742-6.
    4. Fiehn O, Kopka J, Trethewey RN, Willmitzer L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 2000;72(15):3573-80.
    5. A J, Trygg J, Gullberg J, et al. Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical chemistry 2005;77(24):8086-94.
    6. Zhang Q, Wang G, Du Y, Zhu L, Jiye A. GC/MS analysis of the rat urine for metabonomic research. Journal of chromatography 2007;854(1-2):20-5.
    7. http://wwwgenomejp/kegg/.
    8. Halket JM, Zaikin VG. Derivatization in mass spectrometry--1. Silylation. European journal of mass spectrometry (Chichester, England) 2003;9(1):1-21.
    9. Bisogno T, Katayama K, Melck D, et al. Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells--implications for cell proliferation and differentiation. European journal of biochemistry / FEBS 1998;254(3):634-42.
    10. Kim EJ, Jun JG, Park HS, Kim SM, Ha YL, Park JH. Conjugated linoleic acid (CLA) inhibits growth of Caco-2 colon cancer cells: possible mediation by oleamide. Anticancer research 2002;22(4):2193-7.
    11. Boger DL, Henriksen SJ, Cravatt BF. Oleamide: an endogenous sleep-inducing lipid and prototypical member of a new class of biological signaling molecules. Current pharmaceutical design 1998;4(4):303-14.
    12. Kogan NM. Cannabinoids and cancer. Mini reviews in medicinal chemistry 2005;5(10):941-52.
    13. Bifulco M, Di Marzo V. Targeting the endocannabinoid system in cancer therapy: a call for further research. Nature medicine 2002;8(6):547-50.
    14. Patsos HA, Hicks DJ, Greenhough A, Williams AC, Paraskeva C. Cannabinoids and cancer: potential for colorectal cancer therapy. Biochemical Society transactions 2005;33(Pt 4):712-4.
    15. Izzo AA, Aviello G, Petrosino S, et al. Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. Journal of molecular medicine (Berlin, Germany) 2008;86(1):89-98.
    16. Tutton PJ, Barkla DH. The influence of serotonin on the mitotic rate in the colonic crypt epithelium and in colonic adenocarcinoma in rats. Clinical and experimental pharmacology & physiology 1978;5(1):91-4.
    17. Xu W, Tamim H, Shapiro S, Stang MR, Collet JP. Use of antidepressants and risk of colorectal cancer: a nested case-control study. The lancet oncology 2006;7(4):301-8.
    18. Warburg O. On the origin of cancer cells. Science (New York, NY 1956;123(3191):309-14.
    19. Bi X, Lin Q, Foo TW, et al. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics 2006;5(6):1119-30.
    20. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature reviews 2004;4(11):891-9.
    21. Habano W, Sugai T, Nakamura S, et al. Reduced expression and loss of heterozygosity of the SDHD gene in colorectal and gastric cancer. Oncology reports 2003;10(5):1375-80.
    22. Mazzanti R, Giulivi C. Coordination of nuclear- and mitochondrial-DNA encoded proteins in cancer and normal colon tissues. Biochimica et biophysica acta 2006;1757(5-6):618-23.
    23. Holroyde CP, Axelrod RS, Skutches CL, Haff AC, Paul P, Reichard GA. Lactate metabolism in patients with metastatic colorectal cancer. Cancer research 1979;39(12):4900-4.
    24. Mouille B, Morel E, Robert V, Guihot-Joubrel G, Blachier F. Metabolic capacity forL-citrulline synthesis from ammonia in rat isolated colonocytes. Biochimica et biophysica acta 1999;1427(3):401-7.
    25. Herszenyi L, Plebani M, Carraro P, et al. The role of cysteine and serine proteases in colorectal carcinoma. Cancer 1999;86(7):1135-42.
    26. Kos J, Lah TT. Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (review). Oncology reports 1998;5(6):1349-61.
    27. Iwasa S, Jin X, Okada K, Mitsumata M, Ooi A. Increased expression of seprase, a membrane-type serine protease, is associated with lymph node metastasis in human colorectal cancer. Cancer letters 2003;199(1):91-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700