受体上皮细胞灌注后大鼠气管异位移植再上皮化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     现有的技术条件下,气管环形切除的长度一般不宜超过成人气管的1/2(约6cm)、婴幼儿气管的1/3,否则将无法实施端端吻合。而更长段气管的切除后重建则需通过同种异体气管移植、人工或组织工程气管植入或自体组织再造来完成。相比较而言,同种异体气管移植具有相当的优势,因此始终是气管外科领域中的热点。但是,同种异体气管移植目前仍主要处于实验研究阶段,成功的临床病例报道非常少,均为单一病例报道,而且往往缺乏长期的随访结果。这其中主要的困难之一就是免疫排斥。而免疫抑制治疗虽然能够提高移植成功率,但同时也大大增加了感染和罹患肿瘤的可能性,因此不少学者都在寻找新途径来抑制移植免疫排斥反应,而其中方法之一便是直接降低供体气管的抗原性。
     研究发现,去除供体气管的上皮细胞能够消除或者减弱气管组织的抗原性,从而抑制移植免疫排斥反应,而无需或仅需低剂量的免疫抑制治疗。但是,气管上皮细胞不但对于恢复气管正常功能具有重要意义,而且在移植过程中也发挥着关键作用。因此,理想的解决方法是:以受体上皮细胞取代供体气管原有的上皮细胞。也就是说,在去除供体气管的上皮细胞之后,采取措施促进受体源性的再上皮化。从而既达到了降低气管组织抗原性的目的,又避免了上皮细胞丢失所造成的不良后果。
     迄今为止,国外对于气管移植过程中供体裸气管内实现受体源性再上皮化的相关研究极少,而国内更是未见有类似的研究。因此,其中很多关键环节尚未得到清晰阐释,理论基础相当薄弱,技术方法也并不完备。本研究计划在胰酶冷消化法去除供体气管上皮细胞的同时,将受体气管上皮细胞进行体外培养,制备成细胞悬液后灌注于供体裸气管内,再异位移植于免疫功能正常的受体大鼠皮下,完成受体源性的再上皮化;从而对这一方法的实际效果进行客观的评价,并进一步优化现有的技术手段,同时详细勾勒出具体的演进过程,完善气管移植再上皮化的理论体系,为今后的大动物实验乃至临床研究奠定基础。
     第一部分大鼠气管上皮细胞培养和灌注、供体裸气管制备和气管异位移植模型建立
     目的
     本研究设想在消除供体气管上皮组织之后,将受体气管上皮细胞种植在供体裸气管内再进行移植,从而在降低供体气管免疫原性的同时完成受体源性的再上皮化,达到气管成功移植的目的。而其中的关键点在于供体裸气管的制备、气管上皮细胞的体外培养和气管内灌注、相关动物模型的建立。
     方法
     上皮细胞培养及细胞悬液制备:采用无血清完全F12培养基对SD大鼠气管上皮细胞进行体外培养,并调整细胞浓度,使其达到10×106/ml。
     供体大鼠裸气管制备:以Wistar大鼠(n=80)作为供体,取长约1.5-2.0cm的气管,一端结扎后灌入0.25%的胰酶溶液至气管微涨,再用丝线将另一端结扎,放入4℃冰箱18小时后取出,进行组织学切片HE染色检测上皮细胞消化结果,合格的裸气管以细胞培养液保存备用。
     上皮细胞灌注及大鼠气管异位移植模型建立:结扎供体裸气管一端,灌入已制备好的细胞悬液,再结扎另一端。以SD大鼠(n=80)作为受体,在背部皮肤剪一小口后,于皮下游离一隧道,隧道顶端位于项部。将灌有上皮细胞悬液的供体气管置入隧道顶端皮下,缝合皮肤切口后进行饲养。
     结果
     上皮细胞培养及细胞悬液制备:气管上皮细胞为圆形,折光度好,悬浮在培养液中。24小时后可见细胞大部分开始贴壁;3天后见细胞贴壁呈现铺路石样;4-5天后细胞增殖成片状的细胞团。
     供体裸气管制备:HE染色提示,供体气管上皮细胞完全被去除,基底膜完整,软骨组织正常。
     上皮细胞灌注及大鼠气管异位移植模型建立:每例模型建立平均用时5.2±1.5分钟。全组(n=80)受体动物术后无一例死亡,生存率为100%,亦未出现感染等术后并发症。
     结论
     采用胰酶冷消化法能够安全、彻底去除气管上皮细胞,而对其它组织基本无损伤;改进型无血清完全型F12培养方法体外培养上皮细胞培养效果良好,是一种相对简单、实用、有效的培养方法;细胞悬液灌注进行上皮细胞在气管内的种植,操作十分简便,能够很好的保留细胞悬液,为上皮细胞的贴壁、生长和分化创造了条件;大鼠背部皮下气管异位移植模型操作简单、存活率高。
     第二部分免疫抑制治疗对受体上皮细胞灌注后大鼠气管异位移植再上皮化的影响
     目的
     上皮细胞被完全去除之后,气管其它组织依然存活,其中某些细胞和组织也存在有MHC抗原。这也就意味着供体裸气管仍然具有一定的免疫原性,移植后仍然有可能诱发一定程度的免疫排斥反应。而免疫排斥反应是否会对受体源性的再上皮化过程产生不利影响?是否需要实施免疫抑制治疗?免疫抑制治疗的最佳方案是什么?在适当条件下受体上皮细胞灌注后大鼠气管异位移植的最终结果如何?这些问题都需要通过进一步的实验来给予解答。
     方法
     大鼠气管异位移植模型建立后,将实验动物完全随机分为六组。对照组1(n=10):供体裸气管内灌入生理盐水,不使用任何免疫抑制剂;对照组2(n=10):供体裸气管内灌注受体上皮细胞悬液,不使用任何免疫抑制剂;实验组1(n=10):供体裸气管内灌注受体上皮细胞悬液,移植后受体鼠每日肌肉注射FK506 (0.5 mg/kg/d),连续使用3天;实验组2(n=10):供体裸气管内灌注受体上皮细胞悬液,移植后受体鼠每日肌肉注射FK506 (0.5 mg/kg/d),连续使用10天;实验组3(n=10):供体裸气管内灌注受体上皮细胞悬液,移植后受体鼠每日肌肉注射FK506 (1.0 mg/kg/d),连续使用3天;实验组4(n=10):供体裸气管内灌注受体上皮细胞悬液,移植后受体鼠每日肌肉注射FK506 (1.0 mg/kg/d),连续使用10天。移植后第28天,处死大鼠,取出移植气管,标本分切后分别进行以下检测:组织形态学评价、透射电镜观察、淋巴细胞浸润计数、上皮细胞分化鉴定(CK14、CK18和CFTR)、上皮细胞纤毛比例和气管壁纤维组织含量测定。
     结果
     实验组的总体情况明显优于对照组。其中,对照组1的结果最不理想,未见任何上皮细胞再生,而且管腔出现严重狭窄、闭塞;对照组2也并未实现再上皮化,但稍好于对照组1;实验组1和实验组2相比,各项检测结果基本相似:气管内壁仅在局部有上皮细胞再生,且细胞尚未分化成熟,从而提示在这两组中存在有受体源性的再上皮化,但结果并不理想;实验组3和实验组4的结果非常相近,同时也是最为理想的:受体源性再上皮化取得成功,气管内覆盖了完整连续的成熟的纤毛柱状上皮细胞,并具有腺体分泌功能、屏障防御功能。
     结论
     供体裸气管内灌注受体上皮细胞后再实施异位移植,在一定的条件下,能够成功实现受体源性的完全再上皮化;而在这一过程中,仍需进行短期、低剂量的免疫抑制治疗;使用FK506的最佳方案是在移植后连续使用3天,剂量为1.0mg/kg/d;上皮细胞,即便是尚未附壁的上皮细胞,可能对于移植后的阻塞性病变有抑制作用。
     第三部分受体上皮细胞灌注后大鼠气管异位移植再上皮化过程的研究
     目的
     第二部分的实验已经证实,在短期、低剂量的应用免疫抑制剂的情况下,供体裸气管内灌注受体上皮细胞后再实施异位移植,能够成功实现受体源性的完全再上皮化。但是对于其具体的演进过程尚缺乏足够的了解。
     方法
     大鼠气管异位移植模型建立后,将实验动物完全随机分为六组,移植后所有受体鼠每日肌肉注射FK506 (1.0 mg/kg/d),连续使用3天。在移植后第3天、第7天、第14天、第21天、第28天、第35天,分别随机处死一组大鼠(n=10),取出移植气管,分切后进行以下检测:组织形态学评价、透射电镜观察、上皮细胞分化鉴定(CK14、CK18和CFTR)、上皮细胞增殖能力检测(Ki67)和上皮细胞纤毛比例测定。
     结果
     在移植后的第3天,气管内壁局部覆盖有无纤毛的扁平上皮细胞;透射电镜发现此处细胞结构正常,偶见有异常短小、稀疏的类纤毛样结构,细胞间隙宽大,未见明显的细胞连接;CK14、CK18和CFTR的表达均处于低水平,Ki67处于高水平,纤毛比例低。
     第7天,气管内壁完整覆盖有无纤毛的扁平上皮细胞。其余结果与第3天相似。
     第14天,上皮细胞层为扁平细胞和柱状细胞交替,透射电镜发现部分柱状细胞处呈现假复层结构,存在杯状细胞,柱状细胞表面可见少量纤毛,细胞间隙较窄,可见细胞连接;CK14和CFTR的表达仍处于低水平,CK18开始升高,Ki67开始下降,纤毛比例开始升高。
     第21天,气管内壁覆盖完整的柱状上皮细胞,偶见刷状缘,透射电镜发现大部分细胞层为假复层结构,其余表现与第14天相似;CK14的表达仍处于低水平,CK18达到峰值,CFTR开始升高,Ki67继续下降,纤毛比例继续升高。
     第28天,气管内壁覆盖完整的柱状上皮细胞,可见较明显的刷状缘,透射电镜发现假复层结构明显,可见杯状细胞、腺体分泌细胞、基底细胞等多种细胞类型,细胞间隙狭窄,细胞连接紧密;CK14和Ki67的表达处于低水平,CK18维持高水平,CFTR达到峰值,纤毛比例达到峰值。
     第35天的表现与第28天相仿。
     结论
     受体上皮细胞灌注后大鼠气管异位移植再上皮化的演进过程为:灌注后细胞迅速附壁,其中成功附壁的上皮细胞开始增殖,进而完整覆盖气管内壁,形成单层扁平上皮组织,而后上皮细胞开始分化,最终成为成熟的假复层纤毛柱状上皮组织。
Background
     In the end-to-end anastomosis of trachea, the resectable length is restricted to 1/2 of the total length (6 cm) in adults or 1/3 in children, and replacement of longer sections will only be feasible if a safe and functional tracheal replacement can be developed, such as tracheal allografts, artificial or tissue-engineered airway, autogenous tissues graft and so on. Among them, tracheal allografts may be the most effective option for achieving airway reconstruction at present. Although more and more researchers and clinicians focus on tracheal transplantations, there are a few clinical reports of tracheal allotransplantations. And immune rejection is one of key obstacles in tracheal allografts. Immunosuppressive therapy increases the possibility of sever infection and malignant tumor, while improving the allografts. Therefore it is necessary to find an alternative to suppress the immune rejection after tracheal transplantation.
     As is known, the immune rejection after allografts can be suppressed by eliminating the antigenicity of grafts. It was reported that tracheal antigenicity may be eliminated or reduced by the removal of epithelium in trachea. However, epithelial tissues play a key role in functional reconstruction and transplantation of trachea. Therefore, it is the best way to promote reepithelization from the recipient after the removal of donor epithelium.
     Heretofore, it is rare that the study of reepithelization from the recipient after the removal of donor epithelium in tracheal allografts. Thus the key steps in reepithelization process are not clear, the technique means are imperfect, and the theoretical basis is very poor. We plan to use enzymatic dissociation with trypsin to remove the epithelium from the rat donor trachea which is then colonized by epithelial cells that have been cultured from cells taken from the recipient. Afterwards, the donor trachea is heterotopically transplanted to the dorsum of recipient rat and reepithelization will be completed. And our objectives are to objectively evaluate the present method, to detailedly describe the whole process and to optimize the technique means.
     PART ONE
     Culture and perfusion of epithelial cells from rat trachea, production of donor nude trachea and establishment of heterotopic tracheal transplantation model
     Objective
     We plan to perfuse the epithelial cells cultured from the recipient trachea into the donor nude trachea in which donor epithelial tissues has been removed by enzymatic dissociation in order to reduce the antigenicity of donor trachea and complete reepithelization from the recipient. It is the key steps that culture and perfusion of epithelial cells from rat trachea, production of donor nude trachea and establishment of heterotopic tracheal transplantation model.
     Methods
     The tracheal epithelial cells of SD rats were primarily cultured in Ham's F-12 and the cultured cells were diluted to cell suspension (10×106 cells/ml).
     Wistar rats (n=80) were taken as donors and SD rats (n=80) as recipients. Tracheas (1.5-2.0 cm) were excised from below the larynx to the major bronchi. The explanted tracheas were digested for 18 h with 0.25% trypsin at 4℃, then the qualification of donor nude tracheas were evaluated by HE stain. The qualified donor nude tracheas were stored in Ham's F-12. One end of donor nude trachea was ligated, and the recipient cell suspension was perfused into its lumen before ligation of another end. Afterwords, donor tracheas were heterotopically subcutaneous transplanted to the dorsum of recipients.
     Results
     Epithelial cells being round-shape have good diopter and suspended in culture solution. After 24 hours, the majority of cells started to adhere to the wall. After 3 days, cells showed typical "flagstone" appearance. After 4-5 days, cells formed the flake-shape cell clusters. HE stain showed that epithelial cells were totally removed from the donor trachea with integrated basement membrane and normal cartilage tissues. The mean time of animal model establishment is 5.2±1.5 min. There was no postoperative complications, eg. infection, and the survival rate was 100%.
     Conclusion
     The enzymatic dissociation with trypsin is a safe and effective method to remove epithelial cells from the donor trachea. Ham's F-12 is a suitable culture solution for our study. Perfusion of cells suspension is a simple and available technique to complete the epithelial implantation. Because of easy operation and high success rate, heterotopic subcutaneous tracheal transplantation model in rat is the best choice in present study.
     PART TWO
     Effect of immunosuppressive therapy on reepithelization after rat heterotopic tracheal graft with recipient epithelial cells perfusion
     Objective
     After totally removal of epithelial cells, there are still MHC antigens existing in rest cells and tissues, which means donor nude trachea still has antigenicity and immune rejection will take place after transplantation. And we need to answer the following questions:Will immune rejection has adverse influence on reepithelization from the recipient? Is it necessary to perform the immunosuppressive therapy? What is the best treatment regimen of immunosuppressive therapy? How is reepithelization after rat heterotopic tracheal graft with recipient epithelial cells prefusion?
     Methods
     After establishment of heterotopic subcutaneous tracheal transplantation model in rat, animals were randomly divided into six groups. Control group 1 (n=10):normal saline was perfused into donor nude trachea, without immunosuppressive therapy; Control group 2 (n=10):recipient epithelial cells suspension was perfused into donor nude trachea, without immunosuppressive therapy; Test group 1 (n=10):recipient epithelial cells suspension was perfused into donor nude trachea, with intramuscular injection of Tacrolimus (0.5 mg/kg/d) only for three consecutive days after transplantation; Test group 2 (n=10):recipient epithelial cells suspension was perfused into donor nude trachea, with intramuscular injection of Tacrolimus (0.5 mg/kg/d) for seven consecutive days after transplantation; Test group 3 (n=10):recipient epithelial cells suspension was perfused into donor nude trachea, with intramuscular injection of Tacrolimus (1.0 mg/kg/d) only for three consecutive days after transplantation; Test group 4 (n=10):recipient epithelial cells suspension was perfused into donor nude trachea, with intramuscular injection of Tacrolimus (1.0 mg/kg/d) for seven consecutive days after transplantation. All rats were killed on 28 days after transplantation and then the implanted tracheas were harvested. In all specimens, histological and ultrastructural changes were evaluated, infiltrated lymphocytes were counted, differentiation of epithelium (CK14, CK18, CFTR) were identified, percentage of cilia and fibrosis tissues were calculated.
     Results
     Generally the results of test groups were better than control groups. In the latter, there was not any epithelial regeneration, and tracheal stenosis, even lumen occlusion, were found. Test group 1 and test group 2 had the similar results that immature epithelial regeneration took place in the regional area of tracheal inner surface. And test group 3 and test group 4 also had the similar results that mature ciliated columnar epithelium covered the whole inner surface of trachea.
     Conclusion
     It is an effective way to complete reepithelization from the recipient after rat heterotopic tracheal graft with recipient epithelial cells injection. And short-term and low dosage immunosuppressive therapy is necessary. The best regimen is the intramuscular injection of Tacrolimus (1.0 mg/kg/d) for three consecutive days after transplantation. Moreover, epithelial cells from the recipient may inhabit the development of obliterated airway disease.
     PART THREE
     Study on the process of reepithelization after rat heterotopic tracheal graft with recipient epithelial cells perfusion
     Objective
     In part two, we have improved that it is an effective way to complete reepithelization from the recipient that heterotopic tracheal graft with recipient epithelial cells perfusion in rat with short-term and low dosage immunosuppressive therapy. But it is still unclear about the detailed process of reepithelization.
     Methods
     After establishment of heterotopic subcutaneous tracheal transplantation model in rat, the animals were randomly divided into six groups. All animals were intramuscular injected of Tacrolimus (1.0 mg/kg/d) only for three consecutive days after transplantation. Rats (n=10) were killed on 3,7,14,21,28 and 35 days respectively after transplantation and then the implanted tracheae were harvested. In all specimens, histological and ultrastructural changes were evaluated, differentiation (CK14, CK18, CFTR) and proliferation (Ki67) of epithelium were identified, percentage of cilia were calculated.
     Results
     On 3 days after transplantation, the regional areas of tracheal inner surface were covered by non-ciliated flate cells with normal cellular ultrastructure and wide intercellular space, but without cell junctions. And the levels of CK14, CK18, CFTR and percentage of cilia were low, while Ki67 was high.
     On 7 days, the whole areas of tracheal inner surface were covered by non-ciliated flate cells. And the rest results were similar to those on 3 days after transplantation.
     On 14 days, the whole areas of tracheal inner surface were covered by the mixture of flate cells and columnar cells with sparse cilia. The latter arranged in pseudostratified structure which consisted of goblet cells, basal cells and so on. Cell junctions were found under Transmission Electron Microscope. The levels of CK14, CFTR were still low, but the level of CK18 and percentage of cilia started to increase and the level of Ki67 started to decrease.
     On 21 days, the whole areas of tracheal inner surface were covered by columnar cells. The majority of cells arranged in pseudostratified structure. The level of CK14 was still low, and percentage of cilia still increased and the level of Ki67 decreased. But the level of CFTR started to increase and CK18 reached the peak level.
     On 28 days, the whole areas of tracheal inner surface were covered by ciliated columnar cells arranged in pseudostratified structure. The narrow intercellular space and tight cell junctions were observed under Transmission Electron Microscope. The levels of CK14, Ki67 were low, and the levels of CK18, CFTR and percentage of cilia were high.
     The results on 35 days after transplantation were similar to those on 28 days.
     Conclusion
     Cells adhered to tracheal inner wall quickly after perfusion of cells suspension. Then the adherent flate cells started to proliferate until the whole inner surface was covered. And the cells started to differentiate. Finally, mature pseudostratified ciliated columnar cells appeared.
引文
[1]Grillo HC. Reconstruction of the trachea. Experience in 100 consecutive cases. Thorax,1973, 28(6):667-679
    [2]Grillo HC. Tracheal replacement:a critical review. Ann Thorac Surg,2002,73(6):1995-2004
    [3]Kucera KA, Doss AE, Dunn SS, Clemson LA, Zwischenberger JB. Tracheal replacements:part 1. ASAIO J,2007,53(4):497-505
    [4]-Doss AE, Dunn SS, Kucera KA, Clemson LA, Zwischenberger JB. Tracheal replacements:Part 2. ASAIO J,2007,53(5):631-639
    [5]Cull DL, Lally KP, Mair EA, Daidone M, Parsons DS. Tracheal reconstruction with polytetrafluoroethylene graft in dogs. Ann Thorac Surg,1990,50(6):899-901
    [6]Tan Q, Steiner R, Hoerstrup SP, Weder W. Tissue-engineered trachea:History, problems and the future. Eur J Cardiothorac Surg,2006,30(5):782-786
    [7]Balderman SC, Weinblatt G. Tracheal autograft revascularization. J Thorac Cardiovasc Surg,1987, 94(3):434-441
    [8]Klepetko W, Marta GM, Wisser W, Melis E, Kocher A, Seebacher G, Aigner C, Mazhar S. Heterotopic tracheal transplantation with omentum wrapping in the abdominal position preserves functional and structural integrity of a human tracheal allograft. J Thorac Cardiovasc Surg,2004, 127(3):862-867
    [9]Rose KG, Sesterhenn K, Wustrow F. Tracheal allotransplantation in man. Lancet,1979,1(8113): 433
    [10]Levashov YuN, Yablonsky PK, Cherny SM, Orlov SV, Shafirovsky BB, Kuznetzov IM. One-stage allotransplantation of thoracic segment of the trachea in a patient with idiopathic fibrosing mediastinitis and marked tracheal stenosis. Eur J Cardiothorac Surg,1993,7(7):383-386
    [11]何建行,粱兆煜,杨运有.同种异体气管移植一例.中华外科杂志,2000,38(8):595-601
    [12]Beigel A, Miiller-Ruchholtz W. Tracheal transplantation. I. The immunogenic effect of rat tracheal transplants. Arch Otorhinolaryngol,1984,240(2):185-192
    [13]Beigel A, Muller-Ruchholtz W. Tracheal transplantation. II. Influence of genetic difference and degree of sensitization on reactions to the tracheal transplant. Arch Otorhinolaryngol,1984,240(3): 217-225
    [14]Yokomise H, Inui K, Wada H, Goh T, Yagi K, Hitomi S, Takahashi M. High-dose irradiation prevents rejection of canine tracheal allografts. J Thorac Cardiovasc Surg,1994,107(6): 1391-1397
    [15]Khalil-Marzouk JF. Allograft replacement of the trachea. Experimental synchronous revascularization of composite thyrotracheal transplant. J Thorac Cardiovasc Surg,1993,105(2): 242-246
    [16]Moriyama S, Shimizu N, Teramoto S. Experimental tracheal allotransplantation using omentopexy. Transplant Proc,1989,21:2596-2600
    [17]Moriyama S, Shimizu N, Teramoto S. Experimental tracheal allotransplantation using omentopexy: histological process of rejection reaction without immunosuppression. Tohoku J Exp Med,1992, 167(3):207-218
    [18]Nakanishi R, Shirakusa T, Takachi T. Omentopexy for tracheal autografts. Ann Thorac Surg,1994, 57(4):841-845.
    [19]Iyikesici T, Tuncozgur B, Sanli M, Isik AF, Meteroglu F, Elbeyli L. Two-piece cryopreserved tracheal allotransplantation:an experimental study. Eur J Cardiothorac Surg,2009,36(4):722-726.
    [20]Nakanishi R, Yasumoto K, Shirakusa T. Short-course immunosuppression after tracheal allotransplantation in dogs. J Thorac Cardiovasc Surg,1995,109(5):910-917
    [21]Delaere PR, Liu Z, Sciot R, Welvaart W. The role of immunosuppression in the long-term survival of tracheal allografts. Arch Otolaryngol Head Neck Surg,1996,122(11):1201-1208
    [22]Daar AS, Fuggle SV, Fabre JW, Ting A, Morris PJ. The detailed distribution of MHC Class II antigens in normal human organs. Transplantation,1984,38(3):293-298
    [23]Daar AS, Fuggle SV, Fabre JW, Ting A, Morris PJ. The detailed distribution of HLA-A, B, C antigens in normal human organs. Transplantation,1984,38(3):287-292.
    [24]Bujia J, Wilmes E, Hammer C, Kastenbauer E. Tracheal transplantation:demonstration of HLA class Ⅱ subregion gene products on human trachea. Acta Otolaryngol,1990,110(1-2):149-154
    [25]Shaari CM, Farber D, Brandwein MS, Gannon P, Urken ML. Characterizing the antigenic profile of the human tracheal:implieations for tracheal transplantation. Head Neck,1998,20(6):522-527
    [26]Yokomise H, Inui K, Wada H, Ueda M, Hitomi S. Long-term cryopreservation can prevent rejection of canine tracheal allografts with preservation of graft viability. J Thorac Cardiovasc Surg, 1996,111(5):930-934
    [27]Hisamatsu C, Maeda K, Tanaka H, Okita Y. Transplantation of the cryopreserved tracheal allograft in growing rabbits:effect of immunosuppressant. Pediatr Surg Int,2006,22(11):881-885
    [28]Tojo T, Kitamura S, Gojo S, Kushibe K, Nezu K, Taniguchi S. Epithelial regeneration and preservation of tracheal cartilage after tracheal replacement with cryopreserved allograft in the rat. J Thorac Cardiovasc Surg,1998,116(4):624-627
    [29]Murakawa T, Nakajima J, Motomura N, Murakami A, Takamoto S. Successful allotransplantation of cryopreserved tracheal grafts with preservation of the pars membranacea in nonhuman primates. J Thorac Cardiovasc Surg,2002,123(1):153-160
    [30]Liu Y, Nakamura T, Yamamoto Y, Matsumoto K, Sekine T, Ueda H, Shimizu Y. Immunosuppressant-free allotransplantation of the trachea:the antigenicity of tracheal grafts can be reduced by removing the epithelium and mixed glands from the graft by detergent treatment. J Thorac Cardiovasc Surg,2000,120(1):108-114
    [31]Liu Y, Nakamura T, Yamamoto Y, Matsumoto K, Sekine T, Ueda H, Shimizu Y. A new tracheal bioartificial organ:evaluation of a tracheal allograft with minimal antigenicity after treatment by detergent. ASAIO J,2000,46(5):536-539
    [32]Rennard SI, Romberger DJ, Sisson JH, Von Essen SG, Rubinstein I, Robbins RA, Spurzem JR. Airway epithelial cells:functional roles in airway disease. Am J Respir Crit Care Med,1994, 150(5Pt2):S27-30
    [33]Mukaida T, Shimizu N, Aoe M, Andou A, Date H, Moriyama S. Origin of regenerated epithelium in cryopreserved tracheal allotransplantation. Ann Thorac Surg,1998,66(1):205-208
    [34]Wang EC, Damrose EJ, Mendelsohn AH, Nelson SD, Shintaku IP, Ye M, Berke GS, Blackwell KE. Distribution of class I and II human leukocyte antigens in the larynx. Otolaryngol Head Neck Surg, 2006,134(2):280-287
    [35]Genden EM, Iskander AJ, Bromberg JS, Mayer L. Orthotopic tracheal allografts undergo reepithelialization with recipient-derived epithelium. Arch Otolaryngol Head Neck Surg,2003, 129(1):118-123
    [36]Hertz MI, Jessurun J, King MB, Savik SK, Murray JJ. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol,1993,142(6): 1945-1951
    [37]Fernandez FG, Jaramillo A, Chen C, Liu DZ, Tung T, Patterson GA, Mohanakumar T. Airway epithelium is the primary target of allograft rejection in murine obliterative airway disease. Am J Transplant,2004,4(3):319-325
    [38]Qu N, de Vos P, Schelfhorst M, de Haan A, Timens W, Prop J. Integrity of airway epithelium is essential against obliterative airway disease in transplanted rat tracheas. J Heart Lung Transplant, 2005,24(7):882-890
    [39]Adams BF, Brazelton T, Berry GJ, Morris RE. The role of respiratory epithelium in a rat model of obliterative airway disease. Transplantation,2000,69(4):661-664.
    [40]Ikonen ST, Brazelton TR, Berry GJ, Shorthouse RS, Morris RE. Epithelial re-growth is associated with inhibition of obliterative airway disease in orthotopic tracheal allografts in non-immunosuppressed rats. Transplantation,2000,70:857-863
    [41]Genden EM, Mackinnon SE, Yu S, Hunter DA, Flye MW. Portal venous ultraviolet B-irradiated donor alloantigen prevents rejection in circumferential rat tracheal allografts. Otolaryngol Head Neck Surg,2001,124:481-488
    [42]Genden EM, Govindaraj S, Chaboki H, Cleven H, Fedorova E, Bromberg JS, Mayer L. Reepithelialization of orthotopic tracheal allografts prevents rejection after withdrawal of immunosuppression. Ann Otol Rhinol Laryngol,2005,114(4):279-288
    [43]Dupuit F, Gaillard D, Hinnrasky J, Mongodin E, de Bentzmann S, Copreni E, Puchelle E. Differentiated and functional human airway epithelium regeneration in tracheal xenografts. Am J Physiol Lung Cell Mol Physiol,2000,278(1):L165-176
    [44]Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP, Nussdorfer GG. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int,2005,18(6):727-734
    [45]Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet,2008,372(9655):2023-2030
    [46]中华人民共和国科学技术部.关于善待实验动物的指导性意见.2006-09-30
    [47]李小飞,邓三明,汪健,连耀国.多种酶消化法分离培养气管上皮细胞方法的比较.中华实验外科杂志,2005,22(7):780-781
    [48]Radi ZA, Ackermann MR. Growth of differentiated ovine tracheal epithelial cells in vitro. J Vet Med A Physiol Pathol Clin Med,2004,51(4):167-170
    [49]Gray TE, Thomassen DG, Mass MJ, Barrett JC. Quantitation of cell proliferation, colony formation, and carcinogen induced cytotoxicity of rat tracheal epithelial cells grown in culture on 3T3 feeder layers. In Vitro,1983,19(7):559-570
    [50]Thomassen DG, Salfiotti U, Kaighn ME. Clonal proliferation of rat tracheal epithelial cells in serum-free medium and their responses to hormones, growth factors and carcinogens. Carcinogen, 1986,7(12):2033-2039
    [51]李红澜,周袁芬,张瑞稳.大鼠气管上皮细胞体外培养方法及生长条件.上海医科大学学报,1989,16(3):234-236
    [52]Wu R, Zhao YH, Chang MM. Growth and differentiation of conducting airway epithelial cells in culture. Eur Respir J,1997,10(10):2398-2403
    [53]Yamaya M, Hosoda M, Suzuki T, Yamada N, Sasaki H. Human airway epithelial cell culture. Methods Mol Biol,2002,188:7-16
    [54]Lordan JL, Bucchieri F, Richter A, Konstantinidis A, Holloway JW, Thornber M, Puddicombe SM, Buchanan D, Wilson SJ, Djukanovic R, Holgate ST, Davies DE. Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol,2002,169(1): 407-414
    [55]Formanek P, Bugiel E. Specimen preparation for electron holography of semiconductor devices. Ultramicroscopy,2006,106(4-5):365-375
    [56]Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,2007,447(7146): 879-880
    [57]Da Silva CA, Frossard N. Regulation of stem cell factor expression in inflammation and asthma. Mem Inst Oswaldo Cruz,2005,100(Suppl 1):145-151
    [58]Cleven HA, Genden EM, Moran TM. Reepithelialized orthotopic tracheal allografts expand memory cytotoxic T lymphocytes but show no evidence of chronic rejection. Transplantation,2005, 79(6):861-868
    [59]张临友,王俊峰,张学忠,郭晓彤,董晟,杨宝峰.大鼠气管移植后肺移植慢性排斥反应模型的建立.中华实验外科杂志,2004,21(12):1561
    [60]Neuringer IP, Mannon RB, Coffman TM, Parsons M, Burns K, Yankaskas JR, Aris RM. Immune cells in a mouse airway model of obliterative bronchiolitis. Am J Respir Cell Mol Biol,1998,19(3): 379-386
    [61]Bruen KJ, Campbell CA, Schooler WG, deSerres S, Cairns BA, Hultman CS, Meyer AA, Randell SH. Real-time monitoring of keratin 5 expression during burn re-epithelialization. J Surg Res,2004, 120(1):12-20
    [62]Kurokawa I, Mizutani H, Kusumoto K, Nishijima S, Tsujita-Kyutoku M, Shikata N, Tsubura A. Cytokeratin, filaggrin, and p63 expression in reepithelialization during human cutaneous wound healing. Wound Repair Regen,2006,14(1):38-45
    [63]Stoop AE, van der Heijden HA, Biewenga J, van der Baan S. Eosinophils in nasal polyps and nasal mucosa:an immunohistochemical study. J Allergy Clin Immunol,1993,91(2):616-622
    [64]Jacquot J, Puchelle E, Hinnrasky J, Fuchey C, Bettinger C, Spilmont C, Bonnet N, Dieterle A, Dreyer D, Pavirani A, et al. Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands. Eur Respir J,1993,6(2):169-176
    [65]Hong F, Lee J, Song JW, Lee SJ, Ahn H, Cho JJ, Ha J, Kim SS. Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A:cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. FASEB J,2002,16(12):1633-1635
    [66]Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H. FK-506, a novel immunosuppressant isolated from a Streptomyces. Ⅰ. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo),1987,40(9): 1249-1255
    [67]Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo),1987,40(9):1256-1265
    [68]Huai Q, Kim HY, Liu Y, Zhao Y, Mondragon A, Liu JO, Ke H. Crystal structure of calcineurin-cyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes. Proc Natl Acad Sci U S A,2002,99(19):12037-12042
    [69]Morris R. Modes of action of FK506, cyclosporin A, and rapamycin. Transplant Proc,1994,26(6): 3272-3275
    [70]Hashimoto M, Nakanishi R, Muranaka H, Umesue M, Eifuku R, Yasumoto K. Short-course immunosuppression using FK506 for rat tracheal allografts. J Cardiovasc Surg (Torino),2000, 41(3):487-492
    [71]Nakanishi R, Yasumoto K. Multiglycosidorum tripterygii versus Tacrolimus for rat tracheal allografts. Eur J Cardiothorac Surg,2005,28(4):588-593
    [72]Nakanishi R, Yasumoto K. Efficacy of Multiglycosidorum tripterygii for rat tracheal allografts. J Heart Lung Transplant,2005,24(3):289-295
    [73]Deuse T, Schrepfer S, Koch-Nolte F, Haddad M, Schwedhelm E, Boger R, Schafer H, Detter C, Reichenspurner H. FK778 and tacrolimus prevent the development of obliterative airway disease after heterotopic rat tracheal transplantation. J Heart Lung Transplant,2005,24(11):1844-1854
    [74]Govindaraj S, Gordon R, Genden EM. Effect of fibrin matrix and vascular endothelial growth factor on reepithelialization of orthotopic murine tracheal transplants. Ann Otol Rhinol Laryngol, 2004,113(10):797-804
    [75]Boehler A, Chamberlain D, Xing Z, Slutsky AS, Jordana M, Gauldie J, Liu M, Keshavjee S. Adenovirus-mediated interleukin-10 gene transfer inhibits post-transplant fibrous airway obliteration in an animal model of bronchiolitis obliterans. Hum Gene Ther,1998,9(4):541-551
    [76]Dosanjh A, Morris RE, Wan B. Bronchial epithelial cell-derived cytokine IL-10 and lung fibroblast proliferation. Transplant Proc,2001,33(1-2):352-354
    [77]Tan PH, Bay BH, Yip G, Selvarajan S, Tan P, Wu J, Lee CH, Li KB. Immunohistochemical detection of Ki67 in breast cancer correlates with transcriptional regulation of genes related to apoptosis and cell death. Mod Pathol,2005,18(3):374-381
    [78]Lane BP, Gordon R. Regeneration of rat tracheal epithelium after mechanical injury. I. The relationship between mitotic activity and cellular differentiation. Proc Soc Exp Biol Med,1974, 145(4):1139-1144
    [79]Keenan KP, Combs JW, McDowell EM. Regeneration of hamster tracheal epithelium after mechanical injury. Ⅲ. Large and small lesions:comparative stathmokinetic and single pulse and continuous thymidine labeling autoradiographic studies. Virchows Arch B Cell Pathol Incl Mol Pathol,1982,41(3):231-252
    [80]Montefort S, Herbert CA, Robinson C, Holgate ST. The bronchial epithelium as a target for inflammatory attack in asthma. Clin Exp Allergy,1992,22(5):511-520
    [1]Grillo HC. Reconstruction of the trachea. Experience in 100 consecutive cases. Thorax.1973 Nov;28(6):667-79.
    [2]Cull DL, Lally KP, Mair EA, Daidone M, Parsons DS. Tracheal reconstruction with polytetrafluoroethylene graft in dogs. Ann Thorac Surg.1990 Dec;50(6):899-901.
    [3]Tan Q, Steiner R, Hoerstrup SP, Weder W. Tissue-engineered trachea:History, problems and the future. Eur J Cardiothorac Surg.2006 Nov;30(5):782-6.
    [4]Balderman SC, Weinblatt G. Tracheal autograft revascularization. J Thorac Cardiovasc Surg 1987;94:434-41.
    [5]Rose KG, Sesterhenn K, Wustrow F. Tracheal allotransplantation in man. Lancet.1979 Feb 24;1(8113):433.
    [6]Levashov YuN, Yablonsky PK, Cherny SM, Orlov SV, Shafirovsky BB, Kuznetzov IM.One-stage allotransplantation of thoracic segment of the trachea in a patient with idiopathic fibrosing mediastinitis and marked tracheal stenosis. Eur J Cardiothorac Surg.1993;7(7):383-6.
    [7]何建行,粱兆煜,杨运有.同种异体气管移植一例.中华外科杂志,2000,38(8):595-601.
    [8]Klepetko W, Marta GM, Wisser W, Melis E, Kocher A, Seebacher G, Aigner C, Mazhar S. Heterotopic tracheal transplantation with omentum wrapping in the abdominal position preserves functional and structural integrity of a human tracheal allograft. J Thorac Cardiovasc Surg.2004 Mar;127(3):862-7.
    [9]Salassa JR, Pearson BW, Payne WS. Gross and microscopical blood supply of the trachea. Ann Thorac Surg.1977 Aug;24(2):100-7.
    [10]Khalil-Marzouk JF. Allograft replacement of the trachea. Experimental synchronous revascularization of composite thyrotracheal transplant. J Thorac Cardiovasc Surg.1993 Feb;105(2):242-6.
    [11]Macchiarini P, Lenot B, de Montpreville V, Dulmet E, Mazmanian GM, Fattal M,Guiard F, Chapelier A, Dartevelle P. Heterotopic pig model for direct revascularization and venous drainage of tracheal allografts. Paris-Sud University Lung Transplantation Group. J Thorac Cardiovasc Surg. 1994 Dec; 108(6):1066-75.
    [12]Delaere PR, Liu ZY, Feenstra L. Tracheal autograft revascularization and transplantation. Arch Otolaryngol Head Neck Surg 1994;120:1130-6.
    [13]Delaere PR, Liu ZY, Hermans R, Sciot R, Feenstra L. Exper-imental tracheal allograft revascularization and transplantation. J Thorac Cardiovasc Surg 1995;110:728-37.
    [14]Moriyama S, Shimizu N, Teramoto S. Experimental tracheal allotransplantation using omentopexy.
    Transplant Proc 1989;21:2596-600.
    [15]Nakanishi R, Shirakusa T, Takachi T. Omentopexy for tracheal autografts. Ann Thorac Surg.1994 Apr;57(4):841-5.
    [16]Morgan E, Lima 0, Goldberg M, Ferdman A, Luk SK, Cooper JD. Successful revascularization of totally ischemic bronchial autografts with omental pedicle flaps in dogs. J Thorac Cardiovasc Surg 1982;84:204-10.
    [17]Nakanishi R, Shirakusa T, Mitsudomi T. Maximum length of tracheal autografts in dogs. J Thorac Cardiovasc Surg.1993 Dec; 106(6):1081-7.
    [18]Li J, Xu P, Chen H, Yang Z, Zhang Q. Improvement of tracheal autograftsurvival with transplantation into the greater omentum. Ann Thorac Surg.1995 Dec;60(6):1592-6.
    [19]Li J, Xu P, Chen H. Successful tracheal autotransplantation with two-stage approach using the greater omentum. Ann Thorac Surg.1997 Jul;64(1):199-202.
    [20]Yokomise H, Inui K, Wada H, Ueda M, Hitomi S, Itoh H. Split transplantation of the trachea:a new operative procedure for extended tracheal resection. J Thorac Cardiovasc Surg.1996 Aug;112(2):314-8.
    [21]Park YS, Lee DY, Paik HC, Bae KM, Cho SH. The role of omentopexy in tracheal transplantation in dogs. Yonsei Med J.1996 Apr;37(2):118-24.
    [22]Iyikesici T, Tuncozgur B, Sanli M, Isik AF, Meteroglu F, Elbeyli L. Two-piece cryopreserved tracheal allotransplantation:an experimental study. Eur J Cardiothorac Surg.2009 Oct;36(4):722-6. Epub 2009 Jun 12.
    [23]Shaari CM, Farber D, Brandwein MS, Gannon P, Urken ML. Characterizing theantigenic profile of the human trachea:implications for tracheal transplantation. Head Neck.1998 Sep;20(6):522-7.
    [24]Beigel A, Muller-Ruchholtz W. Tracheal transplantation. Ⅰ. The immunogenic effect of rat tracheal transplants. Arch Otorhinolaryngol.1984;240(2):185-92.
    [25]Beigel A, Muller-Ruchholtz W. Tracheal transplantation. Ⅱ. Influence of genetic difference and degree of sensitization on reactions to the tracheal transplant. Arch Otorhinolaryngol. 1984;240(3):217-25.
    [26]Yokomise H,'Inui K, Wada H, Goh T, Yagi K, Hitomi S, Takahashi M. High-dose irradiation prevents rejection of canine tracheal allografts. J Thorac Cardiovasc Surg.1994 Jun; 107(6):1391-7.
    [27]Mukaida T, Shimizu N, Aoe M, Andou A, Date H. Tracheal allotransplantation after varying terms of cryopreservation. Transplant Proc.1998 Nov;30(7):3397-400.
    [28]Tojo T, Niwaya K, Sawabata N, Kushibe K, Nezu K, Taniguchi S, Kitamura S. Tracheal replacement with cryopreserved tracheal allograft:experiment in dogs. Ann Thorac Surg.1998
    Jul;66(1):209-13.
    [29]Delaere PR, Liu Z, Sciot R, Welvaart W. The role of immunosuppression in the long-term survival of tracheal allografts. Arch Otolaryngol Head Neck Surg.1996 Nov;122(11):1201-8.
    [30]Nakanishi R, Yasumoto K, Shirakusa T. Short-course immunosuppression after tracheal allotransplantation in dogs. J Thorac Cardiovasc Surg.1995 May; 109(5):910-7.
    [31]Nakanishi R, Yasumoto K. Minimal dose of cyclosporin A for tracheal allografts. Ann Thorac Surg.1995 Sep;60(3):635-9.
    [32]Liu Y, Nakamura T, Yamamoto Y, Matsumoto K, Sekine T, Ueda H, Shimizu Y. Immunosuppressant-free allotransplantation of the trachea:the antigenicity of tracheal grafts can be reduced by removing the epithelium and mixed glands from the graft by detergent treatment. J Thorac Cardiovasc Surg.2000 Jul;120(1):108-14.
    [33]Grillo HC. Tracheal replacement:a critical review. Ann Thorac Surg.2002 Jun;73(6):1995-2004.
    [34]Mukaida T, Shimizu N, Aoe M, Andou A, Date H, Moriyama S. Origin of regenerated epithelium in cryopreserved tracheal allotransplantation. Ann Thorac Surg.1998 Jul;66(1):205-8.
    [35]Strancar A, Raspor P, Schwinn H, Schutz R, Josic D. Extraction of Triton X-100 and its determination in virus-inactivated human plasma by the solvent-detergent method. J Chromatogr A.1994 Jan 14;658(2):475-81.
    [36]Liu Y, Nakamura T, Yamamoto Y, Matsumoto K, Sekine T, Ueda H, Shimizu Y. A new tracheal bioartificial organ:evaluation of a tracheal allograft with minimal antigenicity after treatment by detergent. ASAIO J.2000 Sep-Oct;46(5):536-9.
    [37]Gammie JS, Li S, Kawaharada N, Colson YL, Yousem S, Ildstad ST, Pham SM. Mixed allogeneic chimerism prevents obstructive airway disease in a rat heterotopic tracheal transplant model. J Heart Lung Transplant.1998 Aug;17(8):801-8.
    [38]Fernandez FG, McKane B, Marshbank S, Patterson GA, Mohanakumar T. Inhibition of obliterative airway disease development following heterotopic murine tracheal transplantation by costimulatory molecule blockade using anti-CD40 ligand alone or in combination with donor bone marrow. J Heart Lung Transplant.2005 Jul;24(7 Suppl):S232-8.
    [39]Nusair S, Or R, Junadi S, Amir G, Breuer R. Simultaneous donor marrow cell transplantation with reduced intensity conditioning prevents tracheal allograft obliteration in a bronchiolitis obliterans murine model. Chest.2005 Dec;128(6):4024-9.
    [40]Mayer E, Cardoso PF, Puskas JD, De Campos K, Oka T, Dardick I, Patterson GA. The effect of basic fibroblast growth factor and omentopexy on revascularization and epithelial regeneration of heterotopic rat tracheal isografts. J Thorac Cardiovasc Surg.1992 Jul;104(1):180-8.
    [41]Nakanishi R, Shirakusa T, Hanagiri T. Early histopathologic features of tracheal allotransplantation rejection. A study in nonimmunosuppressed dogs. Transplant Proc 1994;26:3715-8.
    [42]Davreux CJ, Chu NH, Waddell TK, Mayer E, Patterson GA. Improved tracheal allograft viability in immunosuppressed rats. Ann Thorac Surg 1993;55:131-4.
    [43]Adams BF, Berry GJ, Huang X, Shorthouse R, Brazelton T, Morris RE. Immunosuppressive therapies for the prevention and treatment of obliterative airway disease in heterotopic rat trachea allografts. Transplantation.2000 Jun 15;69(11):2260-6.
    [44]Maclean AA, Liu M, Fischer S, Suga M, Keshavjee S. Targeting the angiotensin system in posttransplant airway obliteration:the antifibrotic effect of angiotensin converting enzyme inhibition. Am J Respir Crit Care Med.2000 Jul;162(1):310-5.
    [45]Peng H, Carretero OA, Vuljaj N, Liao TD, Motivala A, Peterson EL, Rhaleb NE. Angiotensin-converting enzyme inhibitors:a new mechanism of action. Circulation.2005 Oct 18;112(16):2436-45.
    [46]Igai H, Yamamoto Y, Chang SS, Yamamoto M, Tabata Y, Yokomise H. Trachealcartilage regeneration by slow release of basic fibroblast growth factor from a gelatin sponge. J Thorac Cardiovasc Surg.2007 Jul;134(1):170-5.
    [47]Sung SW, Won T. Effects of basic fibroblast growth factor on early revascularization and epithelial regeneration in rabbit tracheal orthotopic transplantation. Eur J Cardiothorac Surg.2001 Jan; 19(1):14-8.
    [48]Nakanishi R, Nagaya N, Yoshimatsu T, Hanagiri T, Yasumoto K. Optimal dose of basic fibroblast growth factor for long-segment orthotopic tracheal autografts. J Thorac Cardiovasc Surg.1997 Jan;113(1):26-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700