冲击载荷作用下压力容器用金属材料动态断裂行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力容器和输油输气管道的爆裂、止裂,核电站防护的冲击安全,建筑物和结构的抗震设计等领域都涉及结构材料动态断裂的性能评估和灾害对策研究。为保证这些可能承受动载荷金属构件的安全可靠,需要在设计中预防含裂纹构件在冲击载荷下的起裂和扩展,因此研究金属材料动态断裂行为的重要意义是不言而喻的。本文从理论、试验和数值模拟方面研究了冲击载荷作用下金属材料的动态断裂行为,主要研究内容包括以下几个方面:
     研究了中心裂纹板试样、双悬臂梁试样和三点弯曲试样在理想冲击载荷作用下,各种因素对于它们动态应力强度因子K1(t)的影响。分析中心裂纹板的计算结果表明动态应力强度因子的最大值一般发生在应力波与裂尖相互作用的时刻。双悬臂梁DCB试样模型在拉伸阶跃载荷的作用下,应力强度因子的动载系数可以近似用一个周期函数表示,它的变化周期与载荷加载点的位移变化周期相同。使用弹簧质量模型对三点弯曲试样的动态应力强度因子进行了求解,并使用此模型计算了试样在三种理想冲击载荷下的动态应力强度因子变化曲线;同时进行了完全的动态有限元分析,将计算结果与弹簧质量模型的结果进行了比较。
     在-196℃下对S30408奥氏体不锈钢的母材和焊缝进行了夏比摆锤冲击试验研究。使用改进型柔度变化率法得到了低温下不锈钢母材夏比冲击试样的起裂点,通过对比发现改进型法得到的结果比传统的柔度变化率法得到的结果更加准确。根据试验得到的载荷位移曲线,结合Schindler方法和关键曲线法各自所得结果的优点,研究得到了不锈钢母材的动态J积分裂纹扩展阻力曲线(动态J-R曲线)。依据不锈钢焊缝在低温动载下的载荷位移曲线及其断裂特征,采用线弹性断裂力学模型计算了其动态断裂韧性,并对结果的有效性进行了讨论。
     对典型压力容器用钢Q345R预制裂纹夏比冲击试样进行示波冲击试验,得到其载荷位移曲线。分别采用J积分增量方程计算方法和Schindler方法计算得到了Q345R材料在冲击加载速率下的动态裂纹扩展阻力曲线,并将两者结果进行了对比验证。将所得到的动态J-R曲线与准静态加载条件下得到的J-R曲线结果进行分析,发现动态加载条件下的J-R曲线要高于准静态加载下相应的结果。根据得到的试验数据建立了Q345R准静态和动态裂纹扩展阻力曲线之间关系的计算方程。
     在-40℃下对Q345R材料进行了示波冲击试验,发现有预制疲劳裂纹的夏比冲击试样断口完全表现为解理断裂;而标准夏比冲击试样则在缺口处有少量的塑性变形,随后也发生解理断裂,得到的冲击功值更低。使用标准ASME E399中的准静态计算公式计算了两种试样的动态断裂韧性,并对结果进行了讨论。将断裂时间与试样振动周期比较验证了试验结果的有效性。应用大型通用有限元软件ABAQUS对Q345R材料在-40℃下的示波冲击试验进行了数值模拟,并采用基于节点位移外推法计算了在试样起裂时刻的动态应力强度因子,发现剔除裂尖附近的位移数据反而能增加计算结果的精度。
     使用ABAQUS有限元软件并结合3D断裂力学软件ZENCRACK建立了三维有限元模型,对霍普金森压杆测试材料动态断裂韧性进行了数值模拟研究,同时建立了二维平面应变有限元模型,并进行了计算。有限元模型包括整个实验装置——子弹、入射杆、试样和支座,对三种不同初始裂纹长度的三点弯曲试样在同一速度子弹打击下进行了计算。起裂时问通过RKR局部应力断裂准则获得,结合计算得到的动态应力强度因子冲击响应曲线,最终得到材料动态断裂韧性,并验证了其有效性。以试验结果为基准,将三维和二维有限元计算结果的对比,发现三维有限元的计算结果要优于二维模型的计算结果。
Performance assessments and disaster countermeasures of dynamic fracture of structural materials are involved in many engineering fields such as pressure vessels and pipelines burst, crack arrest, the impact of the nuclear power plant protection security, buildings and structures, seismic design etc.. In order to ensure the safety and reliability of the metal components under dynamic loads, crack initiation and propagation in the componemts with prefabricated crack should be prevend in impact loading design. Therefore, the importance of study on dynamic fracture behavior of metallic materials is self-evident. The present dissertation investigates the dynamic fracture behavior of metallic materials under impact loads via theoretical analyses, experimental test and numerical simulation. The main contents in the dissertation are listed as following.
     The effects of variety factors on the dynamic stress intensity factor under ideal impact loads are studied for plate with centeral prefabricated crack, twin cantilever beam and three point bend specimens. The calculated results of the plate with centeral prefabricated crack show that the maximum value of dynamic stress intensity factor generally occurs at the moment of intersection of the stress wave with crack tip. The stress intensity factor of twin cantilever beam can be approximated by a periodic function under tensile step load. The change cycle is as the same as the displacement cycle of loading point, and is a function of prefabricated crack. Spring-mass model is used to solve the dynamic stress intensity factor of the three-point bend specimens, and also be used to calculate the values of dynamic stress intensity factors under three ideal impact loads. The calculation results of completely dynamic finite element analysis are compared with the spring-mass model results.
     Charpy pendulum impact tests are carried out on S30408austenitic stainless steel base metal and weld metal under-196℃. Modified compliance changing rate method is used to obtain the crack initiation point of stainless steel base metal charpy specimen. The analysis show that results obtained by the improved method is more accurate than that by traditional compliance changing rate method. Schindler procedure and key curve method are used in conjuction to get approaching real dynamic crack growth resistance curve in terms of load-displacement curves by tests. According to characteristics of fracture mechanism and load-displacement curves, linear elastic fracture mechanics approach is used to obtain the dynamic fracture toughness of weld metal.
     Oscillographic impact tests are carried out using precracked charpy speciments of typical pressure vessel steel Q345R, the load-displacement curves are obtained. J-integral incremental equation procedure and Schindler method are used to estimate dynamic crack resistance curve of Q345R under impact loading rate respectively. The obtained results are consistent each other. By comparing the dynamic J-R curve and qusi-static J-R curve, it is found that the J-R curve under dynamic loading conditions is higher than that obtained under quasi-static loadings. A large number of experimental results show that there is a certain quantitative relationship between them. A calculation equation is established between Q345R quasi-static and dynamic crack growth resistance curve according to the obtained test data.
     Oscillographic impact test of material Q345R are carried out under temperature-40℃. It is found that prefabricated fatigue crack charpy specimens show completely cleavage fracture performance. Standard charpy impact test specimen have small amount of plastic deformation in the gap. Fracture surfaces of specimens without inclusions are flatter and have lower impact energy value. The quasi static formula in standard ASME E399are used to calculate dynamic fracture toughness for samples of two types, the results are compared and discussed. The rupture time is compared with specimen vibration cycle to verify the validity of the test results. Numerical simulation of these tests is performed with the well known general purpose finite element software ABAQUS. Dynamic stress intensity factor at crack initiation is calculated based on the nodal displacements extrapolation. It is found that the calculation accuracy can be increased if excluding displacement data in the vicinity of crack tip.
     3D and2D numerical simulations are also conducted for Dynamic fracture toughness test using TPB specimen in SHPB by the ABAQUS6.8code and3D fracture mechanics ZENCRACK7.7code.The finite element model includes the whole experimental system (the projectile, the input bar, the specimen and the supporting device). Three specimens with different initial crack length impacted by projectiles are calculated. Dynamic stress intensity factor impulse response curves are obtained. The dynamic initial fracture time, tf, can be received by RKR local stress fracture criterion. The material dynamic fracture toughness is successfully obtained from numerical simulation. The3D finite element results and2D results are compared with test results benchmark, it is found that3D finite element results are better than2D results.
引文
[I]Mott N F. Fracture of metals:theorertcal consideration. Engineering,1948,165:16-18.
    [2]范大佑。断裂动力学原理与应用。北京:北京理工大学出版社,2006。
    [3]Griffith A A. Phil. Trans. Roy. London,1921; A221:163-198.
    [4]Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech.1957;24:361-364.
    [5]Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech,1968;35:379-386.
    [6]Cheverton R D, Bolt S E, Holz P P. Behavior of surface flaws in reactor pressure vessels under thermal-shock loading conditions[J]. Exp.Mech,1981,21,155-162.
    [7]陈学东,杨铁成,李泽震,于兆伟.压力容器接管高应变区断裂评定设计曲线.第四届压力容器学术会议,无锡,1997.
    [8]Brickstad B, Nilsson F. Dynamic analysis of crack growth and arrest in a pressure vessel subject to thermal and pressure loading[J]. Engng Fract. Mech,1986,23:61-70.
    [9]Ives K D, Shoemaker A K and McCartney R F. Pipe deformation during a running shear fracture in line pipe[J]. Engng Mater. Technol,1974,96:309-317.
    [10]UK Air accidents investigation branch:Report on the accident to Boeing 747-121, N739PA at Lockerbie, Dumfriesshire, Scotland on 21 December,1988, Aircraft accident report No 2/90(EW/C 1094),1990.
    [11]Johnson W. Impact strength of material. Edward Arnold,1972.
    [12]Lindholm U S, Banshan R T. Techniques in metal research, Vol.5. Interscience,1971.
    [13]Campbell J D. Material Sci.& Engng.1973,12:3-21.
    [14]Klepaczko J R. Int. J. Impact Engng.1985,3:191-210.
    [15]Klepaczko J R. In:Klepaczko J R(ed.). Crack dynamics in metallic materials. Springer-verlag, 1989.
    [16]Nilsson F. Mechanical properties at high rates of strain. Institute of Physics. London,1984: 185-204.
    [17]Steverding B, Lehnigh S H. J. Appl. Phys,1970,41:2096-2099.
    [18]Kalthoff J F, Shockey D A. In:Harding J(ed.). Proc.3rd Conf. Mech. Prop. High Rates of strain. Oxford,1984:205-211.
    [19]赵亚浦.裂纹动态起始问题的研究进展[J].力学进展,1996,26(3):362-379.
    [20]Morozov N F, Petrov Y N. Izv ANSSSR MTT(Solid Mechanics),1990,6:108-111.
    [21]Willliams J G, Adams G C. The analysis of dynamic fracture using a mass-spring model. International Journal of Fracture,1987(33):209-222.
    [22]G C Sih, J F Lober. Appl. Math,1969(27):193-213.
    [23]Sih G C, Ravera R S and Embley G T. Impact response of a finite crack in plane extension, Int. J. of Solid and Structure,1972(8):977-993.
    [24]Nash G E. An analysis of the forces and bending moments during the notched beam impact test. Int. J Fracture Mech.1969(5):269-286.
    [25]Williams J G The analysis of dynamic fracture using lumped mass-spring model. International Journal of Fracture,1987(1):47-59.
    [26]Williams J G et al.The effect of damping on the spring-mass dynamic fracture model. International Journal of Fracture,1989(39):147-161.
    [27]Liu Y N et al. The inertia effect in charpy impact tests. Engineering Fracture Mechanics, 1991(6):955-964.
    [28]Kishimoto K, Aoki S and Sakata M. Simple formula for dynamic stress intensity factor of pre-crack charpy specimen. Engineering Fracture Mechanics,1980(2):501-507.
    [29]Freund L B and Hutchinson J W. High strain-rate crack growth in rate-dependent plastic solids[J]. Mech. Phys.Solids.1985,33:169-191.
    [30]Clarke G A, Andrews W R, Paris P C, Schmidt D W. Single specimen tests for JIC determination. Mechanics of Crack Growth, ASTM STP 590,1976, p.27-42.
    [31]Garwood S J, Robinson J N, Turner C E. The measurement of crack growth resistance curves (R-curves) using the J integral[J]. International Journal of Fracture,197511 (3):528-530.
    [32]Etemad M R, Turner C E. An experimental investigation of slow stable crack growth using HY130 steel[J]. Journal of Strain Analysis for Engineering Design,1985,20(4):201-208.
    [33]Etemad M R, John S J, Turner CE. Elastic-Plastic R-Curves for large amounts of crack growth. The 18th Symposium on Fracture Mechanics, ASTM STP 945,1988:986-1004.
    [34]Ernst H A., Paris P C, Landes J D. Estimations on J-Integral and tearing modulus T from a single specimen test record. The 13th Conference on Fracture Mechanics, ASTM STP 743, 1981,476-502.
    [35]Hutchinson J W, Paris P C. Stability Analysis of J-Controlled Crack Growth. Elastic-Plastic Fracture, ASTM STP 668,,1979:37-64.
    [36]Anderson T L. Fracture Mechanics:Fundamentals and Applications (2nd Ed.). CRC Press, USA,1995.
    [37]Kanninen M F, Popelar C H. Advanced Fracture Mechanics. Oxford University Press, New York,1985.
    [38]Newman JC, James M A, Zerbst U. A review of the CTOA/STOD fracture criterion[J]. International Journal of Fracture.2003,70(3-4):371-385.
    [39]Zerbst U, Heinimann M, Donne C D, Steglich D. Fracture and damage mechanics modeling of thin-walled structures-an overview[J]. Engineering Fracture Mechanics,2009,76(l):5-43.
    [40]Standard methods for notch bar impact testing of metallic materials E23 Annual Book of ASTM, Philadejpkia,1984:210.
    [41]Ireland D R. Proc. Int, Conf. Dynamic Fracture Toughness, London.1979:47.
    [42]Bohme W, et al. Int. J. Fract,1982,20:R139.
    [43]Kalthoff J F. ibid,1985,27:127.
    [44]Lindholm U S. Some experiments with the split hopkison pressure bar. J. Mech. Phys. Solids, 1964,12:317-335.
    [45]Ruiz C and Mines R A W. The hopkinson pressure bar and alternative to the instrumented pendulum for charpy tests[J]. Int. J. of Fract,1985(29):101-109.
    [46]Costin L S, Duffy J and Freund L B. Fracture initiation in metals under stress wave loading condition. ASTM STP 1977;627:301-31.
    [47]Klepaczko J R. Proc. IUTAM Symp.403,1977.
    [48]Kishida K. Mechanical properties at high rates of strain. Inst. Conf. Ser. No.47, Oxford, 1984:221.
    [49]Yokoyama T, Kishida K. A novel impact three-point bend test method for determination dynamic fracture-initiation toughness[J]. Exp. Mech.,1989,29(2):188-194.
    [50]Xia Yuanming, Rao Shiguo, Yang Baochang. A novel method for measuring plane stress dynamic fracture toughness [J]. Engng, Fract. Mech,1994,48:17-24.
    [51]宫能平,弹塑性材料动态断裂韧性的理论与实验研究,博士学位论文,中国科技大学,2001。
    [52]郑坚,王泽平,段祝平.动态断裂的加载和测试技术[J].力学进展,1994,24(4):459-475.
    [53]Manogg P. Anwendung der Schattennoptik zur untersuchung des zerreissvorgangs von platen. Diseration. Freiburg, Germany,1964.
    [54]]Beinert J, et al. Mechanics of Fracture:Experimental Fracture Mechanics. Hingham,1981,7: 280.
    [55]余德浩.计算数学与科学工程计算及其在中国的若干发展[J].数学进展,2002,31(1):1-6.
    [56]黎在良,王乘.高等边界元法.北京:科学出版社,2008.
    [57]Aliabadi M H. A new generation of boundary element methods in fracture mechanics[J]. International Journal of Fracure,1987,86:91-125.
    [58]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering,1994,37:229-256.
    [59]Atluri S N, Shen S. The meshless local petrov-galerkin method. Forsyth:Tech science press, 2002.
    [60]Zienkiewicz O C, Taylor R L. The finite element method.5th Edition.Oxford:Butterworth-Heinemann,2000.
    [61]Nishioka T, Atluri S N. Numerical modeling dynamic crack propagation in finite bodies, by moving singular elements, part Ⅰ:Formulation[J]. Journal of Applied Mechanics,1980,47: 570-576.
    [62]Nishioka T, Atluri S N. Numerical modeling dynamic crack propagation in finite bodies, by moving singular elements, part Ⅱ:Results[J]. Journal of Applied Mechanics,1980,47: 577-582.
    [63]Sukumar N, Moes N, Moran N, et al. Extended finite element for three dimensional crack modeling[J]. International Journal for Numerical Methods in Engineering,2000,48: 1549-1570.
    [64]Bazant Z P. Nonlocal damage theory based on micromechanics of crack interactions [J]. ASCE Journal of Engineering Mechanics,1994,120:593-617.
    [65]Bazant Z P, Jirasek M. Nonlocal intergral formulations of plasticity and damage:Survey of progress[J]. ASCE Journal of Engineering Mechanics,2002,128:1119-1149.
    [66]Beissel S R, Johnson G R, Popelar C H. An element-failure algorithm for dynamic crack propagation in general directions[J]. Engineering Fracture Mechanics,1998,61:407-425.
    [67]Tay T E, Tan V B C, Deng M. Element-failure concepts for dynamic fracture and delamination in low velocity impact of composites [J]. International Journal of Solids and Structures,2003, 40:555-571.
    [68]Fleming D C. Delamination modeling of composites for improved crash analysis[J]. Journal of Composite Materials,2001,35:1777-1792.
    [69]Jih C J, Sun C T. Evaluation of a finite element based crack closure method for calculating static and dynamic strain energy release rates [J]. Engineering Fracture Mechanics,1990,37: 313-322.
    [70]Pradhan S C, Tay T E. Three-dimensional finite element modeling of delamination growth in notched composite laminates under compression loading[J]. Engineering Fracture Mechanics, 1998,60:157-171.
    [71]Xie D, Biggers Jr S B. Strian energy release rate calculation for a moving delamination front of arbitrary shape based on virtual crack closure technique, Part Ⅰ:Formulation and validation[J]. Engineering Fracture Mechanics,2006,73:771-785.
    [72]Xie D, Biggers Jr S B. Strian energy release rate calculation for a moving delamination front of arbitrary shape based on virtual crack closure technique, Part Ⅰ:Sensitivity study on modeling details [J]. Engineering Fracture Mechanics,2006,73:786-801.
    [73]Mabson G E, Deobald L R, Dopker B. Fracture interface elements for the implementation of the virtual crack closure technique. The 48th AIAA/ASME/ASCE/AHS/ASC Structure, Structure Dynamics&Materials Conference, AIAA-2007-2376. Honolulu, Hawaii. April 23-26, 2007.
    [74]Chen Y M. and Wilkins M L. Numerical analysis of dynamic crack problems, Mechanics of Fracture, Vol4, Leyden:Noordhoff International Publishing,1977.
    [75]Aberson J A, Anderson J M and King W W. Mechanics of Fracture, Elastodynamic Crack Problem, Editor Sih G C.1977.
    [76]ABAQUS. User's Manual Version 6.8. Hibbitt, Karlsson&Sorensen, Inc.
    [77]Kanninen M F. A dynamic analysis of unstable crack propagation and arrest in the DCB test specimen[J]. J. Int. Fracture,1974,10:415-430.
    [78]Kanninen M F. A critical appraisal of solution techniques in dynamic fracture mechanics, Numerical Methods in Fracture Mechanics, Univ. of Swansea 1978,612-623.
    [79]Kanninen M F. An augmented double cantilever beam model for studing crack propagation and arrest[J]. Int. J. Fract.1973,9(1):83-92.
    [80]Williams J G. The analysis of dynamic fracture using lumped mass-spring models[J]. Int J Fracture,1987,33; 47-59.
    [81]Marur P R and Nair P S. Dynamic analysis of three point bend specimens under impact[J]. International J. of Fracture.1994,68:261-273 P.
    [82]Tada H, Paris P, Irwin G. The stress analysis of cracks handbook. Del Research 1973.
    [83]李志安等.压力容器断裂理论与缺陷评定[M].大连:大连理工大学出版社,1994:73-76.
    [84]Kanto Y, Yagawa. Finite element analysis of dynamic three point bending test considering contact phenomena in prc. of role of facture mechanics in modern technology. Elsevier Science Publisher,1989.
    [85]李玉龙,刘元镛.三点弯曲试样冲击特性的有限元分析.第七届全国断裂力学会议论文集,武汉,1993.
    [86]Rokach I V. Modal approach for processing one-and three-point bend test data for DSIF-time diagram determination. Fatigue Fract Engng Mater Struct 1998;21(8):1007-26.
    [87]O'DONNELL I J, HUTHMANN H, TAVASSOLI A A. The fracture toughness behaviour of austenitic steels and weld metal including the effects of thermal aging and irradiation [C]. Proceedings of International Seminar on Fracture in Austenitic Components, October 8-9, Saclay, France,1991:2-27.
    [88]BERNARD J, VERZELETTI G. Elasto-plastic fracture toughness characterisation of irradiated 316H grade stainless steel [C]. Elastic-Plastic Fracture Test Methods:User's Experience, ASTM STP 856 (Edited by E.T. Wessel and F.J. Loss), American Society for Testing and Materials, Philadelphia, PA,1985,131-149.
    [89]SATHYANARAYANAN S, SASIKALA G, Ray S K. Evaluation of dynamic fracture toughness of cold worked 9Cr-1Mo steel [J]. International Journal of Pressure Vessels and Piping,2004,81(4):19-425.
    [90]SREENIVASAN P R, SHASTRY C G, MATHEW M D, et al. Dynamic fracture toughness and charpy transition properties of a service-exposed 2.25Cr-1Mo reheater header pipe [J]. Journal of Engineering Materials and Technology,2003,125:227-233.
    [91]MAGUDEESWARAN G, BALASUBRAMANIAN V. Dynamic fracture toughness behavior of armor-grade Q&T steel weldments:effect of weld metal composition and microstructure [J]. Met.Mater.Int,2009,15(6):1017-1026.
    [92]RULAND D L, WANG Y Y, WILKOSKI G, et al. Characterizing dynamic fracture toughness of linepipe steel using the pressed-notch drop-weight-tear test specimen [J]. Engineering Fracture Mechanics,2004,71:2533-2549.
    [93]姜风春,刘瑞堂,刘殿魁.船用921A钢动态断裂韧性测试研究[J].实验力学,1999,14(1):96-101.JIANG Fengchun, LIU Ruitang, LIU Diankui. Study of DynamicFractureToughness Measurement of 921A Shipbuilding Steel [J]. Journal of Experimental Mechanics,1999,14(1): 96-101.
    [94]许泽建,李玉龙,李娜等.加载速率对高强钢40Cr和30CrMnSiNi2AⅠ型动态断裂韧性的影响[J1.金属学报,2006,42(9):965-970.XU Zhejian, LI Yulong, LI Na, et al. Effect of loading rate on mode I dynamic fracture toughness of high strength steels 40Cr and 30CrMnSiNi2A [J]. Acta Metallurgica Sinica,2006, 42(9):965-970.
    [95]KOBAYASHI T, YAMANOTO I, NIINOMI M. Introduction of a new dynamic fracture toughness evaluation system [J]. Journal of Testing and Evaluation,1993,21 (3):145-153.
    [96]SCHINDLER H J. Estimation of the dynamic J-R curve from a single impact bending test [C]. In:Petit J, De Fouquet J, Henaff G, Villechaise P, Dragon A, editors. Mechanisms and mechanics of damage and failure. European Conference On Fracture-11, France, vol.3. UK: EMAS; 1996:2007-12.
    [97]NEVALAINEN M, WALLIN K. The effect of crack depth and absolute thickness on fracture toughness of 3PB specimens [C]. Proc.10th Europ. Conf. Fracture, Berlin, EMAS,1994: 997-1006.
    [98]SREENIVASAN P R, MANNAN S L. Dynamic J-R curves and Tension-Impact Properties of AISI 308 Stainless Steel Weld [J].International Journal of Fracture,2000,101:229-249.
    [99]SREENIVASAN P R, RAY S K, MARMAN S L. Dynamic JR curves from instrumented impact test of unprecracked Charpy V-notch specimens of austenitic stainless steel [C]. Poster Paper (Ref:ICFI00359PR) presented at ICF-10, Hawai,2001:2-6.
    [100]SREENIVASAN P R, RAY S K, VAIDYANATHAN S, et al. Measurement of stretch zone height and the relationship to crack tip opening displacement and initiation J-value in an AISI 316 stainless steel [J]. Fatigue and Fracture of Engineering Materials and Structures,1996,19 (7):855-868.
    [101]WOLFRAM B, DIETER B, ARNO EBERLE. Determination of dynamic crack resistance of dunctile cast iron using the compliance ratio key curve method [J]. Engineering Fracture Mechanics,2010,77:374:384.
    [102]施绍裘,干苏,王礼立.结构钢16MnR焊接区动态力学性能研究[J].宁波大学学报,1996,9(3):72-77.
    [103]张勇,王家辉.国产石油化工设备用钢的现状及发展概况[J].石油工程建设,1997(6):5-9.
    [104]陈学东.我国石化企业在用压力容器与管道使用现状和缺陷状况分析[A].第五届全国压 力容器学术会议论文集[C].南京:第五节全国压力容器学术会专题报告,2001.
    [105]USNRC, Leak before break evaluation procedure, USNRC Report NUREG-800, Standard Review Plan.3.6.3(1987). Yoon JH, Lee BS, Oh YJ, Hong JH. Effects of loading rate and temperature on J-R fracture resistance of an SA516-Gr.70 steel for nuclear piping[J]. International Journal of Pressure Vessels and Piping,1999,76:663-670.
    [106]Ritchie RO, Server WL, Wullaert RA. Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels [J]. Metallurgical Transactions,1979,10A:1557-1570.
    [107]Barsom JM. Development of the AASHTO fracture toughness requirements for bridge steels[J]. Engineering Fracture Mechanics,1975,5:605-618.
    [108]Kobayashi T, Yamada S. Evaluation of static and dynamic fracture toughness in ductile cast iron[J]. Metallurgical and Materials Transactions,1994,25A:2427-2436.
    [109]Joyce JA, Hacket EM. Dynamic J-R curve testing of a high strength steel using the multispecimen and key curve techniques, ASTM STP,905. Philadelphia:American Society for Testing and Materials,1984:741-74.
    [110]Luna S, Fernandez J, Castellanos JL. An analysis of the static and dynamic fracture behaviour of a pipeline steel[J]. International Journal of Pressure Vessels and Piping,2000,77:691-696.
    [111]Tronskar JP, Mannan MA, Lai MO. Correlation between quasi-static and dynamic crack resistance curves[J]. Engineering Fracture Mechanics,2003,70:1527-1542.
    [112]Turner CE. The umbiquitous η factor. In:Twelfth National Symposium on Fracture Mechanics, ASTM 700,1980:314-317.
    [113]ASTM E 1820-99, Standard Test Method for Measurement of Fracture Toughness[S].1999 Annual Book of ASTM Standards, vol.03.01, Metal-Mechanical Testing,1999.
    [114]Li Z A. Pressure vessel fracture mechanics and defect assessment [M]. Dalian:Dalian University of Technology Press,1994:73-76.(in Chinese).
    [115]李志安.过程装备断裂理论与缺陷评定[M].北京:化学工业出版社,2006.
    [116]Clarke GA, Landes JD. Evaluation of the J-integral for the compact specimen [J]. Journal of Testing and Evaluation,1979,7(5):264-269.
    [117]Stumpter JDG. J determination for shallow notch welded bend specimens [J]. Fatigue and Fracture of Engineering Materials and Structures,1987,10(6):479-493.
    [118]Zhu XK, Joyce JA. J-resistance curve testing of HY80 steel using SE(B) specimens and normalization method[J]. Engng Fract Mech 2007;74:2263-2281.
    [119]Chaouadi R. An energy-based crack extension formulation for crack resistance characterization of ductile materials[J]. J Test Eval 2004;32:469-475.
    [120]Kobayashi T, Yamanoto I, Niionomi M. Introduction of a new dynamic fracture toughness evaluation system [J]. Journal of Testing and Evaluation,1993,21 (3):145-153.
    [121]Schindler H J. Estimation of the dynamic J-R curve from a single impact bending test [C]. In: Petit J, De Fouquet J, Henaff G, Villechaise P, Dragon A, editors. Mechanisms and mechanics of damage and failure. European Conference On Fracture-11, France, vol.3. UK:EMAS; 1996:2007-12.
    [122]Sathyanarayanan S, Sasikala G, Ray S K. Evaluation of dynamic fracture toughness of cold worked 9Cr-1Mo steel [J]. International Journal of Pressure Vessels and Piping,2004,81(4): 19-425.
    [123]Sreenivasan P R, Shastry C G, Mathew M D, et al. Dynamic fracture toughness and charpy transition properties of a service-exposed 2.25Cr-1Mo reheater header pipe [J]. Journal of Engineering Materials and Technology,2003,125:227-233.
    [124]Koppenhoefer KC, Dodds RH.Ductile crack growth in pre-cracked CVN specimens: numerical studies[J]. Nucl Eng Des 1998,180:221-241
    [125]Biswas P, Narasimhan R. A numerical study of constraint effects on dynamic ductile crack initiation[J]. Mech Mater 2002;45:577-592.
    [126]Xia L, Shih CF. Ductile crack growth-I. A numerical study using computational cells with microstructurally based length scales[J]. J Mech Phys Solids1995,43:233-59.
    [127]Ruiz, C, Mines, R. The Hopkinson Pressure Bar:an alternative to the instrumented pendulum for Charpy test [J]. International Journal of Fracture,1985,29 (2):101-109.
    [128]Bacon, C., Farm, J., Lataillade, J. Dynamic fracture toughness determined from load-point displacement [J]. Experimental Mechanics,1994,20 (1):217-223.
    [129]Yokoyama, T. Determination of dynamic fracture-initiation toughness using a novel impact bend test procedure [J]. Journal of Pressure Vessel Technology,1993,115 (2):389-397.
    [130]Li YL, Liu YY. Calculation of DSIF of three point bending specimen using the method of DCOD[J]. Explosion and shock waves,1993,13(3):249-256.李玉龙,刘元镛.用裂纹张开位移计算三点弯曲试样的动态应力强度因子[J].爆炸与冲击,1993,13(3):249-256.
    [131]Liu RT, Zhang XX, Jiang FC, Ou GB. Analysis of dynamic response of stress intensity factor of three-point bending specimen by using finite element method. Journal of Harbin Engineering University,2000,21 (3):49-51.刘瑞堂,张晓欣,姜风春,欧贵宝.三点弯曲试样应力强度因子动态响应的有限元分析[J].哈尔滨工程大学学报,2000,21(3):49-51.
    [132]Crouch, B. Finite element modeling of the three-point bend impact test [J]. Computers and Structures,1993,48 (4):167-173.
    [133]Rubio,L.,Fernandez-Saez, J., Navarro, C. Determination of dynamic fracture-initiation toughness using three-point bending tests in a modified Hopkinson pressure bar [J]. Experimental Mechanics,2003,43:379-386.
    [134]Loya,J.A., Fernandez-Saez,J. Three-dimensional effects on the dynamic fracture determination of Al 7075-T651 using TPB specimens [J]. International Journal of Solids and Structures,2008,4,5:2203-2219.
    [135]Narashiman, R., Rosakis, A. Three-dimensional effects near a crack tip in a ductile three point bend specimen, Part I:numerical investigations [J]. Journal of Applied Mechanics,1990,(2): 121-134.
    [136]Rokach IV. Estimation of the three-dimensional effects for the impact fracture specimen [J]. Arch Mech Engng,1996,43(2-3):241-52.
    [137]ZENCRACK. User's Manual Version 7.7.
    [138]Wall, O. Numerical modeling of fracture initiation in large steel specimens at impact [J]. Engineering Fracture Mechanics,2002,69:851-863.
    [139]ABAQUS. User's Manual Version 6.8. Hibbitt, Karlsson&Sorensen, Inc.
    [140]Kuntiyawichai K, Burdekin FM. Engineering assessment of cracked structures subjected to dynamic loads using fracture mechanics assessment [J]. Engineering Fracture Mechanics, 2003,73:1991-2014.
    [141]ASTM E1820-01(2005). Standard test method for measurement of fracture toughness, Annual book of ASTM standards [S]. American Society for Testing and Materials.
    [142]Loya, J.A., Fernandez-Saez, J. Effect of the thickness, initial crack length and impact velocity on fracture dynamic initiation toughness of aluminum alloy [J]. Journal of Testing and Evaluation,2007,35 (1):25-30.
    [143]Li Z A. Pressure vessel fracture mechanics and defect assessment [M]. Dalian:Dalian University of Technology Press,1994:73-76.(in Chinese).
    [144]Ritchie, R.O., Knott, J.F., Rice, J.R. On the relationship between critical tensile stress and fracture toughness in mild steel [J]. Journal of the Mechanics and Physics of Solids,1973,21; 395-410.
    [145]Bohme W. Experience with instrumented Charpy tests obtained by DVM round-Robin and further developments. In:van Walle E, editor. Evaluating material propertied by dynamic testing ESIS 20. London:Mechanical Engineering Publication; 1996:1-23.
    [146]Kalthoff JF. On the measurement of dynamic fracture toughness-a review of recent work. International Journal of Fracture,1985(3):277-298.
    [147]Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures. Proceedings of the seventh international symposium on ballistics,Hague,1983,p.541.
    [148]Sih G C, Ravera R S, and Embley G T. Impact response of a finite crack in plane extension. Int. J. of Solid and Structure,1972(8):977-993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700