基于轴系扭振信号的船舶推进系统诊断理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际海运是国际贸易中最主要的运输方式,远洋船舶运输量占国际贸易总运量中的三分之二以上。船舶推进系统是船舶动力装置的重要组成部分,对船舶的正常航行起着至关重要的作用。作为其主要组成部分的柴油机和齿轮箱,其工作状态的好坏直接影响船舶的可靠性和生命力。本文作者旨在寻求一种经济可靠且对二者都适用的故障诊断方法。在综合分析国内外柴油机和齿轮箱故障诊断技术研究和应用的基础上,作者选取基于轴系扭振信号的故障诊断方法进行船舶推进系统故障诊断研究,通过仿真分析得到了相应的判据,以实际测试数据加以试验分析验证,取得的主要研究结论如下:
     (1)针对船舶推进系统的结构特征,基于参数化特征建模技术,建立了从柴油机曲轴连杆机构、齿轮箱、轴系到螺旋桨的船舶推进系统参数化建模平台。该建模平台各部分既相互独立,又可通过定位坐标实现整个推进系统的集成建模。该集成模型基于UG软件,采用VC、数据库进行二次开发,模型具有广泛的通用接口,能导入其它分析软件女ANSYS.MSC系列软件PATRAN、ADAMS等进行后续的计算分析。该建模平台简化了船舶动力装置研究人员的建模过程,使之专注于推进系统结构性能的分析与研究。
     (2)以船舶推进轴系为研究对象,分析了传统推进轴系扭转振动模型的建立方法。推导出基于刚度矩阵单元的齿轮扭转振动模型,该模型解决了实体模型分析中难以考虑传动比的问题。推导出齿轮啮合耦合振动模型,实现了齿轮箱振动中的弯-扭-轴-摆耦合振动的综合分析。采用不同方法对圆盘模型的固有频率进行计算和对比分析,揭示了简化的当量模型计算结果与梁模型、实体建模存在较大偏差,为提高推进轴系扭振分析计算精度提供了有益的思路和方法。分析了船舶轴系扭振对于主要组成部分刚度和转动惯量的敏感性,评估了其对固有频率的影响。
     (3)分析了轴系在工作过程中受到的激励源,应用轴系扭转响应分析中的频率响应分析与瞬态响应分析的基本理论,以10000吨级江海直达货船推进系统作为计算分析模型,针对柴油机工作过程的故障,分析了不同谐次下各个气缸故障时的频率响应振动幅值与相位特征。针对齿轮箱的轮齿故障,提出了故障态齿轮啮合刚度算法,基于该算法分析了不同齿轮上轮齿故障时的瞬态响应特征。此外,考虑柴油机与齿轮箱均出现故障时,分析了叠加信号特性。
     (4)分析了气体激励力与往复惯性力对柴油机瞬时转速的影响。提出了基于角振动极坐标图作为故障诊断依据的方法。当柴油机仅受气体激励力时,仿真得到了柴油机单缸故障时的扭振信号,分析了故障态下角振动极坐标图的特征。将单缸故障拓展到双缸故障,扩大了极坐标法的适用性。
     (5)概述了WP10-240型柴油机的试验台架的基本情况以及实测的基本方案,采集处理得到了柴油机逐缸熄火时的瞬时转速。通过极坐标法验证性地比较了柴油机在单缸熄火下信号的特性,发现与仿真结果有较好的吻合性,验证了基于角振动极坐标法的有效性。同时,以MAN B&W 6L 16/24型柴油机为研究对象,使用极坐标法进行了单缸故障诊断,进一步验证了该方法的有效性。
International shipping is the main mode of transport in international trade. More than two-thirds of international trade is carried out by means of ocean-going shipping. Ship propulsion system is an important part of marine power plant, which plays a vital role on the vessel's normal navigation. As main components, the working state of diesel engine and gearbox affects directly the reliability and vitality of the ship. This article is intended to find a valid and economical method which can diagnose the diesel and gear box simultaneously. Based on the comprehensive analysis of research and application on diesel engine and gear box fault diagnosis from domestic and foreign research results, this article adopts the method of fault diagnosis based on torsional vibration signals from ship propulsion systems. Through simulation analysis, the appropriate criteria are obtained and verified by analyzing actual test data, the main research findings are as follows:
     (1) According to the structural characteristics of ship propulsion systems, based on parametric feature modeling technology, a parametric modeling system of marine propulsion system was established, which includes the components such as the linkage mechanism of diesel engine crankshaft, gear box, shaft and propeller. Every part of the system is independent from each other, and the entire propulsion system integration modeling may be achieved through positioning coordinates of every part. The procedure is performed in UG, where VC and Databases served as tools for secondary development. Models, with a wide range of common interface, can import to other analysis software such as ANSYS, MSC Patran, Adams, then subsequent analysis can be carried out. This system simplifies the modeling process of marine power plant for researchers, so that much more attention can be paid on the issue of analysis and research on structural performance of marine propulsion system.
     (2) For the study of ship's propulsion shafting, traditional method to build torsional vibration model of propulsion shafting is analyzed. Torsional vibration model for gears based on stiffness matrix unit can be derived from the differential equation of gear vibration which solves the problem that it is difficult to take fluctuate of transmission ratio for the entity model into account. Furthermore, some effort was put into the gear meshing coupling vibration models. By modeling the bending-torsional-longitudinal-swing coupling vibration system, meshing stiffness matrix formula was derived theoretically. The result on natural frequency for disc models from difference method is obtained from calculation and analysis, which revealing the results from simplified model are different from beam model and solid model, providing some useful ideas and methods to increase accuracy in the analysis of torsional vibration for propulsion shafting. The sensitivity of torsional vibration from the effect of stiffness and inertia is analyzed, and their influence on the natural frequency is assessed.
     (3) The excitation source for marine propulsion shaft during operation was briefly discussed. Based on the response analysis theory, the method of frequency response analysis and transient response analysis for shaft torsional vibration was given. In order to get the amplitude and phase characteristics during the fault of a certain cylinder, a 10,000 DWT River-Sea Cargo Ship was presented as an example. In this process, two kinds of fault were considered. The first one, marine engine failure, was simulated, which obtaining the frequency response characteristics such as vibration amplitude and phase in different harmonic order when the failure of each cylinder. The second one, marine gearbox failure, was performed by making faults in teeth for different gears, transient response characteristics will come out, similarly. Some research about the conditions when diesel engine and gearbox both work in failure was mentioned.
     (4) A lot of analysis was performed to look into the effect of gas excitation force and reciprocating inertia force on marine engine. A novel polar presentation method was introduced, which can be used to locate fault cylinder. When engine was forced by gas excitation force merely in simulation, torsional vibration signal for single-cylinder failure can be simulated and failure criterion in polar plot was given. At the same time, something about twin cylinder failure was mentioned, which expanded the applicability of polar presentation method.
     (5) For the experimental part of this thesis, power plant with MAN B&W 6L 16/24 and WP10-240 came into view, respectively. Plant with WP10-240 was taken as key object. There are some introductions about the basic condition of this test platform and the test scenario, from which the instantaneous angular speed (IAS) when every cylinder turn into failure were obtained. Besides, analysis about the angel characteristic during one cylinder failure and polar plot for plant with MAN B&W 6L 16/24 was given. It means that a complete analysis using polar presentation method was performed, which verified the effectiveness of this method.
引文
[1]张磊.船舶动力装置展望[J].船舶工程.2001,5:17-20
    [2]王江萍.机械设备故障诊断技术及应用[M].西北工业大学出版社,2001
    [3]M.M. Ettefagh, M.H. Sadeghi, V. Pirouzpanah, H. Arjmandi Tash. Knock detection in spark ignition engines by vibration analysis of cylinder block:A parametric modeling approach [J]. Mechanical Systems and Signal Processing,2008,22:1495-1514.
    [4]张仕海.通过缸盖振动信号进行柴油机气门机构故障的研究[J].船舶工程,2009(4),31,24-26.
    [5]欧大生,韩建标,梁斌.基于振动信号诊断柴油机气门机构故障的研究[J].中国修船,2007(10):52-55
    [6]王珍.基于局域波分析的柴油机故障诊断方法的研究和应用[D].大连理工大学博士学位论文,2002.
    [7]S. Ebersbach, Z. Peng, N.J. Kessissoglou. The investigation of the condition and faults of a spur gearbox using vibration and wear debris analysis techniques [J]. Wear,2006,260:16-24.
    [8]P.D.Mcfadden. Detection of gear faults by decomposition of matched differences of vibration signals [J]. Mechanical Systems and Signal Processing,2000,14(5):805-817.
    [9]徐跃进.齿轮箱中齿轮故障的振动分析与诊断[J].机械设计,2009,26(12):68-71.
    [10]F.T.Connolly. Direct estimation of cyclic combustion pressure variability using engine speed fluctuations in an internal combustion engine. SAE paper,1994.No:940143
    [11]Brown. T. S.,and Ne i 1, W. S. Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations. SAE Paper 920463.
    [12]Rizzoni G. Diagnosis of Individual Cylinder Misfires by Signature Analysis of Crankshaft Speed Fluctuations. SAE 890884:1572-1581
    [13]Brown T S, et al. Determination of Engine Cylinder Pressure from Crankshaft Speed fluctuation. SAE 9204633
    [14]Jeremy Williams. Misfiring cylinder diagnosis through crankshaft torsional vibration measurement. UMI Number:9945889
    [15]P. Charles, Jyoti K.Sinha, F.Gu, L.Lidstone, and A.D.Ball. Detecting the crankshaft torsional vibration of diesel engines for combustion related diagnosis [J]. Sound and Vibration,2009, 321:1171-1185.
    [16]Thomas. WNN knock on Diesel Engine Fault Diagnosis.IEEE Transactions on the Neural Networks,2003,3(6):889-898.
    [17]Z.M. Bulatovic, M.S. Stavljanin, M.V.Tomic, D.M.Knezevic, S.Lj.Biocanin, Measurement and analysis of angular velocity variations of twelve-cylinder diesel engine crankshaft [J]. Mechanical Systems and Signal Processing,25 (2011) 3043-3061.
    [18]余永华.船舶柴油机瞬时转速和热力参数监测诊断技术研究[D].武汉理工大学博士学位论文2007.
    [19]董大伟.基于曲轴角振动诊断内燃机各缸作功状况的研究[D].西南交通大学博十学位论文2002.
    [20]Toshihiro Aono, Eisaku Fukuchi. Misfire Detection Method Robust against Crankshaft Vibration and Acceleration.2005 IEEE Conference on Control Applications,1218-1221
    [21]姜耀华.邓军等.瞬时转速在柴油机故障检测中的应用[J].船海工程.2007,8:66-67
    [22]李威洲.瞬时转速在柴油机故障检测中的应用[J].煤炭技术.2008,12:66-67
    [23]高立新,韩金顺,张建宇,丁庆新,崔玲丽.基于小波分析的大型齿轮箱低速轴故障诊断[J].北京科技大学学报,2005,27(3):342-346.
    [24]袁佳胜,冯志华.基于相关分析与小波变换的齿轮箱故障诊断[J].农业机械学报,2007,38(8):120-123.
    [25]A. Hajnayeb, A. Ghasemloonia, S.E. Khadem, M.H. Moradi. Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis [J]. Expert Systems with Applications,2011,38:10205-10209.
    [26]Jii Stodola.The results of ferrography tests and their evaluation[J].Tribotest,2001,8(1):73-83.
    [27]盛晨兴.挖泥船动力机械远程诊断系统[D].武汉理工大学博士学位论文2009.
    [28]陈学峰,梁培钧.油液分析技术在齿轮箱故障诊断中的应用[J].机械工程与自动化,2011,1:114-115.
    [29]赵质良,马仲翦.基于油液分析的齿轮箱进水故障诊断[J].通用机械制造,2010,12:90-91.
    [30]E.D.Yardley. The use of ferrography and spectrographic oil analysis to monitor the performances of three 90kW gearboxes [J].Wear,1979,56(1):213-226.
    [31]Jose M. Lujan, Vicente Bermudez, Carlos Guardiola, Ali Abbad, A methodology for combustion detection in diesel engines through in-cylinder pressure derivative signal [J]. Mechanical Systems and Signal Processing,24 (2010) 2261-2275.
    [32]Jian-Da Wu, Cheng-Kai Huang. An engine fault diagnosis system using intake manifold pressure signal and Wigner-Ville distribution technique[J].Expert Systems with Applications 38 (2011) 536-544.
    [33]B.R. Hohn, K. Michaelis. Influence of oil temperature on gear failures[J]. Tribology International 37 (2004) 103-109
    [34]Sharkey, A.J.C.; Chandroth, G O.; Sharkey, N.E. Acoustic emission, cylinder pressure and vibration:a multisensor approach to robust fault diagnosis. Neural Networks,2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference,2000,6:223-228.
    [35]吴超仲,严新平,周新聪.基于遗传算法的信息融合在摩擦学组合故障诊断中的应用[J]摩擦学学报[J],2001,21(4):301-304.
    [36]李宏坤.基于信息融合技术船舶柴油机故障诊断方法的研究与应用[D].大连理工大学博士学位论文2003.
    [37)李渤仲,陈之炎,应启光.内燃机轴系扭转振动[M].北京:国防工业出版社,1984
    [38]王棋.内燃机轴系扭振振动[M].大连:大连理工大学出版社,1992
    [39]陈之炎.船舶推进轴系振动[M].上海:上海交通大学出版社,1997
    [40]李震,桂长林,孙军.内燃机曲轴轴系振动分析研究的现状讨论与展望[J].内燃机学报,Vo1.20(2002)No.5
    [41]李惠珍,张德平.用有限元进行曲轴扭振计算[J].内燃机学报,1991,9(2):157~162.
    [42]郝志勇,舒歌群.内燃机轴系扭振相应的扭转波计算方法研究[J].内燃机学报,2000,18(1):29~32.
    [43]周瑞平,杨建国.船舶推进轴系扭转振动应用软件开发研究[J].武汉理工大学学报.Vo1.2No.3 Mar.2003
    [44]丁炎辉.现代船舶轴系扭振程序的开发与工程应用[D].大连理工大学,2003
    [45]王磊.船舶复杂推进轴系扭振机理及计算软件研究[D].武汉理工大学,2011
    [46]庾应文.基于Web多分支扭转振动系统动力学性能的研究与开发[D].广东工业大学,2005
    [47]张洪田,张敬秋.大型船舶轴系纵扭耦合振动理论与试验研究[J]黑龙江工程学院学报,2004,18(4):1-6
    [48]唐斌,薛冬新,复杂分支轴系扭振计算的动态矩阵法[J].船舶工程,2003.25(3):24~27
    [49]郝志勇,段秀兵.车用柴油机曲轴系统动力学仿真[J].农业机械学报,2005,36(7):4-7
    [50]刘峻华,黄树红.大型汽轮发电机组轴系扭振的动频研究[J].热能与动力工程,2005,20(3):234-238
    [51]雷宣扬,宋希庚.模拟内燃机曲轴振动的新模型[J].中国机械工程,2003,14(17):1466-1467
    [52]Pasricha M. S,Carnergie W. Diesel crankshaft failures in marine Industry-a variable inertia effect. Journal of Sound and Vibration[J].1981,78 (3)
    [53]Hafner K. E. Influence of the reciprocating masses of crank mechanisms on torsional vibrations of crankshafts.Proceedings of the 11"International Congress on Combustion Engineering[J].1975,1
    [54]湛刚,陈之炎,李良风.具有变惯量的柴油机曲轴系统扭转振动[J].内燃机学报.1991,2
    [55]Jenzer. Coupling Effect between Torsional and Axial Vibration in Installations with 2-Stroke Diesel Engines[J]. New Sulzer,1991(5)
    [56]李辉光,孙启国.曲轴纵向扭转耦合振动分析.兰州交通大学学报(自然科学版)[J].Vol.23,No.1.Feb.2004
    [57]杜红兵,陈之炎,静波.内燃机轴系扭转—纵向耦合振动数学模型[J].内燃机工程.第13卷,第2期,1992
    [58]舒歌群,饶里.连续分布轴系扭/弯耦合振动的自由振动研究[J]车辆与动力技术,2000,80(4):1~6
    [59]J.Klein Woud and Ph.Boot. Diesel Engine Condition Monitoring and Fault Diagnosis Based on Process Models.20's CIMAC Congress,1993.
    [60]Lim B, Lim I, Park J, et al. Estimation of the Cylinder Pressure in a SI Engine Using the Variation of Crankshaft Speed. SAE Paper, No.940145,1994
    [61]商圣义.民用船舶动力装置[M].北京:人民交通出版社,1996.9
    [62]中国船舶工业总公司编.船舶设计实用手册(轮机分册)[M].北京:国防工业出版社,1999.10
    [63]金婉如.基于UG的汽车天窗设计和开发[D].哈尔滨理工大学,2005
    [64]Nahm Y.E.,Ishikawa H..New 3D-CAD system for set-based parametric design [J]. International Journal of Advanced Manufacturing Technology,2006,29 (1):137-150
    [65]Gao H.,Zhao K.,Lu Y..Development of 3-D parameterized design system for involute gear parts [J].Advances in Materials Manufacturing Science and Technology,2004, (11):230~ 233
    [66]邵新宇,蔡力钢.现代CAD技术与应用汇编[M].北京:机械工业出版社,2004
    [67]马子健.基于UG的数控机床主轴部件参数化设计[D].东北大学,2008
    [68]文福安编著,参数化设计和基于特征的实体造型[M],北京邮电大学出版社,2000-5-1
    [69]黄翔,李迎光.UG应用开发教程与实例精解[M].第1版.北京:清华大学出版社,2005.1~142
    [70]邓金文,船用螺旋桨艺辅助系统开发及数控加工技术研究[D],大连海事大学,2009
    [71]李渤仲,陈之炎,应启光.内燃机轴系扭转振动[M].北京:国防工业出版社,1984
    [72]杨义勇,金德闻.机械系统动力学[M].清华大学出版社,2009
    [73]李润方,王建军.齿轮系统动力学[M].科学出版社,1997
    [74]王庆,张以都,黎定仕,张洪伟.基于刚度矩阵单元的斜齿轮传动系统耦合振动有限元分析[J].组合机床与自动化加工技术,2008(01)
    [75]KAHRAMAN. A,OZGUVEN. H N, HOUSER. D R,ZAKRAJSEK. J. Dynamic analysis of geared rotors by finite elements.1989 International Power Transmission and Gearing Conference,5th, Chicago, IL; UNITED STATES; 25-28 Apr.1989. pp.375-382,1989
    [76]齿轮手册委员会.齿轮手册(上、下册)[M].北京:机械工业出版社,2004.
    [77]杨剑,张璞,陈火红MD Nastran有限元实例教程[M].机械工业出版社,2007
    [78]CB/Z214-85.舰艇柴油机轴系扭转振动计算[s].北京:中国船舶工业总公司,1985
    [79]MAN B&W.Technological Guide [Z].Danmark:Copenhagen,2001.
    [80]S.H. Gawande, Dr. L.G Navale, Dr. M.R. Nandgaonkar, Dinesh Butala. Detecting Power Imbalance in Multi-Cylinder Inline Diesel Engine Generator Set. Computer and Automation Engineering (ICCAE),2010
    [81]Francisco V. Tinaut, Andres Melgar, Hannes Laget, Jose I. Dominguez. Misfire and compression fault detection through the energy model[J]. Mechanical Systems and Signal Processing.2007
    [82]闫兵.基于曲轴振动信号的内燃机故障诊断系统关键技术研究[D].西南交通大学博士学位论文.2005
    [83]余瑞丰.基于瞬时转速的多缸柴油机故障诊断技术的研究[D].武汉理工各大学,2007
    [84]衣文凤.基干瞬时转速法分析柴油机各缸工作均匀性的数据处理和故障诊断[D].山东大学,2009
    [85]李瑰贤,马亮,陶建国,周铭.舰船用齿轮传动啮合刚度及动态性能研究[J].船舶工程,2000(5)
    [86]Jian Lin, Robert G. Parker. Mesh Stiffness Variation Instabilities in Two-Stage Gear Systems [J]. Journal of Vibration and Acoustics. ASME,2002(124):68-76.
    [87]李亚鹏,孙伟,魏静,陈涛.齿轮时变啮合刚度改进计算方法[J].机械传动,2010
    [88]赵志福.船舶齿轮箱故障诊断系统研究[D].武汉理工大学,2011
    [89]李洁.利用瞬时转速和扭振信号诊断柴油机故障的应用研究[D].武汉理工大学,2005
    [90]P. Charles, Jyoti K. Sinha, F. Gu b, A.D. Ball. Detecting the crankshaft torsional vibration of diesel engines for combustion related diagnosis [J]. Journal of Sound and Vibration,2009
    [91]P. Charles, Jyoti K. Sinha, F.Gu b, A.D. Ball. Application of novel polar representation method for monitoring minor engine condition variations [J]. Mechanical Systems and Signal Processing,2010
    [92]M. Desbazeille, R.B. Randall, F. Guillet, M. El Badaoui, Hoisnard. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft[J]. Mechanical Systems and Signal Processing,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700