基于FPA的新型气动机器人多指灵巧手研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
末端执行器是机器人与环境发生交互作用的最重要部件。传统的末端执行器存在结构简单、自由度少及适应性差等缺点,严重影响了机器人的发展与应用。机器人多指灵巧手是一种模拟人手结构、功能及尺寸,具有多自由度、多关节的新型末端执行器,具有良好的灵活性和适应性,为机器人的应用起到了积极推动作用,具有很好的研究意义与应用价值。
     20世纪90年代后,一般功能的工业机器人的应用趋于饱和,机器人的应用逐渐延伸至农业、医疗康复、服务娱乐等领域中,其抓取目标往往是一些脆、嫩或有生命体的对象,因此,要求机器人多指灵巧手具有很好的柔性。本文总结了现有灵巧手存在柔性差、结构复杂、难以控制等缺点,并在此基础上提出了一种新型的气动驱动多指灵巧手,命名ZJUT多指灵巧手,其具有良好的被动柔性,同时在某些方面弥补了现有灵巧手的不足。主要完成的研究工作如下:
     (1)提出了采用FPA直接驱动,模拟人手指侧摆运动的侧摆关节。从静力学角度,以弹性力学为基础,对驱动元件FPA自由端进行力平衡分析,建立了侧摆关节的静态模型;根据热力学第一定律,结合关节的动力学方程,建立了关节的动态模型;实验研究了侧摆关节的静动态特性,验证了数学模型的正确性,分析了理论与实际曲线误差存在的原因;采用了串联双闭环控制方法,对关节的转角及输出力矩进行了控制研究,结果表明:期望角度为15°时,关节转角闭环动态响应时间约为0.3s,稳态相对偏差小于0.65%;期望输出力矩为188Nmm时,闭环输出力矩动态响应约为0.3s,稳态相对偏差小于1.5%;侧摆关节可控性高,满足多指灵巧手关节设计要求。
     (2)提出了具有4个关节、4个自由度的拟人手指;采用模块化设计方案,将5个完全相同的手指装配在拟人手掌上,构成ZJUT多指灵巧手的本体结构;采用仿生学的优化方法确定了灵巧手的结构参数及整手的布局方案,通过仿真实验验证了该手的抓持能力;研制了ZJUT灵巧手的传感系统;总结了ZJUT灵巧手的特色之处。
     (3)采用D-H法建立ZJUT灵巧手手指的运动学方程;分析得出手指的逆运动学存在冗余解问题;提出一种改进的自适应遗传算法IAGA,仿真实验表明:该算法收敛速度快,鲁棒性强,能够有效的解决手指的逆运动学求解问题;对手指进行了位置跟踪实验,实验结果表明:对于不同的目标位置,指尖位置跟踪动态响应时间小于0.5s,位置最大误差为1.12mm。
     (4)基于微分运动学理论,建立了ZJUT灵巧手手指的静力学模型,完成了手指静力跟踪的半闭环控制实验,验证ZJUT灵巧手手指输出力便于控制的特点;分析了ZJUT灵巧手具有良好被动柔性的特点;基于指尖五维力传感器,提出了一种模糊自适应指尖力动态跟踪控制策略,完成了手指指尖力动态跟踪实验,结果表明:该控制策略能够在未知环境下,实现对手指指尖力快速、精确的动态跟踪,响应时间约为1s,跟踪误差稳定在±0.15N范围内。
     (5)定义了ZJUT灵巧手手掌最佳抓取姿态;提出了基于ANFIS的抓取模型辨识方法,仿真结果表明:该方法能够很好的对目标物体进行模型辨识,同时具有很好的辨识精度和收敛性;提出了一种目标物体规则化等价方法,大大提高了模型辨识效率;介绍了基于线性约束梯度流抓取力优化方法;提出了一种多指灵巧手通用抓取规划方案;最后,完成了ZJUT灵巧手的抓取规划综合实验,结果表明:ZJUT灵巧手能够对典型形状的未知目标物体进行模型辨识,根据目标物体的模型,选择合理的参与抓取手指数量及抓取点位置,对目标物体实施稳定抓取,并能够完成抓取力的优化。
     本文研究的新型气动多指灵巧手,采用课题组自主研发的气动柔性驱动器FPA直接驱动,具有结构简单,便于控制,易于小型化等特点,具有良好的被动柔性,同时不缺乏刚度。适合应用在一些柔性要求相对较高,对响应速度要求相对较低的场合,如农业采摘机器人,手指康复机器人等。
End-effector is an important manipulator for the robot to interact with environment. Because of simple structure, fewer degrees of freedom DOFs, poor adaptability and other shortcomings, earlier conventional end-effector is one of the most important factors which restricts the development and application of robots. Simulating the structure, function and size of human hand, robot multi-fingered dexterous hand with multiple joints and multiple DOFs is a new kind of end-effector which has better dexterity and adaptability as well as plays a positive role to promote application of robots. Therefore robot multi-fingered dexterous hand has both great research significance and application value.
     After 1990s, industrial robots with the general function have become saturated. Application of robots has been extending to agricultural, medical and service areas from industrial area, and its grasping targets are always crisp, tender or living objects. So, it requires the multi-fingered dexterous hand should have great flexibility. Based on the shortcomings of existing dexterous hands summarized in this paper, a new type of air-driven multi-fingered dexterous hand, named ZJUT Hand, is proposed. ZJUT Hand has good passive flexibility and can make up for the deficiency of existing dexterous hands in some ways. The main research work in this paper is as follows:
     (1) Side-sway joint driven by FPAs directly is proposed which can simulate swing movement of human hand. Based on statics and elasticity, force equilibrium equation of the FPA free end is established. And then the static model of the side-sway joint is obtained. According to the first law of thermodynamics, combined with the joint’s dynamic equation, the dynamic model of the side-sway joint is established. Experiments are carried out to test the static and dynamic characteristics of the joint and verify the mathematical model. There is certain error between experimental curve and theoretical curve, and the error cause is analyzed. Using a series dual loop control method, the output angle and output force of joint are controlled. The results show: when expected output angle is 15°, the loop dynamic response time is about 0.3s, and the steady-state relative deviation is less than 0.65%. When expected output force is 188Nmm, the loop dynamic response time is about 0.3s, and the steady-state relative deviation is less than 1.5%. The side-sway joint can meet the requirement for designing multi-fingered dexterous hand joint.
     (2) 4-DOF anthropomorphic finger with four joints is proposed. To achieve a high degree of modularity, five identical fingers and a palm constitutes the body structure of ZJUT Hand. The structural parameters of the fingers and the layout program of the hand are determined by the bionic optimization method. Simulation experiments are carried to verify the grasping ability of ZJUT Hand. The multi-sensory system for ZJUT Hand is developed.
     (3) Using D-H method, direct kinematics equation of ZJUT Hand finger is established. Analytical analysis show that there exits a redundant problem for solving inverse kinematics of the finger. An improved adaptive genetic algorithm IAGA is proposed. Simulation experimental results show that the IAGA can effectively solve inverse kinematics problem of the redundant finger. Experiments of finger position tracking are carried out, and the experimental results show: for different expected fingertip position, dynamic response time of position tracking is less than 0.5s, and the maximum position error is 1.12mm.
     (4) Based on differential kinematics theory, the static model of the finger is established. Semi-closed loop control experiments for static force tracking of the finger are carried out. It is concluded from experimental results that fingertip output force can be controlled easily. Characteristics of good passive flexibility of ZJUT Hand are summarized. Based on 5-component force/torque sensor intalled on the fingetip, a control strategy for dynamic adaptive fuzzy fingertip force tracking is proposed. Experiments of dynamic fingertip force tracking are completed. Experimental results show that the control strategy can realize fast and accurate dynamic fingertip force tracking under an unknown environment, and the force tracking error is within±0.15N.
     (5) The optimal grasping posture of ZJUT Hand’s palm is defined. A new method for grasping model identification based ANFIS is proposed. Simulation experimental results show that the method can easily establish the model of the target objects, and has very good recognition accuracy and convergence. Equivalent rules of target objects are presented and greatly improve the efficiency of identification. A general grasp planning program of multi-fingered dexterous hand is proposed. Finally, the grasp planning experiments for ZJUT Hand is completed. Experimental results show that ZJUT Hand is able to construct the models of two typical target objects, choose a reasonable number of fingers for grasping and position of contact points, perform stable grasping of the objects and complete the grasping force optimization.
     A new type of multi-fingered dexterous hand, ZJUT Hand, proposed in this paper is directly driven by flexible pneumatic actuator FPA developed by our research team. ZJUT Hand has characteristics of simple structure, easy control, and easy miniaturization and so on. It has better passive flexibility, and without lack of stiffness. It is suitable for application situation that requires relatively high flexibility and low response speed of the fingers, such as agricultural harvesting robot, finger rehabilitation robot and so on.
引文
[1]王田苗.工业机器人发展思考[J].机器人技术与应用, 2004, (2):1-4.
    [2]蔡自兴. 21世纪机器人技术的发展趋势[J].南京化工大学学报, 2000, 22(4): 73-78.
    [3]张佳帆.基于柔性外骨骼人机智能系统基础理论及应用技术研究[D].杭州:浙江大学, 2009.
    [4]蔡自兴.机器人学[M].北京:清华大学出版社, 2000.
    [5]姜力,蔡鹤皋,刘宏.新型集成化仿人手指及其动力学分析[J].机械工程学报, 2004, 40(4): 139-143.
    [6] Dechev N, Cleghorn W L, Naumann S. Multiple finger, passive adaptive grasp prosthetic hand [J]. Mechanism and Machine Theory, 2001, 36(10): 1157-1173.
    [7]姜力.具有力感知功能的机器人灵巧手手指及控制的研究[D].哈尔滨:哈尔滨工业大学, 2001.
    [8] Zhang Libin, Wang Zhiheng, Yang Qinghua, Bao Guanjun, Qian Shaoming. Development and simulation of ZJUT Hand based on flexible pneumatic actuator FPA [A]. Proceedings of IEEE International Conference on Mechatronics and Automation [C]. Changchun: IEEE Press, August 9-12, 2009: 1634-1639.
    [9] Belfortel G, Deboli R, Gay P, Piccarolo P, Aimonino R D. Robot design and testing for greenhouse applications[J]. Biosystems Engineering, 2006, 95(3): 309-321.
    [10]张玉茹,李继婷,李剑锋.机器人灵巧手:建模、规划与仿真[M].北京:机械工业出版社, 2007.
    [11] Mishra B, Teivhmann M. On immobility, robot kinematics [J]. Laboratory Robotics and Automation, 1998, (4): 145-153.
    [12]吴玉光,钱晋武.多指灵巧手抓取规划方法综述[J].中国机械工程, 2004, 15(3): 276-281.
    [13] Popov B. The bio-electrically controlled prosthesis [J]. Journal of Bone & Surgery, 1965, 47(3): 421-424.
    [14] Lucaccini L, Wisshaupt R, Groth H, Lyman J. Evaluation of the heidelberg pneumatic prosthesis[J]. Bull. Prosthet. Res, 1966, 5(10): 58–115.
    [15] Kargov A, Werner T, Pylatiuk C, SCHULZ S. Development of a miniaturised hydraulic actuation system for artificial hands [J]. Sensors and Actuators A, 2008, 141(2): 548-557.
    [16] Tomovic R, Boni G M. An adaptive artificial hand [J]. IRE Transactions on Automatic Control, 1962, 7(3): 3-10.
    [17] Okada T. Object handling system for manual industry [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(2): 79-89.
    [18] Okada T. Computer control of multijointed finger system for precise handling [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1982, 12(3): 289-299.
    [19] Salisbury J K, Graig J J. Articulated hands: Force control and kinematic issues [J]. International Journal of Robotic Research, 1982, 1(1):4-17.
    [20] Salisbury J K, Roth B. Kinematics and force analysis of articulated mechanical hands [J]. Journal of Mechanisms, Transmissions and Actuation in Design, 1983, 105(1): 35-41.
    [21] Mason m T, Salisbury J K. Robot hands and the mechanics of manipulation [M]. Cambridge: MIT Press, 1985.
    [22] Liu H, Butterfass J, Knoch S, Meusel P, Hirzinger G. A new control strategy for DLR’s multisensory articulated hand [J]. IEEE Control System, 1999, 19(2): 47-54.
    [23] Butterfass J, Grebenstein M, Liu H, Hirzinger G. DLR-Hand II: Next generation of a dexterous robot hand[A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. Seoul: IEEE Press, May 21-26, 2001: 109-114.
    [24] Hirzinger G, Fischer M, Brunner B, Koeppe R, Otter M, Grebenstein M, Sch?fer I. Advances in robotics: the DLR experience [J]. The International Journal of Robotics Research, 1999, 18(11): 1064-1087.
    [25] Butterfass J, Hirzinger G, Knoch S, Liu H. DLR’s multi-sensory articulated hand I: Hard-and software architecture [A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. Leuven, IEEE Press, May 16-20, 1998: 2081-2086.
    [26] Liu H, Meusel P, Seitz N, Willberg B, Hirzinger G. The modular multisensory DLR-HIT-Hand [J]. Mechanism and Machine Theory, 2007, 42(5): 612-625.
    [27] Lovchik C S, Difler M A. The Robonaut Hand: a dexterous robotic hand for space [A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. Detroit, IEEE Press,1999: 907-912.
    [28] http://er.jsc.nasa.gov/SEH/Robotics/index.html
    [29]何平,金明河,刘宏,谢宗武.机器人多指灵巧手基关节力矩/位置控制系统的研究[J].机器人, 2002, 24(4): 314-318.
    [30]刘义军,刘尹威. HIT机器人灵巧手手指及其阻抗控制研究[J].机械制造, 2008, 46(527): 5-7.
    [31]王国庆,李大寨,钱锡康,施旗,张启先.新型三指灵巧机械手的研究[J].机械工程学报, 1997, 33(3): 71-75.
    [32]尚喜生,郭卫东,张浩等. BH-4灵巧手抓持规划与实现[J].机器人, 2000, 22(7): 608-612.
    [33]刘世廉,宋金泽,马宏绪.基于腱传动的仿人型多指机械手的简易设计[J].电子机械工程, 2004, 20(1): 57-59.
    [34]叶军.欠驱动两指多指杆机器人手及其运动学分析[J].机械设计,2001, (11): 61-64.
    [35]王华.具有力感知功能的水下灵巧手研究[D].哈尔滨:哈尔滨工程大学, 2006.
    [36] http://www.maxonmotor.com/product_overview_details_maxon_dc_motor.html
    [37] Kawasaki H, Komatsu T, Uchiyama K. Dexterous anthropomorphic robot hand with distributed tactile sensor:Gifu Hand II [J]. IEEE Transaction on Mechatronics, 2002, 7(3): 296-303.
    [38] Tetsuya M, Kawasaki H, Keisuke Y, Jun T, Satoshi I. Anthropomorphic Robot Hand: Gifu Hand III [A]. Proceedings of ICCAS2002 [C]. Jeonbuk: 2002: 1288-1293.
    [39] Gao X H, Jin M H, Jiang L, Xie Z W, He P. The DLR/HIT dexterous hand: work in progress [A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. Taipei, IEEE Press, 2003: 3164–3168.
    [40] Wei R, Gao X H, Jin M H, Liu Y W. FPGA based Hardware Architecture for HIT/DLR Hand [A]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems [C]. Edmonton, IEEE Press, 2005: 3233–3238.
    [41] Kondo M, Ueda J, Ogasawara T. Recognition of in-hand manipulation using contact state transition for multifingered robot hand control [J]. Robotics and Autonomous Systems, 2008, 56(1):66–81.
    [42] Ueda J, Kondo M, OGASAWARA T. The multifingered NAIST hand system for robot in-hand manipulation [J]. Mechanism and Machine Theory, 2010, 45(2): 224-238.
    [43] Salisbury J K, Craig J. Force control and kinematics issue [J]. The International Journal of Robotics Research, 1982, 1(1): 4-17.
    [44] Salisbury J K, Roth B. Kinematics and force analysis of articulated mechanical hands [J]. Journal of Mechanisms, Transmissions and Actuation in Design, 1983, 105(1): 35-41.
    [45] Jacobsen S, Wood J, Knutti D, BIGGERS K B. Utah/MIT dexterous hand: work in progress [J]. TheInternational Journal of Robotics Research, 1984, 3(4): 21-50.
    [46] Chou C P, HANNAFORD B. Static and dynamic characteristics of mckibben pneumatic artificial muscles [A]. Proceedings of IEEE International Conference on Robotics and Automation [A]. San Diego, IEEE Press, 1994: 281-286.
    [47] Chou C P, Hannaford B. Measurement and modeling of mckibben pneumatic artificial muscles [J]. IEEE Transaction on Robotics and Automation, 1996, 12(1): 90-102.
    [48] Tsagarakis N, Caldwell D G. Improved modeling and assessment of pneumatic muscle actuators [A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. San Francisco, IEEE Press, 2000: 3641-3646.
    [49] Shadow Robot Company. Shadow Dexterous Hand C5 Technical Specification, 2008, 5.
    [50] Suzumori K, Iikura S, TANAKA H. Flexible microactuator for miniature robots [A]. Proceedings of IEEE International Conference on Micro Electro Mechanical Systems [C]. Nara, IEEE Press, 1991: 204–209.
    [51] Suzumori K, Iikura S, Tanaka H. Applying a flexible microactuator to robotic mechanisms [J]. IEEE Control Systems, 1992, 21-27.
    [52]刘伊威,赵京东.机器人灵巧手的研究与发展[J].机械传动, 2009, 33(4): 126-129.
    [53] Nakano Y, Fujie M, Hosad A Y. Hitachi’s robot hand [J]. Robotics Age, 1984, 6(7):18-20.
    [54] Reuleaux F. Kinematics of machinery [M]. New York: Dover, 1963.
    [55] Markenscoff X, Ni L, Papadimitriou C H. The geometry of grasping [J]. The International Journal of Robotics Research, 1990, 9(1): 61-72.
    [56] Mishra B, Schwartz J T, Sharir M. On the existence and synthesis of multifinger positive grips. Algorithmica, Special Issue: Robotics, 1987, 6(2): 72-83.
    [57] Selig A J, Rooney P K. Reuleaux pairs and surfaces that cannot be gripped. The International Journal of Robotics Research, 1989, 8 (5): 79-87.
    [58]刘宏,姜力.仿人多指灵巧手及其操作控制[M].北京:科学出版社, 2010.
    [59] Nguyen V D. Contruting stable grasps. The International Journal of Robotics Research, 1989, 8(1): 26-37.
    [60] Li J W, Liu H, Cai H G. On computing three-finger force-closure grasps of 2-D and 3-D objects [J]. IEEE Transactions on Rocotics and Automation, 2003, 19(1): 155-161.
    [61] Coelho J, Grupen R. Control pre-imaging for multifingered grasping synthesis [A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. SanDiego, IEEE Press, 1994: 3117-3122.
    [62] Pelossof R, Miller A, Allen P, Jebara T. An SVM learning approach to robotic grasping [A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. New Orleans, IEEE Press, 2004: 3215-3218.
    [63] Barkat B, Zeghloul S, Gazeau J P. Optimization of grasping forces in handling of brittle objects [J]. Robotics and Autonomous Systems, 2009, 57(4): 460-468.
    [64] Raibert M H, Craig J. Hybrid position/ force control of manipulator [J]. ASME Journal of Dynamic Systems, Measurement and Control, 1981, 103 (2): 126-133.
    [65] Xiao D , Ghosh B K, Xi N , et al. Sensor-Based Hybrid Position/ Force Control of a Robot Manipulator in an Uncalibrated Environment [J]. IEEE Trans Control Syst Technol, 2000, 8 (4): 635-645.
    [66] Hogan N. Impedance control: An approach to manipulation, Part I-III. Transactions of the ASME Journal of Dynamic Systems [J]. Measurement, and Control, 1985, 107 (1): 1-24.
    [67] Chan S P, Yao Bin, Gao W B, et al. Robust impedance control of robot manipulators [J]. International Journal of Robotics and Automation, 1991, 6 (4):220-227.
    [68]李继婷,任大伟,张玉茹.灵巧手主从操作中的人手运动跟踪与识别[J].北京航空航天大学学报, 2007, 33(5): 618-621.
    [69]李继婷,张玉茹,张启先.人手抓持识别与灵巧手的抓持规划[J].机器人, 2002, 24(6): 530-534.
    [70]李继婷,张玉茹,郭卫东.机器人多指手灵巧抓持规划[J].机器人, 2003, 25(5): 409-413.
    [71]王滨,姜力,刘宏. HIT/DLR多指手稳定抓取的控制策略[J].华中科技大学学报(自然科学版), 2007, 35(12): 68-71.
    [72]李剑锋,张玉茹,王新华,等.多指手Power抓持的鲁棒性分析及稳定载荷域计算[J].中国机械工程, 2004, 15(7): 628-631.
    [73]鲍官军.气动柔性驱动器FPA的特性及其在多指灵巧手设计中的应用研究[D].杭州:浙江工业大学, 2006.
    [74] Yang Qinghua, Zhang Libin, Bao Guanjun, Ruan Jian. Research on novel flexible pneumatic actuator FPA [C]//Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 2004: 385-389.
    [75] Wang Zhiheng, Bao Guanjun, Zhang Libin, Yang Qinghua. Development and control of flexible pneumatic wall-climbing robot[J]. Journal of Central South University of Technology, 2009, 16(6): 961-970.
    [76] Wang Zhiheng, Zhang Libin, Bao Guanjun, Zhou Xiaoyan, Yang Qinghua. Design and control of integrated pneumatic dexterous robot finger [J]. Journal of Central South University of Technology, 2011, 1(6): 961-970.
    [77]张立彬,王志恒,杨庆华,鲍官军.气动柔性五自由度手指运动分析及控制[J].中国机械工程, 2008, 19(22): 2661-2665.
    [78] Zhang Libin, Wang Zhiheng, Yang Qinghua, Bao Guanjun, Qian Shaoming. Development and simulation of ZJUT Hand based on flexible pneumatic actuator FPA [A]. Proceedings of IEEE International Conference on Mechatronics and Automation [C]. Changchun: IEEE Press, August 9-12, 2009: 1634-1639.
    [79] http://www.handuniversity.com/topics.asp?Topic_ID=13.
    [80] Treloar L R G. The physics of rubber elasticity [M]. New York: Oxford University Press, 2005.
    [81]汤健.骨科临床测量[M].合肥:安徽科学技术出版社, 2001.
    [82] Wark K.热力学(第6版)[M].北京:清华大学出版社, 2006.
    [83] John B F. Engines, energy, and entropy [M]. Pittsburgh: Global View Publishing, 2003.
    [84]骆涵秀,李世伦,朱捷,陈大军.机电控制[M].杭州:浙江大学出版社, 2003.
    [85]阮健.电液(气)直接数字控制技术[M].杭州:浙江大学出版社, 2000.
    [86]田中久浴.液压与气动的数字控制及应用[M].重庆:重庆大学出版社, 1992.
    [87]李建藩.气动传动系统动力学[M].广州:华南理工大学出版社, 1991.
    [88] Arieh I著.刘晓艳,刘学深译.微分方程数值分析基础教程[M].北京:清华大学出版社, 2005.
    [89]周品,何正风. MATLAB数值分析[M].北京:机械工业出版社, 2009.
    [90]张德丰. MATLAB数值分析与应用[M].北京:国防工业出版社, 2007.
    [91] SMC. Manual of Compact Electro-pneumatic Reaulator Series ITV0000.
    [92] Auatriamicrosystems. AS5045 12 bit programmable magnetic rotary encoder data sheet. 2005: 1-24.
    [93]钱少明,杨庆华,鲍官军,王志恒,张立彬.基于气动柔性驱动器的弯曲关节的基本特性研究[J].中国机械工程, 20(24): 2903-2907.
    [94]张玉茹,李继婷,李剑锋.机器人灵巧手:建模、规划与仿真[M].北京:机械工业出版社, 2007:
    [95]张永德,刘廷荣.机器人多指灵巧手的结构参数优化设计[J].机器人, 1999, 21(3): 234-240.
    [96]张永德,刘廷荣,李华敏.机器人多指灵巧手的结构型式的优化分析[J].机械设计, 1999, (7): 9-13.
    [97]汤健.骨科临床测量[M].合肥:安徽科学技术出版社, 2001.
    [98]刘云峰,杨利平,董星涛,姜献峰,彭伟.基于现代设计与制造技术的小儿发育性髋脱位精确治疗外科手术研究[J].浙江工业大学学报, 2009, 37(2): 208-212.
    [99]宗光华,程君实等译.机器人技术手册[M].北京:科学出版社, 2007.
    [100]张付祥.创伤手指康复机械手系统研究[D].哈尔滨:哈尔滨工业大学, 2007.
    [101]杨卫超,余永,邓小红,葛运建,戈瑜.一种基于双E型膜片的微小六维力传感器的设计[J].传感技术学报, 2008, 21(7): 1137-1142.
    [102] Chang L Y, Matsuoka Y. A kinematic thumb model for the ACT Hand [A]. Proceedings of IEEE Conference on Robots and Automation [C]. Orlando, IEEE Press, 2006: 1000-1005.
    [103] Vilaplana M J, Coronado L J. A neural network model for coordination of hand gesture during reach to grasp [J]. Neural Networks, 2006, 19(1):12-30.
    [104] http://sensing.honeywell.com/index.cfm/ci_id/154366/la_id/1.htm
    [105] Analog Devives. Datasheet of single supply, rail-to-rail, low cost instrumentation amplifier AD623.
    [106] Marry P M. Control primitive for robot systems [J].IEEE Transactions on System, Man and Cybernetics, 2002, 22(1): 183-193.
    [107] Fu K S, Gonzalez R C, Lee C S G. Robotics: control, sensing, vision, and intelligence [M]. New York: McGraw-Hill, 1987.
    [108] Craig J J. Introduction to robotics: mechanics and control (3rd Edition) [M]. New Jersey: Pearson Hall, 2005.
    [109] Gosselin C M, PerreaulT L, Vaillancourt C. Simulation and computer-aided kinematic design of three-degree of freedom spherical parallel manipulators[J]. Journal of Robotic Systems, 1995, 12(12): 857 - 869.
    [110] Gosselin C M, Hamel J F. Agile eye: A high performance three degree of freedom camera orienting device [A]. Proceedings of the IEEE International Conference on Robotics and Automation [C]. San Diego, IEEE Press, 1994: 781 - 786.
    [111] Manocha D, Canny J F. Real time inverse kinematics for general 6R manipulators [A]. Proceeding of IEEE International Conference on Robotics and Automation [A]. Nice, IEEE Press, 1992: 383-389.
    [112] Manseur R, Doty K L. Structural kinematics of 6-revolute-axis robot manipulators [J]. Mechanism and Machine Theory, 1996, 31(5): 647-657.
    [113] Liu B.L, Ito K. Regularization of inverse kinematics for redundant manipulators using neural network inversions [A]. Proceeding of IEEE International Conference, on Neural Networks [C]. Perth: IEEE Press, 1995: 2726-2731.
    [114] Hui Shao, Kenzo Nonamib, Tytus Wojtara. Neuro-fuzzy position control of demining tele-operation system based on RNN modeling [J]. Robotics and Computer-Integrated Manufacturing, 2006, 22(1): 25–32.
    [115] Kalra P, Mahapatra P B, Aggarwal D K. An evolutionary approach for solving the multimodal inverse kinematics problem of industrial robots [J]. Mechanism and Machine Theory, 2006, 41(10): 1213–1229.
    [116]申晓宁,李胜,郭毓,陈庆伟,胡维礼.基于多目标遗传算法的冗余机械手逆解算法[J].系统仿真学报, 2008, 20(2): 399-403.
    [117]张培艳,吕恬生,宋立博.基于BP网络的MOTOMAN机器人运动学逆解研究[J].机电工程,2004, 20(2): 56-58.
    [118] Holland, J. H. Adaptation in Natural and Artificial Systems [M]. Cambridge: MIT Press, 1992.
    [119]雷英杰,张善文,李续武等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2005.
    [120]李海民,吴成柯.自适应变异遗传算法及其性能分析[J].电子学报, 1999, 27(5): 90-92.
    [121]吴志远,邵惠鹤.一种新的自适应遗传算法及其在多峰值函数优化中的应用[J].控制理论与应用, 1999, 16(1): 127-129.
    [122]马钧水,刘贵忠.改进遗传算法搜索性能的大变异操作[J].控制理论与应用, 1998, 15(3): 404-408.
    [123] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithm [J]. IEEE Transactions on System, Man and Cybernetics, 1994, 24(4): 656-667.
    [124]刘智明,贺新,周激流等.基于排序的改进自适应遗传算法[J].信息与控制, 2004, 33(1): 6-8.
    [125]石山,励庆孚,王兴华.基于自适应遗传算法的无刷直流电机的优化设计[J].西安交通大学学报, 2002, 36(12): 1215-1218.
    [126]郝晓弘,范波.自适应遗传算法及其在求解黎卡提方程中的应用[J].兰州大学学报(自然科学版), 2000, 36(1): 39-43.
    [127]潘伟,刁华宗,井元伟.一种改进的实数自适应遗传算法[J].控制与决策, 2006, 21(7): 792-795.
    [128]霍伟.机器人动力学和控制[M].北京:高等教育出版社, 2004.11: 55-63.
    [129] MASON M T, Salisbury J K. Robot hands and the mechanics of manipulation [M]. [S.l]: MIT Press, 1985.
    [130]郑宇.多指抓取的封闭性、最优规划与动态力分配研究[D].上海:上海交通大学, 2007.
    [131]杨磊.基于指尖传感器的DLR/HIT机器人灵巧手阻抗控制的研究[D].哈尔滨:哈尔滨工业大学, 2005.
    [132]孙增圻.智能控制理论及技术[M].北京:清华大学出版社, 2006.
    [133]洪昭斌,陈力.漂浮基柔性空间机械臂基于奇异摄动法的模糊控制和柔性振动主动控制[J].机械工程学报, 2010, 46(7): 35-41.
    [134]郭伟斌,陈勇.基于模糊控制的除草机器人自主导航[J].机器人, 2010, 32(2): 204-209.
    [135]陈俊丰.基于粒子滤波的机动目标跟踪算法研究[D].杭州:浙江大学, 2010.
    [136] Salisbury J. K. Active stiffness control of a manipulator in Cartesian Coordinates [A]. Proceedings of 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes [C]. Stanford: IEEE Press, 1980: 95-100
    [137] Lasky T. A. Hsia T. C. On force-tracking impedance control of robot manipulators [A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. Sacramento, IEEE Press, 1991: 274-280.
    [138]李杰,韦庆,文森,张彭.基于阻抗控制的自适应力跟踪方法[J].机器人, 1999, 21(1): 23-29.
    [139] Lu Z, Kawamura S, Goldenberg A. A. An approach to sliding mode-based impedance control [J]. IEEE Tranasctions on Robotics and Automation, 1995, 11(5): 754-759.
    [140] Haidacher S, Hirzinger G. Estimating finger contact location and object pose from contact measurements in 3-D grasping [A]. Proceedings of IEEE International Conference on Robotics and Automation [C]. , 2003. Taipei, IEEE Press, 2003: 1805-1810.
    [141] Seraji H, Colbaugh R. Adaptive force-based impendance control [A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems [C]. Yokonama, IEEE Press, 1993: 1537-1544.
    [142]李继婷,张玉茹,郭卫东.机器人多指手灵巧抓持规划[J].机器人, 25(5), 2003.
    [143]王燕.黄瓜采摘机器人运动规划及其控制系统研究[D].杭州:浙江工业大学, 2010.
    [144] Horikawa S, Fundmshi T, Uehikawa Y. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm [J]. IEEE Transactions on Neural Networks, 1992, 3(2): 801—806.
    [145]何玉彬,李新忠.神经网络控制技术及其应用[M].北京:科学出版社, 2000.
    [146] Furtahashi K I. On the approximate realization of continupus mapping by neural networks [J]. Neural Networks, 1989, 2(3): 183-192.
    [147] Homik K, Stincheombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks [J]. Neural Networks, 1990, 3(5): 551-560.
    [148] Chert T, Chert H. Approximation to nolinear continuous functions by neural networks with application to dynamic system [J]. IEEE Transactions on NeuralNetwork, 1993, 4(3): 910-918.
    [149] Homik K. Some new results on neural network approximation [J].Neural Networks, 1993, 6(8): 1069-1072.
    [150]卢志刚,吴士昌,于灵慧.非线性自适应逆控制及其应用[M],第一版.北京:国防工业出版社, 2004.
    [151] Jang J S. ANFIS: Adaptive-network-based fuzzy inference systems [J]. IEEE Transactions on System, Man and Cybernetics, 1993, 23(3): 665-685.
    [152] Takagi H, Hayashi I. NN-driven fuzzy reasoning [J]. Intenational journal of Approximate Reasoning, 1991, 5(3): 191-212.
    [153] Berenji H R. A reinfomement learning based architecture for fuzzy logic control [J]. International Journal of Approximate Reasoning, 1992, 6(2):267-292.
    [154] Nauck D, Krase R. A neural fuzzy controller learning by fuzzy error propagation[C]//Proceeding of NAFIPS’92, Puerto Vallarta, 1992: 388-397.
    [155]邢松寅,王士同.基于Pi-Sigma神经网络的高木-关野模糊系统用于数据关联计算的建模[J].电子科学学刊, 1999, 21(1): 72-77.
    [156] Kosko B. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence [M]. NJ: Prentice Hall, 1992.
    [157] Sulzberger S M, Tschichold-Gurman N, Vestli S J. FUN: optimization of fuzzy rule based systems using neural networks[C] //Proceeding of IEEE International Conference on Neural Networks, San Francisco, 1993: 312-316.
    [158] Oonsivilai A, El-Hawary M E. Power systenm dynamic load modeling using adaptive-network-based fuzzy inference system [C]// Proceedings of IEEE Conference on Electrical and Computer Engineering, Edmonton, 1999: 1217-1222.
    [159]刘志伟.基于ANFIS的信道估计算法研究[D].北京:北京工业大学, 2007.
    [160] Sinha P R, Abel J M. A contact stress model for multifingered grasps of rough objects [J]. IEEE Transactions on Robotics and Automation, 1992, 8(1): 7-22.
    [161] Kumar V, Waidron K J. Sup-optimal algorithms for force distribution in multifingered grippers [J]. IEEE Transactions on Robotics and Automation, 1989, 5(4): 252-257.
    [162] Jameson J W, Leifer L J. Automatic grasping: an optimization approach [J]. IEEE Transactions on Systems, Man and Cybernetics, 1987, 17(5): 806-814.
    [163] Buss M, Moore J. B. Dexterous hand grasping force optimization [J]. IEEE Transactions on Robotics and Automation, 1996, 12(3): 406-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700