考虑热效应影响的气井试井资料分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆深层火山岩气藏具有埋藏深、温度高的特点,试气施工难度大,大多数气井采用地面开关井方式进行施工。在气井压力恢复过程中,井筒中存在的较大温度变化影响着气井井底压力恢复动态,造成气井试井评价中压力恢复曲线异常,均质无限大地层会呈现出复合油藏或双孔地层特征,掩盖了储层真实特征,而现有的试井模型没有考虑井筒温度变化,使得到的试井分析结果合理性准确性受到影响。针对上述生产实际问题,根据热力学知识,对气井不同生产状态下井筒内温度的变化规律、温度对气体物性参数的影响规律进行分析与研究。应用热力学相关理论,建立气井井筒温度变化模型。结合气井渗流理论,建立了考虑热效应影响的气井试井渗流数理模型。根据数理模型,建立有热效应影响的试井理论图版,并结合理论图版对气井的热效应影响规律进行分析,判断气井井筒温度对试井分析压力曲线的影响情况,研制开发出一套考虑热效应影响的气井不稳定试井评价软件。对试井曲线异常的气井资料进行考虑热效应影响的试井解释,给出气井地层渗透率、表皮系数及井筒最大影响温差等参数。
     应用14口井18层气井资料对研究的试井分析方法进行检测与验证,经验证模拟产能与实际产能误差均小于20%。应用解释结果对6口已经投产的气井进行中长期产能预测,与气井实际生产情况进行对比与验证,有5口井模拟产量与实际产量相符,证明考虑热效应影响气井试井方法解释的参数更加准确地反映气井真实储层性质。在实际气井资料试井分析工作中效果良好,达到了准确评价有热效应影响气井试井资料,正确认识与评价储层,指导深层气井勘探开发的目的。
The volcanic gas reservoir of Daqing has the characteristic of deep burial and high temperature. The gas well testing in the reservoir is difficult, and most of the wells are operated by surface open and shut-in method. During the process of pressure buildup, the larger temperature change existed in the wellbore affects the downhole pressure buildup dynamics, and causes the abnormity of pressure buildup curve in well testing evaluation. The homogeneous infinite reservoir will present composite or double porosity characteristics, and the true features of the reservoir are disguised. As the present well testing model does not consider the wellbore temperature change, the rationality and accuracy of the well testing results are affected. To solve the above problems, based on the thermodynamics knowledge, the temperature change law inside the wellbore under different production status, and the effect law of temperature on gas property parameter are analyzed and studied. Applying the related theory of thermodynamics, the temperature change model in the gas wellbore is established. Based on the seepage flow theory of gas well, the mathematical logic model for gas well testing is established considering the thermal effect. And in accordance with the mathematical logic model, the well testing theory plate under the thermal effect is established. The thermal effect law on gas well is analyzed on the basis of the theory plate to distinguish the effects of temperature inside the gas well on pressure curves, The transient well testing evaluation software of gas well is developed considering the thermal effect. The gas well data with abnormal well testing curves are interpreted by the software with the consideration the thermal effect, the parameters, such as, the formation permeability, skin factor, and the maximum temperature differential effect in the wellbore, etc, are given.
     The method is inspected and verified with the data from 14 wells and 18 layers. The error of simulated productivity is less than 20% compared with the real productivity. To compare with the real well productivity and test the simulated results, in 6 producing wells, the simulated results are applied to predict the medium and long term productivity. The simulated results of 5 wells are consistent with the real production, which demonstrates the parameters given by the well testing method considering the thermal effect reflect more accurately the real reservoir properties. The better results of the method shown in the real gas well testing analysis attains the goal of evaluating accurately gas well testing data with thermal effect, understanding and evaluating the reservoir correctly, and guiding the exploration and production of the deep gas well.
引文
1. Ramey,H.J.Jr.Wellbore Heat Transmission[J]. Trans,AIME225,1962,4:427-435.
    2. L.FanL,W.J. Lee, J.P. Spivey—Semi-Analytical Model for Thermal Effect on Gas Well Pressure Buildup Tests[J].1999.
    3. Muskat,M. Use of Data on the Buildup of Bottomhole Pressures[J].Trans,AIME123,1937:4448.
    4. Miller,C.C.,Dyes,A.B. and Hutchinson,C.A.JrThe Estimation of and Reservoir Pressure From Bottomhole Pressure Build-up Characteristics[J].Tran,AIME(1950)189:91-104.
    5. Horner,D.R. Pressure Build-Up in Wells Proc[J].Third World Pet.Cong.,The Hague,1951,2:503-23.
    6. Matthews,C.S.,Russell,D.G.Pressure Buildup and Flow Tests in Wells[J].SPE Monograph,1967,1.
    7. Jones,Lloyd,Blount E. M. Use of Short Term Multiple Rate Flow Tests to Predict Performance of Wells Having Turbulence[J].SPE6133,1976.
    8. Klkanl J.,Horne R.N.Pressure-Transient Analysis of Arbitrarily Shaped Reservoirs With The Boundary-Element Method[J]. 1992,3:53-60.
    9. Ramey,H.J.Jr.Advances in Practical Well Test Analysis[J]. JPT,1972,6: 50-59.
    10. McKinley , R.M.Wellbore Transmissibility From Afterflow-Dominated Pressure Buildup Data[J].JPT,1971,7.
    11. Earlougher,R.C.Jr. Advances in Well Test Analysis [J].SPE,Richardson TX,1977,5.
    12. Gringarten,A.C. Type-Curve Analysis:What It Can Do and Cannot Do paper [J].SPE 16388,JPT,1987,1:11-13.
    13. Streltsova T.D.,Well Testing in Heterogenous Formations [J].John Wiley and Sons Inc,1988.
    14. Bourdet.D., etal. A New Set of Type Curves Simplofies Well Test Analysis[J].World Oil,1983.
    15. Lee St,etal.A New Approximate Analytic Solution for Finite-Conductivity Vertical Fractures[J].SPEFE,1986,2:75-88.
    16. Cinco-ley.H. Transient Pressure Behavior for a well with a finite Conductivety Vertical Fracture[J].SPEJ,1978,8.
    17. Kamal,M.M. Interference and Pulse Testing-A Review[J].JPT, 1983,12:2257-70.
    18. Poolen HK.Jargon JR. Steady-state and unsteady-state flow of non-Newtonion fluidss through porous media [J].SPEJ ,3:80-88.
    19. Nanba.T and Horne R.N,An Improved Regression Algorithm for Automated Well-Test Analysis[J].SPEFE,1992,3:61-69.
    20. P.J.Puchyr,A Numerical Well Test Model[J].SPE21815,1991,4 :15-17.
    21.现代试井分析方法得新进展及解释软件[M].中国石油天然气公司情报所1989.
    22.邓远忠,陈钦雷.试井解释模型识别及参数估计的人工神经网络方法[M].北京:中国石油学会,2000,10.
    23.葛家理.现代渗流力学原理[M].北京:石油工业出版社,2003.
    24.秦同洛,李汤,陈元千.实用油田工程方法[M].北京:石油工业出版社,1989.
    25.杨继盛,刘建仪.采气实用计算[M].北京:石油工业出版社,1994.
    26. Klins,M.A. Inflow Performance Relationships for Damaged or Improved Wells Producing Under Solution-Gas Drive[J].SPE19852.1986:524-531.
    27.《试井手册》下[M].石油工业出版社.
    28.孔祥言.高等渗流力学[M].中国科学技术大学研究生学位课程教材,1990.
    29. Abbaszadeh M.,Kamal,M.M.Pressure Transient Testing of Water-injection Wells[J].SPE-RE,1989,2.
    30.气井试井理论与实践[M].北京:石油工业出版社,1988.
    31. Agarwal,R.G.Real Gas Pseudo-Time-A New Function for Pressure Build-up Analysisi of MHF Gas Wells[J].Spe8279,54th Annual Fall Meeting,Las Vegas,1979,11.
    32. Guyod , H.Temperature well logging , part five , wells not in thermal equilibrium[J].The Oil Weekly,1946,12:32–39.
    33. Lesem,I.B.,et al. A method of calculating the Distribution of temperature in flowing Gas wells[J].Trans,AIME ,1957:169.
    34. Ramey,H.J.Jr.Wellbore Heat TransmissionJPT[J]. Trans.,AIME,1962,4:427-435.
    35. Ramey , H.J.Jr , etal.Analysis of Slug Test or DSP FlowPeriod Data.J.Can.Pet.Tech,1975.
    36. Romero-Juarez , Antonio. A Note on the Theory of Temperature Logging[J].SPE Jour,1969,12:375-377.
    37. Satter,A.Heat Losses of Steam Down a Wellbore[J].JPT,1965,6:845-851.
    38. Willhite,G.P.Over-all Heat Transfer Coefficients in Steam and Hot Water Injection Wells[J].JPT,1967,5:607-615.
    39. M.R.Curtis,E.J.witterholt.Use of the Temperature log for determining flow rates in producting wells[J].SPE4637,1973.
    40. R.C.Smith , R.J.Steffensen.Interpretation of Temperature Profiles in Water-Injection Wells[J].JPT,1975,6:777-784.
    41. J.O.Herrera,B.F.Blrdwell,E.J.Hanzllk.Wellbore heat losses in deep steam injection wells[J].SPE7117,1978.
    42. Shiu , K.C.and Beggs , H.D.Predicting Temperature in Flowing Oil Wells[J].J.Energy Resources Tech .,1980,3:5-11.
    43. Sagar R K,Doty D R,Schidt Z.Predicting temperature profiles in a flowing well[J].SPEPE,1991:441-448.
    44. Hasan A R, etal.Heat Transfer Druing Two–Phase Flow in Wellbores[J].Partⅱ-Wellbore Fluid Temperatue[A].SPE 22948,1991.
    45. Alves I N etal.A Unified Model for Predicting Flowing Temperature Distribution in Wellbores and Pipelines[J].SPEPF,1992,11:363-367.
    46. Shifeng Tian, John T. Finger. Advanced Geothermal Wellbore Hydraulics Model J.Energy Resour. Technol. September 2000 Volume 122,Issue 3,142 (5) .
    47. H.Shi, J. A.Holmes, L. J. Durlofsky, K. Aziz, L.R. Diaz, B.Alkaya and G.Oddie. Drift-flux modeling of two-phase flow in wellbores[J].SPE Paper 84228-PA,SPE J[J]. 2003,10 (1):24-33.
    48. H. Shi, J. A. Holmes, L.R. Diaz, L.J.Durlofsky and K. Aziz, Drift-flux parameters for three-phase steady-state flow in wellbores[J].SPE Paper 89836-PA,2005,6 (2):130-137.
    49. L.Fan, SPE,W. J. Lee Semi-Analytical Model for Thermal Effect on Gas Well Pressure-Buildup Tests SPE Reservoir Eval,2000,12.
    50.王承毅译,不稳定压力分析中井筒的影响综述[J].油气田勘探开发科技信息,2002(2):9-21.
    51.姜礼尚,陈钟祥.试井分析理论基础[M] .北京:石油工业出版社,1981.
    52. Kuchuk,F.J.,etal.New Skin and Wellbore Storage Type Curves for Partially Penetrated Wells[J].SPEFE,1987,12:546-554.
    53. Standing,M.B.,A Pressure-Volume-Temperature Correlation for Mixtures of California Olis and Gases[J].Drill and Prod.Pract.API,1947:275.
    54.谢梅波.温度对渤海采油井的影响[J].中国海上油气,1989,1(5).
    55.张柏年,廖锐全.同时预测油井中压力和温度剖面的方法的改进[J].江汉石油学院学报,1991,13(4).
    56.卢祥国,李文甫.空心抽油杆掺热水时杆及井筒温度分布研究[J].大庆石油学院学报,1993,17(1).
    57.宋辉.井筒瞬态温度场研究与应用[J].石油钻采工艺,1994,16(2).
    58.粱金国,王弥康,张奎祥.利用微差井温测试资料确原始油藏导热系数[J].石油大学学报,1996,20(2) .
    59.刘玉石,董杰,黄克累.控制井眼温度维持井壁稳定[J].力学与实践,1997,19(1).
    60.邱于兵,张华民.温度对油井套管极化行为的影响[J].华中理工大学学报,1998,19(3).
    61.朱德武.凝析气井井筒温度分布计算[J].天然气工业,1998,(1).
    62.毛伟,梁政.计算气井井筒温度分布的新方法[J].西南石油学院学报,1999 21(2).
    63.姜晓燕,卢德唐,王平.温度试井解释方法的研究与应用[J].2000,9(3).
    64.安耀清,祁传国,黄中回.地面温差与稠油产能关系特例分析[J].油气井测试,2001,10(16).
    65.卢德唐,曾亿山,郭用存.多层地层中的井筒及地层温度解析解[J].水动量学研究与进展,2002,17(3).
    66.汪泓.电加热井德井筒温度场数学模型.油气井测试[J].2003,26(2).
    67.单学军,张士诚.稠油开采中井筒温度影响因素分析[J].石油勘探与开发,2004,31(2).
    68.单学军,张士诚,王文雄,于李萍.稠油开采中井筒温度影响因素分析[J].石油勘探与开发,2004,31(3):136-169.
    69.郭永存,曾亿山,卢德唐.地层静温预测的非牛顿流体数学模型[J].物理学报,2005,54(22).
    70. Bear,J.Dynamics of Fluids in Porous Media[J].American Elsevier Publishing Company,Inc.New York,1972.
    71.廖新维,沈平平.现代试井分析[M].石油工业出版社,2002.
    72.杨继盛.采气工艺基础[M].石油工业出版社,1994.
    73. Galso.Generalized Pressure-Volume-Temperature Correlation[J].JPT,1980,5:785-795.
    74. Agarwal R.G.,etal.An Investigation of Wellbore Strage and Skin Effect in Unsteady Liquid Flow[J].SPEJ,1970,9:90-279.
    75. A.E.薛定谔著.多孔介质中的渗流物理[M].北京:石油工业出版社,1982:15-45.
    76. Streltsova T.D.,Well Testing in Heterogenous Formations[J].John Wiley and Sons Inc,1988.
    77.李晓平,李允.气井产能分析新方法[J].天然气工业,2004,24(2):76-78.
    78. Evinger, H.H. and Muskat, M. Calculation of Theoretical Productivity Factors[J].Trans. AIME. 1942(146):127-139.
    79. Blasingane T.A.,etal.Type-Curve Analysis Using the Pressure Integral Method[J]. SPE18799.
    80. Duong.A.A.A New Set of Type Curve for Well test Interpretation Using the Pressure–Derivative Ratio[J]. (PDR),SPE16812.
    81. Bourdet D., etal. A New Set of Type Curves Simplifies Well Test Analysis[J].World Oil,1983,5:95-106.
    82. Nind,T.E.Principles of Oil Well Production[J]. Mc Graw-Hill Book Co.,New York,1981:51-59.
    83. Streltsova-AdamT.D.,Pressure Drawdown in a Well With Limited Flow Entry[J].JPT,1973,5:358-374.
    84.数学手册编写组.数学手册[M].人民教育出版社,1979.
    85.崔迪生.拉普拉斯变换与试井分析[M].北京:石油工业出版社,2000.
    86. Lee,A.L.,Gonzalez,M.H. and Eakin,B.E. The Viscosity of Natural Gases,Trans[J].AIME,1966,237:997-1000.
    87. Gringarten,A.C.Computer-Aided Well Test Analysis[J].SPE17817.
    88.卢德唐.试井分析理论及方法[M].北京:石油工业出版社,1998 .
    89. Crump KS.Numberical Inversion of Laplace Transform Using a Fourier Series Appromaximation[J].J.ACM,1976,23(1):89-96.
    90. Gazdag and H.H.Wang. Concurrent Computing by Sequential Staging of Tasks[J]. IBM Sys. J.,Vol.28,No.4,1989.
    91.黄炳光.气藏工程分析方法[M].北京:石油工业出版社,2004.
    92. Warren,J.E. and Root P.J.Behavior of Naturally Fractured Reservoirs[J]. SPEJ,1963,9:245-255.
    93. Carslaw,H.S.and Jaeger,J.C.Conduction of Heat in Solids[J]. 2nd ED,oxford Univ. Press,London,1959,30.
    94.沈显杰.岩石热物理性质及其测试[M] .科学出版社,1988.
    95.伏拉罗维奇.高温高压下岩石和矿物物理性质研究[M].地震出版社,1982.
    96.多尔特曼.岩石和矿物的物理性质[M] .科学出版社,1985 .
    97.卡鲁迈耶.地热学及其应用[M].科学出版社,1981.
    98.程俊国.高等传热学[M].重庆大学出版社,1991.
    99.过增元.热流体学[M].清华大学出版社,1992.
    100. C.U.伊克库.天然气开采工程[M].石油工业出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700