黄土高原丘陵沟壑区沟道治理工程的生态水文效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淤地坝作为黄土高原最主要的沟道治理措施,在水土保持方面发挥着巨大作用。根据水利部《黄土高原地区水土保持淤地坝规划》,到2020年,淤地坝数量将达到16.3万座。如此规模巨大的淤地坝建设,势必对黄土高原生态环境产生深远影响。系统、深入的研究淤地坝建设对流域生态、水文、泥沙过程的调控机理,对丰富水土保持科学研究、发展具有黄土高原特色的水沙模型、推进黄土高原水土保持事业,具有积极作用。本文综合分析了淤地坝对流域水文过程、植被分布、侵蚀产沙的影响,取得的主要结论如下:
     (1)沟道治理工程显著改变了流域蒸腾发、土壤水再分布、地表径流等水文过程。使用基于遥感的SEBAL模型,估算了韭园沟流域和裴家峁流域的日蒸腾蒸发量:结果表明坝地蒸腾蒸发量最大,为4.98mm·d~(-1),其次为果园及林地,为4.78mm·d~(-1),再次为草地,蒸腾蒸发量为4.49mm·d~(-1),而梯田和坡耕地蒸腾蒸发量较小,分别为3.82mm·d~(-1)、3.76mm·d~(-1);流域不同土地利用类型下的土壤含水量分析表明:次降雨后,梯田和坡地表层土壤水分消退较慢,而退耕梯田和退耕坡地表层土壤水分消退较快;坝地土壤水分分层现象较为明显,土壤水分垂直变率大,平均为0.21,其它土地利用类型土壤水分垂直变率较小,在垂直分布上较为一致,梯田为0.08,退耕梯田为0.07,坡耕地为0.04,退耕坡地为0.07;淤地坝对流域径流系数与流域滞时有显著影响,韭园沟、王茂沟、想她沟较裴家峁、李家寨、团园沟径流系数分别减少了29.43%、34.63%、16.78%。王茂沟平均流域滞时为对比流域李家寨的3倍,反映出以淤地坝为主的流域治理措施对地表径流过程的调节作用。
     (2)沟道治理工程改变了流域生态水文情势,进而影响了植被的时空分布。沟道治理工程能增加局地植被覆盖度,提高植物群落的多样性,但幅度较小;韭园沟与裴家峁归一化植被指数(NDVI)特征对比分析表明:裴家峁流域NDVI值的分布出现了聚集现象,而韭园沟流域NDVI值各月份内分布较为均匀。7月份,裴家峁NDVI值集中分布在0.3~0.4之间,比例为74.77%,其次为0.2~0.3之间,比例为13.79%,二者相差达60.98%,而韭园沟7月份NDVI集中分布在0.3~0.4,比例为60.54%,其次为0.2~0.3,比例为34.75%,二者相差仅为25.79%,这间接反映了裴家峁流域植被类型较韭园沟流域较单一的特点。
     (3)沟道治理工程有效的拦蓄了泥沙,显著降低了流域泥沙输移比。不同尺度对比流域的输沙模数计算结果显示:韭园沟输沙模数比裴家峁减少28.09%,王茂沟输沙模数比李家寨减少67.75%,想她沟输沙模数比团园沟减少27.75%;次暴雨过程分析,王茂沟23座淤地坝共淤积泥沙159031t,王茂沟把口站输沙总量为27891t,流域出口与坝地泥沙总量为186922t,流域次暴雨土壤侵蚀模数达31310t/km~2,泥沙输移比仅为0.15,即15%的泥沙经过出口断面汇向主沟道,85%的泥沙沉积在坝地中。
     (4)定量分析了淤地坝淤积过程对流域沟坡稳定性和土壤侵蚀模数的调控作用。随着坝地淤积高度的增加,流域极不稳定区域逐渐减少,而极稳定区域逐渐增加。定义了流域的先锋期、过渡期以及顶级期三个治理“演替”状态,并使用修正通用土壤流失方程(RUSLE)分析了不同“演替”阶段以及淤地坝淤积过程中的土壤侵蚀模数变化情况:先锋期与顶级期是流域水土保持治理的两个极限状态,土壤侵蚀模数分别为184.43t×hm-2×a-1与4.62t×hm-2×a-1。随着坝地淤积厚度(x)的增加(侵蚀基准面抬升),沟谷坡土壤侵蚀模数(y)呈线性减少,拟合公式为y=-1.5315x+121.15,公式的截距和斜率分别表示基准土壤侵蚀模数和侵蚀速率,其数值大小与流域峁边线位置有关,随着峁边线上移,基准土壤侵蚀模数增加,侵蚀速率减少。
     (5)基于流域水土保持生态水文效应,提出了土壤侵蚀控制度的概念并研究了流域侵蚀调控潜力。将流域能容纳的最大适宜水土保持措施量称为水土保持措施容量,反映了流域的水土保持治理潜力。水土保持措施容量下流域的土壤侵蚀模数称为最小可能土壤侵蚀模数,将最小可能土壤侵蚀模数与现状土壤侵蚀模数的比值定义为流域侵蚀控制度。计算得出2004年王茂沟流域侵蚀控制度为0.35,造成王茂沟流域侵蚀控制度较低的原因是流域的坡耕地面积较大以及林地面积较少,表明王茂沟流域还有进一步治理的空间。
The Loess plateau of China was the world's most serious water and soil losses areas, asthe most primary gully control measures in the Loess plateau, check dams plays atremendous role in the soil and water conservation. There were about90thousands checkdams in the Loess plateau by the end of2008, according to the plan, the amount of checkdam will reach163thousands by the end of2020. So big check dams construction, mayhave as profound an impact on the ecology environment of the Loess Plateau. Therefore,thoroughly and systematically study on environmental impact of check dams, to promotethe development of soil and water conservation in loess plateau, expand soil and waterconservation science research, has played an active role. This paper was base on the theoryof geography, hydrology, ecology and soil and water conservation, to employ remotesensing, stable isotope, soil erosion prediction model technology, check dam effecting thevegetation features, hydrologic cycle, erosion process are analysed comprehensively. Themain conclusions were as follows:
     (1) Gully control engineering change the Surface water cycle process was veryremarkable. To reveal evaportranspiration characteristics of watersheds different inadoption of water and soil conservation measures, two watersheds, Jiuyuangou andPeijiamao were selected as subjects for estimation of evapotranspiration from differentunderlying surfaces using the energy-balance based SEBAL remote-sensing model. Resultsshow that the daily evaportranspiration of Jiuyuangou, which is better managed in waterand soil lands different in land use followed the order of check dam> orchard> woodland> grassland> terrace> slope land in daily evaportranspiration. The different land use soilmoisture content analysis shows that: after rain, soil surface moisture of terrace andslopelands was degrade slowly, unlike returning terrace and slope farmland, there weredegrade quickly. Check dam moisture vertical variable ratio more than other land use type,the largest moisture vertical variable ratio reached52%, which appeared at70cm~80cm, and in the depth of80cm~130cm, have obvious layered; Based on the observational dataof precipitation and runoff from1958to1969, analysed the impact of check dam on runoffcoefficient and basin lag time. the runoff coefficient of Jiuyuangou is29.43less thanPeijiamao, Wangmaogou is34.63%less than Lijiazhai, Xiangtagou is16.78%less thanTuanyaungou. The basin lag time of Wangmaoogu more than tripled Lijiazhai.
     (2) Analysis of the gully engineering measures (check dam) to the influence of thewatershed vegetation. Gully engineering measures can increase the local vegetationfraction and the diversity of plant communities within a small range. The NDVI of thewatershed under different water and soil conservation managements displayed differentseasonal variation. In July, NDVI of Peijiamao concentrated distribution in between0.3and0.4, followed by between0.2and0.3, and the range was60.98%. In Jiuyuangou, therange was only25.79%.
     (3) The effect of the sediment interception of check dams is very significant. Modulus ofsediment yield was calculated by observed data from1958to1969show that: Modulus ofsediment yield of Jiuyuangou is28.09%less than Peijiamao, Wangmaogou is67.75%lessthan Lijiazhai, Xiangtagou is27.75%less than Tuanyaungou. Based on the analysis of aheavy rain process in7-17-2012, in this heavy rainfall,159031t sediment is deposit in the23chaeck dams of Wangmaogou, Wangmaogou hydrologic station sediment discharge is27891t, total of erosion amount is186922t, the soil erosion modulus of Wangmaogou is31310t/km~2in this heavy rainfall, the sediment delivery ratio is0.15.
     (4) Quantitatively analyzes the charge of soil erosion modulus along with the increase insiltation height. To study the influences of check-dam siltation on soil erosion of awatershed, we built a simplified watershed model for the Loess Plateau hilly-gully regionincluding terraced fields, slope farmlands, steep-slope grasslands, and dam farmlands, anddefined three states of watershed (i.e., pioneer, intermediate, and climax stages,respectively). Then, the watershed soil erosion moduli at various stages were studied byusing a revised universal soil loss equation. Our results show that the pioneer and climaxstages are the extreme states of watershed soil-and-water conservation and control; in thepioneer stage, the soil erosion modulus was184.43t×ha-1×a-1; in the climax stage, the soilerosion modulus was4.62t×ha-1×a-1; in the intermediate stage, the soil erosion modulus (y)below the edge of gully exhibited a linear decline along with the increase in siltation height (x), the expression is y=-1.5315x+121.15, intercept b was the increase in reference erosionmodulus, a was the erosion reduction rate, both of which increased with the upwardmovement of the edge of gully.
     (5) This paper presented a new concept-erosion control degree, which can estimate thedegree of soil erosion controlling. The minimum possible soil erosion moduli (2573t/(km~2×a)) under capacity of soil and water conservation measures in Wangmaogouwatershed was calculated. Use2004land use map, calculates the actual soil erosion moduliof Wangmaogou is7413t/(km~2×a), and defined erosion control degree is the minimumpossible soil erosion moduli divide the actual soil erosion moduli, the erosion controldegree of Wangmaogou is0.35, at a lower level, due to existed a number of slopingfarmland and forestry area is less. We suggest that erosion control degree as the evaluationindicator about soil and water conservation of the status quo.
引文
[1]水利部,中国科学院,中国工程院.中国水土流失防治与生态安全(西北黄土高原区卷)[M].北京:科学出版社,2010.
    [2]黄河上中游管理局.黄河水土保持志[M].郑州:河南人民出版社,1993.
    [3]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水土保持术语GB/T20465-2006[M].北京:中国标准出版社,2006.
    [4]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水土保持综合治理技术规范沟壑治理技术GBT16453.3-2008[S].中国标准出版社,2008.
    [5]黄河上中游管理局.淤地坝概论[M].北京:中国计划出版社,2005.
    [6]黄河上中游管理局.黄河流域水土保持概论[M].郑州:黄河水利出版社,2011.
    [7]王浩,杨贵羽,贾仰文,等.基于区域ET结构的黄河流域土壤水资源消耗效用研究[J].中国科学D辑:地球科学,2007,12(37):1643-1652.
    [8]毛慧慧,冯平,周潮洪.基于集对原理的水资源补偿特性分析方法[J].应用基础与工程科学学报,2009,2(17):188-193.
    [9]张诚,严登华,郝彩莲.水的生态服务功能研究进展及关键支撑技术[J].水科学进展,2011,1(22):126-132.
    [10]欧阳志云.中国生态建设与可持续发展[M].北京:科学出版社,2007.
    [11]冉圣宏,吕昌河,王茜.生态退耕对安塞县土地利用及其生态服务功能的影响[J].中国人口资源与环境,2010,3(20):111-116.
    [12]高照良,田红卫,王冬.水土保持工程措施生态服务功能的物质量化分析[J].生态经济,2012(11):149-153.
    [13] W M, J P, M V. How effective are soil conservation techniques in reducing plot runoff and soilloss in Europe and the Mediterranean?[J]. Earth-Science Reviews,2012(115):21-36.
    [14] D R J. The effects of soil moisture variability on the vegetation pattern in Mediterraneanabandoned fields (Southern Spain)[J].2011,85:1-11.
    [15] B H M, L Z. Hydrological responses to conservation practices in a catchment of the Loess Plateau,China[J]. Hydrological Processes,2004,18:1885-1898.
    [16] N S, J M, J G. Water balance at plot scale for soil moisture estimation using vegetationparameters[J]. Agricultural and Forest Meteorology,2012,166:1-9.
    [17]李靖,郑新民.淤地坝拦泥减蚀机理和减沙效益分析[J].水土保持通报,1995,15(2):33-37.
    [18]王宏,马勇,陈志军.河龙区间南片淤地坝对泥沙径流影响的分析与计算[J].土壤侵蚀与水土保持学报,1997,3(1):11-17.
    [19]方学敏,万兆惠,匡尚富.黄河中游淤地坝拦沙机理及作用[J].水利学报,1998(10):49-53.
    [20]田永宏,郑宝明,王熠,等.黄河中游韭园沟流域坝系发展过程及拦沙作用分析[J].土壤侵蚀与水土保持学报,1999,5(6):24-28.
    [21]袁建平,雷廷武,蒋定生,等.不同治理度下小流域正态整体模型试验——工程措施对小流域径流泥沙的影响[J].农业工程学报,2000,16(1):22-25.
    [22]焦菊英,王万忠,李靖,等.黄土高原丘陵沟壑区淤地坝的减水减沙效益分析[J].干旱区资源与环境,2001,15(1):78-83.
    [23]焦菊英,王万忠,李靖,等.黄土高原丘陵沟壑区淤地坝的淤地拦沙效益分析[J].农业工程学报,2003,19(6):302-306.
    [24]姚文艺,茹玉英,康玲玲.水土保持措施不同配置体系的滞洪减沙效应[J].水土保持学报,2004,18(2):28-31.
    [25]冉大川,罗全华,刘斌,等.黄河中游地区淤地坝减洪减沙及减蚀作用研究[J].水利学报,2004(5):7-13.
    [26]许炯心.无定河流域侵蚀产沙过程对水土保持措施的响应[J].地理学报,2004,59(6):972-981.
    [27]徐向舟.黄土高原沟道坝系拦沙效应模型试验研究[D].北京:清华大学,2005.
    [28]陈江南,张胜利,赵业安,等.清涧河流域水利水保措施控制洪水条件分析[J].泥沙研究,2005(1):14-20.
    [29]冉大川,左仲国,上官周平.黄河中游多沙粗沙区淤地坝拦减粗泥沙分析[J].水利学报,2006,37(4):443-450.
    [30]许炯心,孙季.无定河淤地坝拦沙措施时间变化的分析与对策[J].水土保持学报,2006,20(2):26-30.
    [31]付凌.黄土高原典型流域淤地坝减沙减蚀作用研究[D].南京:河海大学,2007.
    [32]魏霞,李占斌,李勋贵,等.大理河流域水土保持减沙趋势分析及其成因[J].水土保持学报,2007,21(4):67-71.
    [33]闫云霞,许炯心,廖建华,等.黄土高原多沙粗沙区高含沙水流发生频率的时间变化[J].泥沙研究,2007(4):27-33.
    [34]王随继,冉立山.无定河流域产沙量变化的淤地坝效应分析[J].地理研究,2008,27(4):811-818.
    [35]杨启红.黄土高原典型流域土地利用与沟道工程的径流泥沙调控作用研究[D].北京:北京林业大学,2009.
    [36]綦俊谕,蔡强国,方海燕,等.岔巴沟流域水土保持减水减沙作用[J].中国水土保持科学,2010,8(1):28-33,39.
    [37]冉大川,李占斌,张志萍,等.大理河流域水土保持措施减沙效益与影响因素关系分析[J].中国水土保持科学,2010,08(4):1-6.
    [38]谢红霞,杨勤科,李锐,等.延河流域水土保持措施减蚀效应分析[J].中国水土保持科学,2010,08(4):13-19.
    [39]许炯心.无定河流域的人工沉积汇及其对泥沙输移比的影响[J].地理研究,2010,29(3):397-407.
    [40]冉大川,王正杲,胡建军,等.基于粮食需求的黄土高原地区淤地坝建设规模与论证[J].干旱地区农业研究,2005,23(2):130-136.
    [41]付明胜,金孝华,张霞,等.浅谈坝系防洪标准低板论及其应用和计算[J].中国水土保持科学,2005,3(1):102-107.
    [42]刘世海,曹文洪,吉祖稳,等.陕西延安黄土高原地区淤地坝建设规模研究[J].水土保持学报,2005,19(5):127-130.
    [43]何兴照,史丹,陈刚,等.一种基于效益最大化分析的淤地坝建坝时序数学模型[J].水土保持通报,2007,27(6):71-74.
    [44]龚建华,李亚斌,王道军,等.地理知识可视化中知识图特征与应用——以小流域淤地坝系规划为例[J].遥感学报,2008,12(2):355-361.
    [45]徐向舟,张红武,许士国,等.建坝顺序对坝系拦沙效率影响的试验研究[J].北京林业大学学报,2009,31(1):139-144.
    [46]朱连奇,史学建,韩慧霞.影响淤地坝建设的地理要素——以黄河中游多沙粗沙区为例[J].地理研究,2009,28(6):1625-1632.
    [47]蒋耿民,李援农,魏小抗,等.淤地坝坝系布设方案的模糊综合评判[J].干旱地区农业研究,2010,28(2):150-154.
    [48]方学敏,曾茂林.黄河中游淤地坝坝系相对稳定研究[J].泥沙研究,1996,9(3):13-21.
    [49]范瑞瑜.黄土高原坝系工程的相对稳定性[J].中国水土保持科学,2005,3(3):103-109.
    [50]曹文洪,胡海华,吉祖稳.黄土高原地区淤地坝坝系相对稳定研究[J].水利学报,2007,38(5):606-610.
    [51]刘卉芳,曹文洪,王向东,等.基于混沌神经网络的流域坝系稳定性分析[J].水土保持通报,2011,31(3):131-135.
    [52]王晓燕,陈洪松,田均良,等.侵蚀泥沙颗粒中137Cs的含量特征及其示踪意义[J].泥沙研究,2005,4(2):61-65.
    [53]魏霞,李占斌,李勋贵,等.基于灰关联的坝地分层淤积量与侵蚀性降雨响应研究[J].自然资源学报,2007,22(5):842-850.
    [54]管新建,李占斌,李勉,等.基于BP神经网络的淤地坝次降雨泥沙淤积预测[J].西北农林科技大学学报(自然科学版),2007,35(9):221-225.
    [55]张信宝,温仲明,冯明义,等.应用137Cs示踪技术破译黄土丘陵区小流域坝库沉积赋存的产沙记录[J].中国科学D辑地球科学,2007,37(3):405-410.
    [56]李勉,杨剑锋,侯建才,等.黄土丘陵区小流域淤地坝记录的泥沙沉积过程研究[J].农业工程学报,2008,24(2):64-69.
    [57]张信宝,文安邦.黄土高原侵蚀泥沙的铯-137示踪研究[D].北京:中国科学技术出版社,1999.
    [58]龙翼,张信宝,李敏,等.陕北子洲黄土丘陵区古聚湫洪水沉积层的确定及其产沙模数的研究[J].科学通报,2008,53(24):3908-3913.
    [59]汪亚峰,傅伯杰,陈利顶,等.黄土高原小流域淤地坝泥沙粒度的剖面分布[J].应用生态学报,2009,20(10):2461-2467.
    [60]汪亚峰,傅伯杰,侯繁荣,等.基于差分GPS技术的淤地坝泥沙淤积量估算[J].农业工程学报,2009,25(9):79-83.
    [61]王国重,梅亚东,双瑞,等.豫西山区淤地坝泥沙淤积过程及流域产沙模型[J].武汉大学学报(工学版),2010,43(5):558-561.
    [62]薛凯,杨明义,张风宝,等.利用淤地坝泥沙沉积旋廻反演小流域侵蚀历史[J].核农学报,2011,25(1):115-120.
    [63]魏霞,李勋贵,李占斌,等.淤地坝对黄土高原坡沟系统重力侵蚀调控研究[J].西安建筑科技大学学报(自然科学版),2009,41(6):856-861.
    [64]于国强,李占斌,张霞,等.黄土高原坡沟系统重力侵蚀数值模拟研究[J].土壤学报,2010,47(5):809-816.
    [65]王治国,胡振华,段喜明,等.黄土残塬区沟坝地淤积土壤特征比较研究[J].土壤侵蚀与水土保持学报,1999,5(4):22-27.
    [66]李勇,白玲玉.黄土高原淤地坝对陆地碳贮存的贡献[J].水土保持学报,2003,17(2):1-4,19.
    [67]连纲,郭旭东,傅伯杰,等.黄土高原小流域土壤养分空间变异特征及预测[J].生态学报,2008,28(3):946-954.
    [68]包耀贤,吴发启,贾玉奎.黄土丘陵沟壑区坝地和梯田土壤氮素特征与演变[J].西北农林科技大学学报(自然科学版),2008,36(3):97-104.
    [69]何瑾,段义字.退耕还林还草区坝地土壤理化性状分布特征分析[J].水土保持学报,2008,22(6):104-107.
    [70]牛越先.山西省坝地土壤肥力质量评价[J].水土保持学报,2010,24(5):262-265,27.
    [71]孙文义,郭胜利.黄土丘陵沟壑区小流域土壤有机碳空间分布及其影响因素[J].生态学报,2011,31(6):1604-1616.
    [72] Lü Y H, Ran H S, Fu B J, et al. Carbon retention by check dams: Regional scale estimation[J].Ecological Engineering,2012(44):139-146.
    [73]左仲国,董增川,王好芳.淤地坝系水资源系统分析模型研究[J].河海大学学报,2001,4(29):81-83.
    [74]张红娟,延军平,周立花,等.黄土高原淤地坝对水资源影响的初步研究——以绥德县韭园沟典型坝地为例[J].西北大学学报(自然科学版),2007,37(3):475-478.
    [75]徐学选,张北赢,白晓华.黄土丘陵区土壤水资源与土地利用的耦合研究[J].水土保持学报,2007,21(3):166-169.
    [76]徐小玲,延军平,梁煦枫.无定河流域典型淤地坝水资源效应比较研究—以辛店沟、韭园沟和裴家峁为例[J].干旱区资源与环境,2008,22(12):77-83.
    [77]宋献方,刘鑫,夏军,等.基于氢氧同位素的岔巴沟流域地表水—地下水转化关系研究[J].应用基础与工程科学学报,2009,17(1):8-20.
    [78]王祖正,孙虎,延军平,等.基于ArcGIS的淤地坝土壤含水量空间变化分析[J].西北大学学报(自然科学版),2010,40(4):721-724.
    [79]黄金柏,付强,桧谷治,等.黄土高原小流域淤地坝系统水收支过程的数值解析[J].农业工程学报,2011,27(7):51-57.
    [80]郑宝明.黄土丘陵沟壑区淤地坝建设效益与存在问题[J].水土保持通报,2003,23(6):32-35.
    [81]李勋贵,魏霞,李占斌.基于系统周界模型的典型坝控流域人类活动影响[J].兰州大学学报(自然科学版),2010,46(1):1-6.
    [82]陈怀东.称钩河流域示范坝系监测设想[J].水土保持通报,2007,27(1):72-73.
    [83]马宁,朱首军,王盼.陕北大、中型淤地坝现状调查与分析[J].水土保持通报,2011,31(3):155-160.
    [84] Castillo V M, Mosch W M, Garcia C C, et al. Effectiveness and geomorphological impacts ofcheck dams for soil erosion control in a semiarid Mediterranean catchment: El Carcavo (Murcia,Spain)[J]. Catena,2007(70):416-427.
    [85] Boix-Fayos C, Barbera G G, Lopez-Bermudez F, et al. Effects of check dams, reforestation andland-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia,Spain)[J]. Geomorphology,2007(91):103-123.
    [86] Lenzi M, Comiti F. Stream bed stabilization using boulder check dams that mimic step-poolmorphology features in Northern Italy[J]. Geomorphology,2002(45):243-260.
    [87] Bombino, Tamburino V, Zimbone S M. Assessment of the effects of check-dams on riparianvegetation in the Mediterranean environment: A methodological approach and exampleapplication[J]. Ecological Engineering,2006(27):134-144.
    [88] Bombino, Gurnell A M, Tamburino V. Sediment size variation in torrents with check dams:Effects on riparian vegetation[J]. Ecological Engineering,2008(32):166-177.
    [89] Romero-Diaz A, Alonso-sarria F, Martinez-Lloris M. Erosion rates obtained from check-damsedimentation (SE Spain)[J]. Catena,2007(71):172-178.
    [90] Bellin N, Vanacker V, Wesemael B V, et al. Natural and anthropogenic controls on soil erosion inthe Internal Betic Cordillera (Southeast Spain)[J]. Catena,2011(87):190-200.
    [91] Muralidharan D, Andrade R, Rangarajan R. Evaluation of check-dam recharge throughwater-table response in ponding area[J]. Current Science,2007(92):1350-1352.
    [92] Previati M, Davide C, Bevilacqua L, et al. Evaluation of wood degradation for timber check damsusing time domain reflectometry water content measurements[J]. Ecological Engineering,2012(44):259-268.
    [93]张仁华.实验遥感模型及地面基础[M].北京:科学出版社,1996.
    [94]靳甜甜,刘国华,胡婵娟,等.黄土高原常见造林树种光合蒸腾特征[J].生态学报,2008,11(27):5759-5765.
    [95]周海光,刘广全,焦醒,等.黄土高原水蚀风蚀复合区几种树木蒸腾耗水特性[J].生态学报,2008,9(28):4569-4574.
    [96]隋旭红,张建军,周晓新,等.黄土高原主要灌木树种蒸腾特性研究[J].水土保持通报,2010,4(30):40-45.
    [97]周晓新,张建军,李轶涛.黄土高原主要水土保持树种的蒸腾特性[J].中国水土保持科学,2009,4(7):44-48.
    [98]王幼奇,樊军,邵明安,等.黄土高原地区近50年参考作物蒸散量变化特征[J].农业工程学报,2008,9(24):6-10.
    [99]樊军,邵明安,王全九.黄土区参考作物蒸散量多种计算方法的比较研究[J].农业工程学报,2008,3(24):98-102.
    [100]刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社,1996.
    [101] Brown K W, Rosenberg N J. A resistance model to predict evapotranspiration and its applicationto a sugar beet field[J]. Agronomy Journal,1973(65):199-209.
    [102] Idso S B, Jackson R D, Reginato R J. Estimating evaporation: a technique adaptable to remotesensing[J]. Science,1975(189):991-992.
    [103] Suguin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellitethermal IR data[J]. International Journal of Remote Sensing,1983,2(4):371-383.
    [104] ShuttleworthW J, Gurney R J. The theoretical relationship between foliage temperature andcanopy resistance in sparse crop[J]. Quarterly Journal of the Royal Meteorological Soci,1990(116):497-519.
    [105] Roerink G J, Menenti M. S-SEBI: A simple remote algorithm to estimate the surface energybalance[J]. Physics and Chemistry of the Earth(B),2000,25(2):147-157.
    [106] Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balancealgorithm for land (SEBAL):Part1Formulation[J]. Journal of Hydrology,1998(212/213):198-212.
    [107] Su Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes[J].Hydrology and Earth System Sciences,2002,6(1):85-99.
    [108] Bastiaanssen W G M. SEBAL-Based Sensible and Latent Heat Fluxes in the Irrigated GedizBasin,Turkey[J]. Journal of Hydrology,2000,229(1/2):87-100.
    [109] Bastiaanssen W G M, Ahmad M D, Chemin Y. Satellite Surveillance of evaporative DepletionAcross the Indus Basin[J]. Water Resources Research,2002,38(12):1273-1282.
    [110] Tasumi M, Allen R G, Trezza R, et al. Use of SEBAL to Assess the Band Width of CropCoefficient Curves in Idaho[J]. ASCE Journal of Irrigation and Drainage Engineerin,2005(131):94-109.
    [111] Wang J, Bastiaanssen W G M, Ma Y, et al. Aggregation of Land Surface Parameters in theOasis-Desert Systems of Northwest China[J]. Hydrologic Process,1998,12(13):2133-2147.
    [112]吴炳方,邵建华.遥感估算蒸腾蒸发量的时空尺度推演方法及应用[J].水利学报,2006,37(3):286-292.
    [113]高彦春,龙笛.遥感蒸散发模型研究进展[J].遥感学报,2008,12(3):515-528.
    [114]何长高,董增川,石景元,等.水土保持的水文效应分布式模拟[J].水科学进展,2009,20(4):584-589.
    [115] Huang Y L, Chen L D, FU B J. Evaportranspiration and Soil Moisture Balance for VegetativeRestoration in a Gully Catchment on the Loess Plateau, China[J]. Pedosphere,2005,4(15):509-517.
    [116] Morse A, Tasumi M, Allen R G, et al. Application of the SEBAL Methodology for EstimatingConsumptive Use of Water and Streamflow Depletion in the Bear River Basin of Idaho ThroughRemote Sensing.[R].Idaho Department of Water Resources and University of Idaho,2000.
    [117] Bastiaanssen W G M, Pelgrum H, J W, et al. A remote sensing surface energy balance algorithmfor land (SEBAL):Part2Validation[J]. Journal of Hydrology,1998(212/213):213-229.
    [118] NASA. Landsat7Science Data Users Handbook[M/OL]. http://www.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html.
    [119] Van de Griend A A, Owe M. On the relationship between thermal emissivity and the normalizeddifference vegetation index for natural surfaces[J]. International Journal of Remote Sensing,1993,6(14):1119-1131.
    [120]陈强,苟思,严登华,等.基于SEBAL模型的区域ET计算及气象参数敏感性分析——以天津市为例[J].资源科学,2009,31(8):1303-1308.
    [121] Dansgaard W. The abundance of18O in atmospheric water and water vapor[J]. Tellus,1953,5(4):461-469.
    [122] Epstein S., Mayeda T. K. Variations of the18O/16O ratio in natural waters[J]. Geochimica etCosmochimica Acta,1953(4):213-220.
    [123] Friedman I. Deuterium content of natural waters and other substances[J]. Geochimica etCosmochimica Acta,1953(4):89-103.
    [124] Mook W G. Envronmental isotopes in the hydrological cycle[M]. Paris: UNES-CO,2000.
    [125] Craig H. Isotope variations in meteoric waters[J]. Seience,1961(133):1702-1703.
    [126] Yurtsever Y. Worldwide survey of stable isotopes in precipitation[R].IAEA,1975.
    [127] Friedman I, Smith G I. Deuterium content of snow cores from Sierra Nevada area[J]. Science,1970(169):467-470.
    [128] Gat J R. Oxygen and hydrogen isotopes in the hydrological cycle[J]. Annual Review of Earth andPlanetary Science,1996(24):225-262.
    [129]黄天明,聂中青,袁利娟.西部降水氢氧稳定同位素温度及地理效应[J].干旱区资源与环境,2008,22(8):76-81.
    [130]侯士彬,宋献方,于静洁,等.太行山区典型植被下降水入渗的稳定同位素特征分析[J].资源科学,2008,30(1):86-92.
    [131]陆宝宏,孙营营,马乐军,等.利用同位素质量守恒原理估算太湖河网受水量[J].河海大学学报(自然科学版),2009,37(6):645-649.
    [132]尹观,范晓,郭建强,等.四川九寨沟水循环系统的同位素示踪[J].地理学报,2000,55(4):487-494.
    [133]高建飞,丁悌平,罗续荣,等.黄河水氢、氧同位素组成的空间变化特征及其环境意义[J].地质学报,2011,85(4):596-602.
    [134] Dansgaard W. Stable isotopes in Precipitation[J]. Tellus,1964,16(4):436-468.
    [135] Clark I D, Fritz P. Environmental Isotopes in Hydrology[M]. New York: Lewis Publishers,1997.
    [136] Cho S H, Moon S H, Lee K S, et al. Hydrograph separation using18O tracer in a small catchment,Cheongdo[J]. Journal of the Geological Society of Korea,2003,39(4):509-518.
    [137] Huth A K, Leydecker A, Sichman J O, et al. A two-component hydrograph separation for threehigh-elevation catchments in the Sierra Nevada, California[J]. Hydrological Processes,2004(18):1721-1733.
    [138] Buttle J M. Isotope hydrograph separations and rapid delivery of prevent water from drainagebasins[J]. Progress in Physical Geography,1994(18):16-41.
    [139]顾慰祖.利用环境同位素及水文实验研究集水区产流方式[J].水利学报,1995(5):9-17,24.
    [140]吴锦奎,丁永建,王根绪,等.同位素技术在寒旱区水科学中的应用进展[J].冰川冻土,2004,26(4):509-516.
    [141]章新平,姚檀栋.利用稳定同位素比率估计湖泊的蒸发[J].冰川冻土,1997,19(2):67-72.
    [142] Jean C C, Hsiesh, Oliver A, et al. Oxygen isotopic composition of soil water: quantifyingevaporation and transpiration[J].1998,82:269-293.
    [143] Davisson M L. Isotope hydrology of Southern Nevada groundwater: Stable isotopes andradiocarbon[J]. Water Resource Research,1999,35(1):279-294.
    [144] Williams A E, Daniel P R. Regional isotope effects and application to hydrologic investigations inSouthwest California[J]. Water Resources Research,1997,33(7):1721-1729.
    [145]陈中笑,程军,郭品文.中国降水稳定同位素的分布特点及其影响因素[J].大气科学学报,2010,6(23):667-679.
    [146] Zhao P, Shao M, Zhuang J. Fractal features of particle size redistributions of deposited soils onthe dam farmlands [J]. Soil Science,2009,174:403-407.
    [147]景可,师长兴.流域输沙模数与流域面积关系研究[J].泥沙研究,2007,1:17-23.
    [148]邹兵华.黄土高原小流域淤地坝控制坡沟系统土壤侵蚀的作用研究[D].西安:西安理工大学,2009.
    [149]于国强,李占斌,李鹏,等.黄土高原小流域重力侵蚀数值模拟[J].农业工程学报,2009,25(12):74-79,插1.
    [150]李铁键,王光谦,张成,等.黄土沟壑区流域重力侵蚀模拟[J].天津大学学报,2008,41(9):1136-1141.
    [151]张梁,张业成.地质灾害灾情评估理论与实践[M].北京:地质出版社,1998.
    [152]武利,张万昌,张东,等.基于遥感与地理信息系统的分布式斜坡稳定性定量评估模型[J].地理科学,2004,24(4):458-464.
    [153] Sidle R C, Pearce A J, O'Loughlin C L. Hillslope Stability and Land Use[M].11. Washington, DC:American Geophysical Union,1985.
    [154] Carrera A M, Cardinali M, Detti R, et al. GIS Techniques and statistical models in evaluatinglandslide hazard[J]. Earth Surface Processes and Landforms,1991,16(5):427-445.
    [155] Dietrich W E, Wilson C J, Montgomery D R, et al. Erosion thresholds and land surfacemorphology[J]. Geology,1992,20(8):675-679.
    [156] Sidle R. A Theoretical model of the effects of timber harvesting on slope stability[J]. WaterResources Research,1992,28(7):1897-1910.
    [157] Dietrich W E, Wilson C J, Montgomery D R, et al. Analysis of erosion thresholds, channelnetworks, and landscape morphology using a digital terrain model[J]. The Journal of Geology,1993,101(2):259-278.
    [158] Moore I D, Grayson R B, Landson A R. Digital terrain modeling: A review of hydrological,geomorphologic, and biological application[J]. Hydrological Processes,1991,5(1):3-30.
    [159] Montgomery D R, Dietrich W E. A Physically Based Model for the Topographic Control onShallow Landsliding[J]. Water Resources Research,1993,30(4):1153-1171.
    [160] Wu W, Sidle R C. A distributed slope stability model for steep forested watersheds[J]. WaterResources Research,1995,31(8):2097-2110.
    [161] Pack R T, Tarboton D G, Goodwin C N. The SINMAP approach to terrain stabilitymapping:Proceedings of8th Congress of the International A,1998[C]. A.A. Balkema Publishers.
    [162] Lan H X, Wu F Q, Zhou C. Predict the crisis of rainfall-induced landslides based on GIS[J].Chinese Science Bulletin,2003,5(48):507-512.
    [163] Dietrich E W, Reisss R, Hsu M L, et al. A process-based model for colluvial soil depth andshallow landsliding using digital elevation data[J]. Hydrological Processes,1995,9(3):383-400.
    [164] Hutchinson M F. New procedure for gridding elevation and stream line data with automaticremoval of spurious pits[J]. Journal of Hydrology,1989,106(3/4):211-232.
    [165]唐克丽.中国水土保持[M].1.北京:科学出版社,2004.
    [166]吴发启,张玉斌,宋娟丽,等.水平梯田环境效应的研究现状及其发展趋势[J].水土保持学报,2003,17(5):28-31.
    [167]焦菊英,王万中,李靖.黄土丘陵区不同降雨条件下水平梯田的减水减沙效益分析[J].水土保持学报,1999,5(3):59.
    [168]吴发启,张玉斌,王健.黄土高原水平梯田的蓄水保土效益分析[J].中国水土保持科学,2004,2(1):34-37.
    [169]康玲玲,鲍宏喆,刘立斌,等.黄土高原不同类型区梯田蓄水拦沙指标的分析与确定[J].中国水土保持科学,2005,3(2):51-56.
    [170]孙濡泳,李博,诸葛阳,等.普通生态学[M].北京:高等教育出版社,1993.
    [171] Renard K G, Freimund J R. Using monthly precipitation data to estimate the R-factor in therevised USLE[J]. Journal of hydrology,1994(174):287-306.
    [172] Yu B, Rosewell C J. A robust estimator of the R-factor for the universal soil loss equation[J].Transactions of the ASAE,1996(39):559-561.
    [173] Ferro V, Porto P, B Y. A comparative study of rainfall erosivity estimation for southern Italy andsoutheastern Australia[J]. Hydrological Sciences Journal,1999(44):3-24.
    [174] Richardson C W, Foster G R. Estimation of erosion index from daily rainfall amount[J].Transactions of the ASAE,1983(26):153-156.
    [175]章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002,22(6):705-711.
    [176]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997.
    [177] Sharpley A N, Williams J R. EPIC-erosion/productivity impact calculator:1. Modeldocumentation[M]//US Department of Agriculture Technical Bulletin. Washington D.C.: USDepartment of Agriculture,1990.
    [178] McCool D K, Foster L G B G, Al. E. Revised slope steepness factor for the Universal Soil LossEquation[J]. Transactions of the ASAE,1987(30):1387-1396.
    [179] Liu Y B, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes[J].Transactions of the ASAE,1994,37(6):1835-1840.
    [180]党维勤,王晓,马三保.黄土高原小流域坝系监测方法及评价系统研究[M].郑州:黄河水利出版社,2008.
    [181]刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
    [182] Liu B Y, Nearing M A, Jun S P. Slope Length Effects on Soil Loss for Steep Slopes[J]. SoilScience Society of American Journal,2000,64(5):226-228.
    [183]张岩,刘宝元,史培军,等.黄土高原土壤侵蚀作物覆盖因子计算[J].生态学报,2001,21(7):1050-1056.
    [184]贾燕锋.陕北典型小流域立地-群落-土壤侵蚀量的对应模拟研究[D].北京:中国科学院研究生院,2011.
    [185]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9.
    [186]郭忠升.黄土高原半干旱区水土保持植被恢复限度——以人工柠条林为例[J].中国水土保持科学,2009,7(4):49-54.
    [187]焦菊英,王万中,李靖.黄土高原林草水土保持有效盖度分析[J].植物生态学报,2000,24(5):608.
    [188]张光辉,梁一民.植被盖度对水土保持功效影响的研究综述[J].水土保持研究,1996,3(2):104-110.
    [189] Zhang Y, Liu B, Zhang Q. Effect of different vegetation types on soil erosion by water[J]. ActaBotanica Sinica,2003,10(45):1204-1209.
    [190]侯喜禄,邹厚远.安塞县水土保持实验区植被及减沙效益调查报告[J].泥沙研究,1987(4):98-102.
    [191]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1-20.
    [192]林和平.水平沟耕作在不同坡度上的水土保持效应[J].水土保持学报,1993,7(2):63-69.
    [193]袁希平,雷廷武.水土保持措施及其减水减沙效益分析[J].农业工程学报,2004,20(2):296-300.
    [194] Van Remortel R, Hamilton M, Hicky R. Estimating the LS factor for RUSLE through iterativeslope length processing of digital elevation data[J]. Cartography,2001,30(1):27-35.
    [195]谢旺成,李天宏.流域泥沙输移比研究进展[J].北京大学学报(自然科学版),2012,4(48):685-694.
    [196]刘世梁,王聪,张希来,等.土地整理中不同梯田空间配置的水土保持效应[J].水土保持学报,2011,25(4):59-62,68.
    [197]李兰,周忠浩,刘刚才.容许土壤流失量的研究现状及其设想[J].地球科学进展,2005,20(10):1127-1134.
    [198]苏春丽,梁音,李德成,等.红壤区小流域治理度的概念与评价方法[J].土壤,2011,43(3):466-475.
    [199]黄河上中游管理局.淤地坝试验研究[M].北京:中国计划出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700