地基GNSS层析对流层水汽若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对地基GNSS技术层析对流层水汽场中的三个关键问题进行了研究。分别为探空数据缺乏地区大气加权平均温度Tm(Weighted Mean Temperature of Atmosphere)本地化模型的建立,迭代法代数重构技术解算层析方程的适用性和北斗+GPS卫星信号融合层析对流层水汽场。
     1.针对探空资料缺乏地区本地化加权平均温度经验公式无法建立的问题,研究了利用克吕金插值方法和再分析资料ERA-interim建立Tm-Ts(地面温度)经验公式的可行性,分析了分季节和全年Tm-Ts模型基本无差异的原因。研究发现Bevis模型在中国东北部和青藏高原地区较本地化模型更适用,且克吕金插值方法和再分析资料ERA-interim均可有效建立Tm一Ts本地化模型。
     2.针对最小二乘法LSM (Least Squares Method)解算层析方程存在巨型稀疏矩阵求逆困难,数据难以组织,输入值的微小变化易引起结果震荡等缺点,研究了迭代法代数重构技术ART (Algebraic Reconstruction Techniques)解算层析方程的适用性。已有基于斜路径湿延迟SWD (Slant Wet Delay)计算的评价参数δ和σ仅反映被斜路径穿过的格点精度,论文增加了基于整体格网层析结果的Bias和RMS评价参数,其较δ和σ参数能更全面地反映层析结果精度。基于δ, σ, Bias和RMS参数研究了迭代法乘法代数重构技术MART (Multiplicative Algebraic Reconstruction Techniques)解算层析方程时初始场、格网模型和高斯约束对层析结果的影响。研究表明初值误差越小,层析结果精度越高;采用基础格网模型和高斯内插可提高层析结果精度。基于模拟方法对MART和LST解算层析方程进行了比较,结果表明MART层析结果较LSM方法稳定。
     3.针对中国北斗导航卫星系统COMPASS (BeiDou Navigation Satellite System)当前蓬勃发展现状(已为亚太区域提供正式运行服务,截止2012年12月26日天上在轨卫星数已达16颗),研究了基于单北斗信号层析对流层水汽场的可行性和COMPASS+GPS信号融合对水汽场层析的改善效果。研究发现因COMPASS系统当前在轨卫星主要覆盖中国及周边地区,对于深圳香港GNSS实验网而言,使用到的九颗北斗卫星(PC01,PC03,PC04,PC05,PC06,PC07,PC08,PC09,PC10)可达到与现有GPS导航系统相当的有效信息量,大部分时段下,基于单北斗系统层析结果精度优于单GPS系统;当地面站点充分时,融合COMPASS+GPS信号对层析结果精度改善作用不明显。
Aiming at the key problems that need to be solved in tropospheric water vapor tomography, the article makes studies on the set up of local model for weighted mean temperature of the atmosphere for areas lack of soundings data, the usability of MART for solution of tomography equations, and the fusion of signals from COMPASS and GPS navigation satellite systems for water vapor detecting.
     1. To solve the problem that the empirical formula of Tm-Ts cannot be set up for areas lack of soundings data, the Kridging interpolation method and reanalysis data ERA-interim have been developed respectively, the reason for no difference between the precison of seasonal and year Tm-Ts model is analized. The studies show that the Bevis Tm-Ts model is more suitable than local model in northeastern China and Qinghai-Tibet Plateau, furthermore both the Kridging interpolation method and reanalysis data ERA-interim are effective in the setting up of local Tm-Ts model for areas lack of soundings data.
     2. To avoid the trouble of matrix inversion and data organization in LSM, the paper discusses the usability of MART for solution of tomography equations. The existing δ and σ parameters calculated from slant wet delay can only evaluate the precision of the voxels penetrated by slant paths. The paper adds two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to evaluate the precision of total grid more comprehensively than δ and σ. The paper discusses the effect of the initial field, grid model and Gaussian interpolation in MART on the tomography results based on δ,σ, Bias and RMS. The studies show that in order to obtain good tomography results, initial value should be obtained with accuracy as high as possible, good grid model containing more SWDs with high elevation angle should be designed and Gaussian interpolation method can be used to update the wet refractivity of voxels not penetrated by any SWD. The comparision between MART and LSM is given, indicating that the MART can achieve more stable tomography results than LSM judging from σand RMS.
     3. Chinese COMPASS satellite navigation system has been providing regional formal service for China and surrounding areas at the beginning of2013. By the end of August15,2012there are13on-orbit satellites. The improvement effect of infusion COMPASS+GPS signal on tropospheric wet refractivity tomography result and the feasibility of pure COMPASS system for tropospheric wet refractivity tomography are discussed for the first time. The findings show that because the now on-orbit COMPASS GEO and IGSO satellites are mainly covering China and surrounding areas, the effective SWDs from nine COMPASS satellites (PC01,PC03,PC04,PC05,PC06,PC07,PC08,PC09,PC10) are comparative to that from GPS. Infusion COMPASS+GPS signals can not improve the tomography result for Shenzhen and Hongkong GNSS network, and the precision of tomography result only using COMPASS signals is superior to that using GPS.
引文
[1]选自《灾难医学》.重识暴雨洪涝的严重灾难[N].北京晚报,2012年7月27日
    [2]吴歆.水旱灾害对中国造成的影响居各类自然灾害之首[N].中国新闻网,2009年5月6日
    [3]余荣华.北京通报7.21暴雨特大灾害,经济损失116.4亿[N].中国新闻网,2012年7月25日
    [4]Liu J, Sun Z, Liang H, et al. Precipitable water on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget [J]. J Geophys Res.,2005,110(D17106)
    [5]Bevis M, Businger S, Herring T A, et al. GPS meteorology:Remote sensing of atmospheric water vapor using the Global Positioning System [J]. J. Geophys. Res.,1992(97):15,787-15,801
    [6]李黄.GPS和GPS/MET--全球定位系统气象参数探测(GPS/MET)技术[N].中国气象报,2006年3月30号
    [7]Braun J, Rocken C, and Ware R. Validation of line-of-sight water vapor measurements with GPS[J]. Rad. Sci.,2001(36):459-472
    [8]Flores A, Ruffini G, and Rius A.4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophys-icae,2000,18(2):223-234
    [9]Rocken C, Ware R, Van Hove T,et al. Sensing atmospheric water vapor with the Global Positioning System[J]. Geophys. Res. Lett.,1993(20):2631-2634
    [10]Rocken C, Van Hove T, Johnson J M, et al. GPSISTORM:GPS sensing of atmospheric water vapor for meteorology[J]. J. Atmos. Oceanic Technol.,1995(12):468-478
    [11]Rocken C, Van Hove T, and Ware R H. Near real-time GPS sensing of atmospheric water vapor[J]. Geophys. Res.Eett.,1997(24):3221-3224
    [12]Alber C, Ware R H, Rocken C, et al. Inverting GPS double differences to obtain single path phase delays[J]. Geophys. Res. Lett.,2000(27):2661-2664
    [13]Elosegui P and Davis J. Accuracy assessment of GPS slant-path determinations[C]. In:Proceedings of the International Workshop on GPS Meteorology, Tsukuba, Japan.2003,14-17 Jan 2003(eds. T. Iwabuchi and Y. Shoji)
    [14]Eresmaa R and Jarvinen H. An Observation operator for ground based GPS slant delays[J], Tellus A.2006,58 (1):131-140
    [15]Hirahara K. Local GPS tropospheric tomography[J]. Earth Planets Space,2000,52(11):935-939
    [16]Nilsson T and Gradinarsky L. Water vapor tomography using GPS phase observations:simulation results[C]. IEEE Trans. Geosci. Remote Sens,2006,44(10 Part 2):2927-2941
    [17]Bender M, Dick G, Wickert J, et al. Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications[J]. J. Geophys. Res.,2009,114(D06303)
    [18]Rohm W, amd Bosy J. Local tomography troposphere model over mountains area[J]. Atmospheric Research,2009,93(4):777-783
    [19]Rohm W and Bosy J. The verification of GNSS tropospheric tomography model in a mountainous area[J]. Advances in Space Research,2011,47(10):1721-1730
    [20]Gutman SI and Benjamin S G. The role of ground-based GPS meteorological observations in numerical weather prediction [J]. GPS Solutions,2001(4):16-24
    [21]Vedel H. Final report for the TOUGH project. In:H. Vedel (Co-ordinator), Targeting Optimal use of GPS Humidity Measurements in Meteorology[C], EVG1-CT-2002-00080,6th Periodic Report,1 February 2003-31 January 2006, Section 6,http://tough.dmi.dk
    [22]Gutman S I, Sahm S R, Benjamin S G, et al. Rapid retrieval and assimilation of ground based GPS precipitable water observations at the NOAA forecast systems laboratory:Impact on weather forecasts[J]. J. Meteorol. Soc. Jpn.,2004(82):351-360
    [23]Dousa J. The impact of errors in predicted GPS orbits on zenith troposphere delay estimation[J]. GPS Solutions,2010,14(3):229-239
    [24]Bosy J, Rohm W, and Siemy J. The concept of the near real time atmosphere model based on the GNSS and the meteorological data from the ASG-EUPOS reference stations[J]. Acta Geodyn. Geomater., 2010,7(3):253-261
    [25]Bender M, Dick G, Ge M, et al. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques [J]. Adv. Space Res.,2011,47(10):1704-1720
    [26]Jin S G and Luo O F. Variability and climatology of PWV from global 13-year GPS observations[C]. IEEE Trans. Geosci. Remote Sens.,2009,47 (7):1918-1924
    [27]Kuo Y H, Zou X, and Guo Y R. Variational assimilation of precipitable water using a non-hydrostatic mesoscale adjoint model[J]. Mon.Weather Rev.,1996(124):122-147
    [28]Guo Y R, Kuo Y H, Dudhia J, et al. Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case[J]. Mon. Weather Rev.,2000(128):619-643
    [29]Champollion C, Masson F, Bouin M N, et al. GPS water vapor tomography:first results from the ESCOMPTE Field Experiment[J], Atmos. Res.,2005(74):253-274
    [30]Rohm W. The precision of humidity in GNSS tomography[J]. Atmospheric Research,2012(107):69-75
    [31]Niell A E. Preliminary evaluation of atmospheric mapping functions based on Numerical Weather Models[J]. Phys Chem Earth (A),2001,26(6/8):475-480
    [32]Jarlemark P J, Emardson T R, and Johansson J M. Wet delay variability calculated from radiometric measurements and its role in space geodetic parameter estimation[J]. Radio Sci.,1998(33):719-730
    [33]Bohm J and Schuh H. Troposphere gradients from the ECMWF in VLBI analysis[J]. Journal of Geodesy,2007,81(6-8):409-421
    [34]Cove K and Santos M. Initial results and future goals for the Princess of Acadia project[C].Presentation for Real-Time Kinematic GPS Navigation for Hydrography Surveys and Seamless Vertical Datums Workshop, Long Beach,Mississippi, USA,16-18 March 2004
    [35]Cove K. Improvements in GPS tropospheric delay estimation with Numerical Weather Prediction[D]. M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report No.230, University of New runswick, Fredericton, New Brunswick, Canada,2005:98
    [36]Wells D, Bisnath S, Howden S, et al. Prospects for Extended-Range Marine PPK[C]. International Navigation Conference MELAH A, Cairo, Egypt,2004:13-15
    [37]Nilsson T, Gradinarsky L and Elgered G. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment[J]. Tellus A,2007,59(5):674-682
    [38]Miidla P, Rannat K and Uba P. Tomographic approach for tropospheric water vapor detection[J]. Computational Methods in Applied Mathematics,2008,8(3):263-278
    [39]Niell A E. Improved atmospheric mapping functions for VLBI and GPS[J]. Earth Planets Space, 2000(52):699-702
    [40]Davis J L, Herring T A, Shapiro 11, et al. Geodesy by radio interferometry:Effects of atmospheric modeling errors on estimates of baseline length[J]. Radio Science,1985(20):1593-1607
    [41]Niell A E. Global mapping functions for the atmosphere delay at radio wavelengths[J]. J.Geophys. Res., 1996(100):3227-3246
    [42]Bohm J and Schuh H. Vienna Mapping Functions in VLBI analyses[J]. Geophys. Res. Lett.2004, 31(1):L01603,DOI:10.1029/2003GL018984
    [43]Bohm J, Werl B and Schuh H. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data[J]. Journal of Geophysical Research,2006,111(B02406):35
    [44]Bohm J, Niell A, Tregoning P, et al. Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters,2006,33(L07304)
    [45]Bohm J, Heinkelmann R and Schuh H. Short Note:A global model of pressure and temperature for geodetic applications[J]. Journal of Geodesy,2007, doi:10.1007/s00190-007-0135-3
    [46]Bohm J, Mendes Cerveira P J, Schuh H, et al. The impact of mapping functions for the neutral atmosphere based on numerical weather models in GPS data analysis[J]. IAG Symposium Series, 2007(130):837-843
    [47]张双成,叶世榕,刘经南等.动态映射函数最新进展及其在GNSS遥感水汽中的应用研究[J].武汉大学学报:信息科学版,2009,34(3):280-283
    [48]Lanyi G. Tropospheric delay effects in radio interferometry[R]. TDA Progress Report 42-78, vol. April-June 1984, Jet Propulsion Laboratory, Pasadena, California,1984:152-159
    [49]Ifadis I. The atmospheric delay of radio waves:modeling the elevation dependence on a global scale[R]. Technical Report No.38L, School of Electrical and Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden.1986
    [50]Herring T A. Modeling atmospheric delays in the analysis of space geodetic data[C], in Symposium on Refraction of Transatmospheric Signals in Geodesy, J. C. DeMunk and T. A. Spoelstra, eds., Netherlands Geodetic Commission,1992(36):157-164
    [51]De Haan S and van der Marel H. The influence on GPS estimates of NWP derived mapping functions[J]. Phys. and Chem. of the Earth,2002(29):159-166
    [52]李建国,毛节泰,李成才.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析[J].气象学报,1999,57(3):283-292
    [53]刘旭春,王艳秋,张正禄等.地基GPS遥感大气水汽含量中加权平均温度获取方法的比较分析[J].北京建筑工程学院学报,2006,22(2):3840
    [54]王勇,柳林涛,郝晓光等.武汉地区GPS气象网应用研究[J].测绘学报,2007,36(2):141-145
    [55]吕弋培,殷海涛,黄丁发等.成都地区大气平均温度建模及其在GPS/PWV计算中的应用研究[J].测绘科学,2008,33(4):103-105
    [56]岳迎春,陈春明,俞艳.GPS技术遥感南极大气水含量的研究[J].测绘科学,2008,33(5):81-84
    [57]于胜杰,柳林涛.水汽加权平均温度回归公式的验证与分析[J].武汉大学学报.信息科学版,2009,34(6):741-744
    [58]李国翠,李国平,杜成华等.华北地区地基GPS水汽反演中加权平均温度模型研究[J].南京气象学院学报,2009,32(1):81-86
    [59]Gradinarsky L G. Sensing Atmospheric Water Vapor Using Radio Waves[D], Ph.D. thesis, Chalmers. University of Technology, Technical report,2002,No.436
    [60]Gradinarsky L and Jarlemark P. GPS tomography using the permanent network in Goteborg: simulations[C],Proceedings of IEEE Positioning, Location and Navigation Symposium, Palm Springs, CA,15-18 April,2002:128-133
    [61]Stolle C. Three-dimensional imaging of ionospheric electron density fields using GPS observations at the ground and onboard the CHAMP satellite[D], Ph.D. Thesis, University Leipzig, Institute fur Meteorologie,2004
    [62]Stolle C, Schluter S, Heise M, et al. A GPS based three-dimensional ionospheric imaging tool:process and assessment[J]. Adv. Space Res.2006,38(11),2313-2317, doi:10.1016/j.asr.2006.05.016
    [63]Jin S, Luo O, and Park P. GPS observations of the ionospheric F2-layer behavior during the 20th November 2003 geomagnetic storm over South Korea[J]. Journal of Geodesy,2008,82(12):883-892
    [64]王维,王解先.基于代数重构技术的对流层水汽层析[J].计算机应用,2011,31(11):3149-3156
    [65]Notarpietro R, Cucca M, Gabella M, et al. Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks[J], Advances in Space Research,2011(47):898-912
    [66]宋淑丽.地基GPS网对水汽3维分布的监测及其在气象学中的应用[D].中国科学院上海天文台博士学位论文.2004
    [67]Perler D, Geiger A, and Hurter F.4D GPS water vapor tomography:new parameterized approaches[J]. Journal of Geodesy,2011,85(8):539-550
    [68]Gelb A (ed.), Applied Optimal Estimation[M], MIT Press, Cambridge, MA,1984
    [69]毕研盟,杨光林,聂晶.基于Kalman滤波的GPS水汽层析方法及其应用[J].高原气象,2011,30(1):109-114
    [70]Chevalier J, Bruyninx C, and Legrand J. Assessing the added-value of dense GNSS networks and multi-GNSS observations for tomographic applications[J]. EGU General Assembly,2010:10538
    [71]Lei Y, Elmas Z, and Hill C. An innovative approach for atmospheric error mitigation using new GNSS signals [J]. Journal of Navigation,2011(64):S211-S232
    [72]Bender M, Stosiusa R, Zusa F, et al. GNSS water vapour tomography-Expected improvements by combining GPS, GLONASS and Galileo observations[J]. Adv. Space Res.,2011,47(5):886-897
    [73]Foster J, Bevis M, and Businger. GPS meteorology:sliding-window analysis[J]. Journal of Atmospheric and Oceanic Technology, AMS,2005(22):687-695
    [74]Walpersdorf A E, Calais J, Haase L, et al. Atmospheric gradients estimated by GPS compared to a high resolution numerical weather prediction (NWP) model[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy,2001,26(3),147-152
    [75]刘光孟,汪云甲,张海荣等.空间分析中几种插值方法的比较[J].地理信息世界,2011(3):41-45
    [76]Wen D B, Liu S ZH, and Tang P Y. Tomographic reconstruction of ionospheric electron density based on constrained algebraic reconstruction technique[J]. Journal of GPS Solution,2010,14(4):251-258
    [77]Liu S ZH, Wang J X, and Gao J Q.Inversion of ionosphere electron density based on a constrained simultaneous iteration reconstruction technique[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(6):2455-2459
    [78]Das S K and Shukla A K. Two-dimensional ionospheric tomography over the low-latitude Indian region:An intercomparison of ART and MART algorithms[J]. Radio Science,2011,46, RS2005, doi:10.1029/2010RS004350
    [79]马俊,唐诗华,黄鹰等.基于IGS精密星历的卫星位置内插方法比较[J],城市勘测,2011年第5期:89-93
    [80](美)史奈德(Schneider, P.J.)等著,周长发译.计算机图形学几何工具算法详解[M],电子工业出版社,2005.1
    [81]邓晓斌.基于ArcGIS两种空间插值方法的比较[J].地理空间信息,2008,6(6):85-87
    [82]周江文.经典误差理论与抗差估计[J].测绘学报,1989,18(2):115-118
    [83]周江文.越组约化理论,误差理论[M].测绘出版社,1979
    [84]施闯,赵齐乐,李敏等.北斗卫星导航系统的精密定轨与定位研究[J].中国科学:地球科学,2012,42(6):854-861
    [85]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005
    [86]隋立芬,许其凤.GPS数据处理中IGS基准站的选取[J].测绘学院学报,2003,20(1):1-3
    [87]Gao Y, Chen K ZH. Performance analysis of precise point positioning using real-time orbit and clock products[J]. Journal of Global Positioning Systems,2010,3(1-2):95-100
    [88]Dach R, Hugentobler U, Meindl M, et al. The Bernese GPS software version 5.0[M]. Astronomical Institute, University of Bern,2007
    [89]Lkir-Sever Y E, Kroger P M, and Borjesson J A. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver[J]. J.Geophys. Res.,1998,103:5019-5035
    [90]毕研盟,毛节泰,刘晓阳等.应用地基GPS遥感倾斜路径方向大气水汽总量[J].地球物理学报,2006,49(2):335-342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700