华北平原冬小麦群体优化设计和养分效应评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为构建冬小麦优化的群体生长过程及定量不同生长阶段氮磷钾养分对物质生产的效应,本研究在2009-2011和2012-2013年冬小麦生长季,以冬小麦品种“石麦15”为研究对象,通过不同的播期、密度、灌溉以及施肥量,构建了不同的冬小麦生长状态和养分吸收群体,通过群体相关指标的测定及气象数据的记录,研究了干物质积累过程、叶面积指数(LAI)动态过程及养分吸收过程的特征参数,并建立了基于群体动态变化特征参数的产量形成模型,在此基础上探索了一种以产量为目标函数的群体最优生长动态过程的设计方法。根据不同处理的养分(氮、磷、钾)吸收量和物质积累的差异,在BLUP方法的基础上,建立了不同生长阶段养分效应评价方法。主要的研究结果如下:
     1.应用数学模型分析了冬小麦群体动态变化特征。logistic模型能较好地描述基于相对积温的干物质和养分的动态积累过程,不同的参数组合代表不同的生长曲线。利用logistic模拟的干物质最大增加速率出现的时间为孕穗-开花期,物质快速积累的时间段为拔节-花后20天;氮、磷、钾素的最大吸收速率出现的时间分别为拔节-孕穗期、拔节-开花期、拔节-孕穗期,氮、磷、钾快速积累的时间段为返青-开花期、起身-灌浆中期、起身-抽穗期。Rational模型能较好地描述LAI的动态变化过程,该模型的变形能反映新老叶的生长规律;
     2.探讨了产量形成过程理论并建立了相关模型。产量形成过程与干物质积累的最大速率以及快速增长的延续点以及LAI的参数密切相关,改进后的产量模型其决定系数提高至0.9。穗数、穗粒数和千粒重的关系是逐步影响的,穗数与冬前茎蘖数有二次效应的关系,穗粒数与穗数存在二次效应关系,千粒重由灌浆的持续时间和灌浆速率的参数决定。产量构成因素均与干物质积累的特征参数有关;
     3.在产量形成模型的基础上,建立了一套群体参数优化设计的方法。该方法通过产量及产量构成因素形成规律的等式约束、干物质和LAI动态变化过程约束以及群体动态变化特征参数的范围作为约束条件,以非线性优化理论为基础,形成了产量最优目标为9826kg/hm2的条件下,群体生长指标的变化范围:穗数为543×104/hm2、穗粒数为39,千粒重为46.5g,基本苗为450×104/hm2,冬前茎为1010×104/hm2,干物质和LAI的动态过程也能描述。以2010-2011和2012-2013冬小麦生长季的气候条件为例,设计了两种气候条件下,产量分别为10087kg/hm2和8066kg/hm2时,冬小麦群体的动态变化过程。该方法能为生产过程中的管理决策提供理论上的指导;
     4.提出了一套评价冬小麦养分对物质生产效应的模型。该模型将物质生产分成四个不同的养分效应构成,分别为阶段之前叶片和非叶器官中积累的养分对物质生产的效应,该阶段叶片和非叶器官中增加的养分对物质生产的效应,并考虑冬小麦生长的阶段效应、特征效应和环境效应,三种养分的效应评价模型决定系数均大于0.8,氮和钾的模型决定系数在0.9以上,模型效果良好。三种养分的效应参数反映了冬小麦的生长规律以及器官的功能状态。该方法能定量描述不同时空特征的养分对特定生长阶段物质积累的影响机制,能为养分管理提供理论上的指导。
To build an optimum population growth process and quantify the nutrient effect on dry matter production at different growth stage in winter wheat, field experiments were designed to obtain different growth and nutrient uptake populations in winter wheat growing seasons from2009to2011,2012to2013varied by sowing date, basic seedlings, irrigation and fertilization in shimai15cultivar. After measuring the related meteorological data and other population index, the dry matter accumulation, leaf area index dynamics and nutrient absorption characteristic parameters were studied, and the yield formation model was established based on the population growth character parameters. Then a method of winter wheat optimum dynamic process was researched using yield as objective function. Besides, under the difference of nutrient uptake and dry matter production, a model of evaluating the nutrient effect on dry matter production based on BLUP method was established. The main research results were as follows:
     Logistic model can well describe the process of dry matter and nutrient dynamic change according to relative accumulated temperature. The parameters represented the different growth processes. The dry matter maximum increased rate appeared during booting to anthesis, and the rapid accumulation period was from jointing to20days after anthesis. The maximum uptake rate of nitrogen, phosphorus, potassium appeared during jointing to booting, jointing to anthesis, and jointing to booting stage, respectively. The rapid nutrient accumulation period were regreening to anthesid, setting to middle of grain filling stage, setting to heading stage, respectively. The Rational model can well describe the leaf area index dynamic process and deformation of the model can reflect the law of new and old leaves growth.
     The grain yield of winter wheat was closely related to characteristic parameters such as dry matter maximum accumulation rate, inflection points in the curve for dry matter accumulation rate in grain filling stage and leaf area index character parameters. The determimation coefficient was inproved to0.9. The relationship between spike number, grain number per spike and1000grain weight were influence gradually with growth. The spike number was the square of total stem and tiller numbers before wintering and the same relationship between spike number and grain numbers per spike.1000grain weight was determined by the parameters reflecting grain filling rate and duration. The yield components were all related to the dry matter accumulation parameters.
     Based on the yield formation model, a method of population optimal design was established. In the process of parameter design, the constraint conditions were constituted by the reasonable scope of dry matter accumulation and LAI in different growing periods, parameters range and yield formation model. According to the nonlinear optimization theory, the population growth was designed on the optimum yield target9826kg ha-1. The results were with the spike number543×104ha-1, the grain number per spike39, and1000grain weight46.5gram, basic seedlings450×104ha-1, total stem and tillers before wintering1010×104ha-1. The dynamic process of dry matter and leaf area was also described. Besides, under the climate condition of2010-2011and2012-2013, the dynamic processes were designed with the optimum yield target10087kg ha-1and8066kg ha-1respectively. The method can provide theoretical guidance for management decision.
     Besides, a model of evaluating the nutrient effect on dry matter production was established. In the model, four impacts at a specific stage (Pi) were concerned:leaf nutrient impact at Pi-1, non-leaf nutrient impact at Pi-1, leaf nutrient impact at Pi, and non-leaf nutrient impact at Pi. The determination coefficient were all more than0.8. The effect parameters such as the growth stage effect, character effect and environment effect parameters reflected the function of plant organs and the mechanism of growth. The nutrient effect can be quantified and the impact mechanism can be analyzed. The model can provide theoretical guidance for nutrient management.
引文
[1]曹宏鑫,金之庆,石春林,等.中国作物模型系列的研究与应用[J].农业网络信息,2006(5):45-51.
    [2]曹宏鑫,刘世军,张立民,等.小麦群体叶面积的动态模型[J].沈阳农业大学学报,2000,31(3):246-248
    [3]曹卫星.作物智能栽培学:信息科学与作物栽培学的结合[J].科技导报,2000,139(1):37-41.
    [4]陈蓉蓉,周治国,曹卫星,等.农田精确施肥决策支持系统的设计和实现[J].中国农业科学,2004,37(4):516-521.
    [5]陈温福,徐正进,张龙步.水稻理想株型的研究[J].沈阳农业大学学报,1989,20(4):417-420.
    [6]崔党群Logistic曲线方程的解析与拟合优度测验[J].数理统计与管理,2005,24(1):1 12-115.
    [7]丁位华,于彬,张英华,等.pH缓冲液对不同水分状态下冬小麦幼苗抗氧化酶活性的影响[J].麦类作物学报,2012,32(005):890-894.
    [8]丁玉川,陈明昌,程滨,等.作物磷营养效率生理生化基础研究进展[J].山西农业科学,2004,32(3):25-29.
    [9]范雪梅,姜东,戴廷波,等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报,2004,28(5):680-685.
    [10]冯定原,夏海峰.水稻生长和产量形成的数值模式[J].南京气象学院学报,1987,10(2):201-211.
    [11]冯利平,高亮之,金之庆,等小麦发育期动态模拟模型的研究[J].作物学报,1997,23(4):418-424.
    [12]冯妍.太阳辐射减弱下冬小麦生物量变化的大田试验与模拟研究[D].南京信息工程大学,2011
    [13]付雪丽,赵明,周宝元,等.小麦玉米粒重动态共性特征及其最佳模型的筛选与应用[J].作物学报,2009,35(2):309-316.
    [14]高聚林,刘克礼,张永平,等.春小麦磷素吸收,积累与分配规律的研究[J].麦类作物学报,2003,23(3):107-112.
    [15]高亮之,金之庆RCSODS-水稻栽培计算机模拟优化决策系统[J].计算机农业应用,1993,14-20.
    [16]郭文善,封超年,严六零,等.小麦开花后源库关系分析[J].作物学报,1995,21(3):334-340.
    [17]郭焱,李保国.玉米冠层三维结构研究[J].作物学报,1998,24(6):1006-1009.
    [18]郭银巧,郭新宇,赵春江,等.玉米适宜品种选择和播期确定动态知识模型的设计与实现[J].中国农业科学,2006,39(2):274-280.
    [19]韩健,池宝亮.作物生长模型发展现状及应用前景[J].山西农业科学,2011,39(8):900-903.
    [20]韩燕来,刘征.超高产冬小麦氮磷钾吸收,分配与运转规律的研究[J].作物学报,1998,24(6):908-915.
    [21]侯玉虹,陈传永,郭志强.作物高产群体十物质积累动态模型的构建及生长特性分析[J].玉米科学,2008,16(6):90-95.
    [22]胡廷积,刘克启,李九星,等.高产小麦十物质的积累规律与分配特点[J].河南农业大学学报,1981,,(4):18-33.
    [23]黄金龙,郑丽敏,冯利平.小麦开花后产量形成的动态协调的逻辑分析—兼论作物产量形成的动态协调研究[J].中国农业大学学报,1996,1(5):47-52.
    [24]蒋红军,刘小军,汤亮,等.基于模型和3S技术的数字麦作系统的设计与实现[J].麦类作物学报,2007,27(5):908-913.
    [25]姜宗庆,封超年,黄联联,等.施磷量对小麦物质生产及吸磷特性的影响[J].植物营养与肥料学报,2006,12(5):628-634.
    [26]金为民.麦类作物干物质积累规律探讨[J].中国农业气象,1993,14(2):4-6.
    [27]金之庆,葛道阔,郑喜莲,等.评价全球气候变化对中国玉米生产的可能影响[J].作物学报,1996(5):513-524.
    [28]孔丽红,赵玉路,周福平.简述小麦干物质积累运转与高产的关系[J].山西农业科学,2007,35(08):6-8.
    [29]李军,邵明安,王立祥.黄土高原地区粮食生产潜力与粮食生产发展战略探讨[J].中国生态农业学报,2002,10(01):118-120.
    [30]李军,王立祥,邵明安,等.黄土高原地区小麦生产潜力模拟研究[J].自然资源学报,2001,16(02):161-165.
    [31]李军,王立祥,邵明安,等.黄土高原地区玉米生产潜力模拟研究[J].作物学报,2002,28(04):555-560.
    [32]李明,李文雄.玉米产量形成与源库关系[J].玉米科学,2006,14(2):67-70.
    [33]李旭,曹卫星.小麦管理智能决策系统的设计与实现[J].南京农业大学学报,1999,22(3):9-12.
    [34]李艳大,汤亮,陈青春,等.水稻地上部干物质积累动态的定量模拟[J].应用生态学报,2010,21(6):1504-1510.
    [35]李英年,周华坤,沈振西.高寒草甸牧草产量形成过程及与气象因子的关联分析[J].2001,9(3):232-238.
    [36]李玉红,余彭娜,朱德全.浅谈BLUP方法及其三种形式的应用[J].吉林农业,2012,7:139-140.
    [37]李玉荣,李金泉,高佃平,等.动物模型BLUP法估计内蒙古白绒山羊育种值的研究[J].畜牧与饲料科学,2010,(006):81-85
    [38]林忠辉,莫兴国,项月琴.作物生长模型研究综述[J].作物学报,2003,29(05):750-758.
    [39]林忠辉,项月琴,莫兴国,等.夏玉米叶面积指数增长模型的研究[J].中国生态农业学报,2003,11(4):69-72.
    [40]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    [41]凌启鸿,张洪程.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [42]凌启鸿,张洪程,程庚令,等.小麦“小群体,壮个体,高积累”高产栽培途径的研究(续)[J].扬州大学学报(农业与生命科学版),1983,2:001.
    [43]刘恩科,梅旭荣,龚道枝,等.不同生育时期干旱对冬小麦氮素吸收与利用的影响[J].植物生态学报,2010,34(5):555-562.
    [44]刘华英,萧浪涛,彭克勤.土壤难溶态磷的高效利用研究进展[J].贵州农业科学,2002,30(6):61-63.
    [45]刘建刚,王宏,石全红,陶婷婷,陈阜,褚庆全.基于田块尺度的小麦产量差及生产限制因素解析[J].中国农业大学学报,2012,17(2):42-47.
    [46]刘克礼,高聚林,张永平,等.旱作春小麦籽粒形成与灌浆特性[J].麦类作物学报,2004,23(4):71-74.
    [47]刘铁梅,曹卫星,罗卫红,等.小麦物质生产与积累的模拟模型.麦类作物学报[J].2001,21(3):26-31.
    [48]刘铁梅,曹卫星,罗卫红,等小麦叶面积指数的模拟模型研究[J].麦类作物学报,2001,21(2):3841.
    [49]刘小军,邱小雷,孙传范,等.基于知识模型和PDA的精确农作系统设计及应用[J].农业工程学报,2010(1):210-215.
    [50]刘战东,段爱旺,高阳,等.河南新乡地区冬小麦叶面积指数的动态模型研究[J].麦类作物学报,2008,28(4):680-685.
    [51]鲁绍雄,吴常信,连林生.影响动物模型MBLUP评定准确性的主要因素(英文)[J].遗传学报,2003,30(1):35-39.
    [52]陆卫平,陈国平,郭景伦,等.不同生态条件下玉米产量源库关系的研究[J].作物学报,1997,23(6):727-733.
    [53]马波,田军仓.作物生长模拟模型研究综述[J].节水灌溉,2010,(02):1-5
    [54]马新明,石媛媛,席磊,等.烟草氮肥运筹知识模型系统的设计与实现[J].河南农业大学学报,2006,40(1):91-94.
    [55]潘学标,韩湘玲,石元春COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8(4):180-188.
    [56]秦舒浩,李玲玲.集雨补灌春小麦花后干物质积累分配及灌浆特性[J].水土保持学报,2005,19(04):173-176
    [57]彭世彰,李荣超,朱成立.节水灌溉的水稻干物质增长模型研究[J].水利学报.2002,(11):99-102.
    [58]彭正萍,王艳群,刘淑桥,等.不同施肥处理对冬小麦干物质积累及土壤养分垂直分布的影响[J].中国农业科技导报,2007,9(6):95-99.
    [59]乔嘉,朱金城,赵姣,等.基于Logistic模型的玉米十物质积累过程对产量影响研究[J].中国农业大学学报,2011,16(5):32-38.
    [60]乔玉辉,宇振荣.冬小麦干物质在各器官中的累积和分配规律研究[J].应用生态学报,2002,13(5):543-546.
    [61]乔玉辉,宇振荣,Driessen P M,等.冬小麦叶面积动态变化规律及其定量化研究[J].中国生态农业学报,2002,10(2):83-85.
    [62]邱小雷,刘小军,朱艳,等.基于Pocket PC的小麦栽培管理知识模型系统的设计与实现[J].农业工程学报,2008,23(10):182-185.
    [63]任正隆,李尧权.小麦开花后的物质积累、籽粒相对生长速率和灌浆速率在品种间的变异[J].中国农业科学,1981,14(6):12-20.
    [64]孙寿永.动物模型Blup法及其应用的综述[J].畜牧兽医杂志,2008,27(3):56-59.
    [65]涂修亮,胡秉民,程功煌.小麦叶面积指数变化的模拟[J].作物研究,1999,(1):13-14.
    [66]王桂良,叶优良,李欢欢,等.施氮量对不同基因型小麦产量和干物质累积的影响[J].麦类作物学报,2010,30(1):116-122.
    [67]王玲,谢德体,刘海隆,等.玉米叶面积指数的普适增长模型[J].西南农业大学学报,2004,26(3):303-311.
    [68]王声锋,段爱旺,徐建新.冬小麦株高和叶面积指数变化动态分析及模拟模型[J].灌溉排水学报,2010,29(04):97-100.
    [69]王文佳,冯浩.国外主要作物模型研究进展与存在问题[J].节水灌溉,2012(8):63-68.
    [70]王信理.在作物干物质积累的动态模拟中如何合理运用Logistic方程[J].农业气象,1986,(01):14-19.
    [71]王旭东,于振文,王东.钾对小麦茎和叶鞘碳水化合物含量及子粒淀粉积累的影响[J].植物营养与肥料学报,2003,9(1):57-62.
    [72]王亚莉,贺立源.作物生长模拟模型研究和应用综述[J].华中农业大学学报,2005,24(5):529-535.
    [73]王永宏,王克如,赵如浪,等.高产春玉米源库特征及其关系[J].中国农业科学,2013,46(2):257-269.
    [74]王玉杰,王永华,郭天财,等.不同栽培管理模式对冬小麦花后干物质积累与分配特征及产量的影响[J].麦类作物学报,2011,31(5):894-900
    [75]王朝辉,李生秀.不同生育期缺水和补充灌水对冬小麦氮磷钾吸收及分配影响[J].植物营养与肥料学报,2002,8(3):265-270.
    [76]王志敏,王璞,李绪厚,等.冬小麦节水省肥高产简化栽培理论与技术[J].中国农业科技导报,2006,8(5):38-44.
    [77]吴富宁,朱虹,郑丽敏,等.区域种植业结构调整和布局优化模型的设计及实现[J].中国农业科技导报,2004,6(1):63-67.
    [78]武金岗,高苹,汤志成,等.冬小麦产量形成的干物质模式[J].气象,1997,23(3):46-49.
    [79]夏兴英,廖树华,梁振兴.冬小麦生产动态试验优化设计及其调控决策模型研究[J].中国农业大学学报,2006,11(6):34-40.
    [80]谢云,James R Kiniry国外作物生长模型发展综述[J].作物学报,2002,28(2):190-195
    [81]许振柱,王崇爱,李晖.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响[J].干旱地区农业研究,2005,22(4):75-79.
    [82]杨晓华,黄敬峰,王秀珍,等.基于支持向量机的水稻叶面积指数光谱估算模型研究[J].光谱学与光谱分析,2008,28(8):1837-1841.
    [83]杨小利,蒲金涌,王立科,等.光温因子对冬小麦发育·产量的影响[J].安徽农业科学,2009,(26):12451-12453.
    [84]于强,傅抱璞,姚克敏.水稻叶面积指数的普适增长模型[J].中国农业气象,1995,16(2):6-8.
    [85]余松烈,亓新华,于振文.冬小麦精播半精播高产栽培的理论与实践[J].中国小麦栽培研究新进展,1993,19(193):204-213.
    [86]于振文,田奇卓,潘庆民,岳寿松,王东,段藏禄,段玲玲,王志军,牛运生.黄淮麦区冬小麦 超高产栽培的理论与实践.作物学报,2002,28(5):577-585
    [87]于振文,张炜.钾营养对冬小麦养分吸收分配,产量形成和品质的影响[J].作物学报,1996,22(4):442-447.
    [88]张宾,赵明,董志强,等.作物高产群体LAI动态模拟模型的建立与检验[J].作物学报,2007,33(4):612-619.
    [89]张法全,工小燕,于振文,等.公顷产10000kg小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096.
    [90]章家恩,骆世明.农业生态系统模式的优化设计探讨[J].热带地理,2001,21(1):81-85.
    [91]张利,隋新霞,王羽,等.不同熟性小麦品种的干物质积累和分配规律[J].山东农业科学,2007,(06):54-56.
    [92]张群远,孔繁玲,杨付新.品种区域试验中算术平均值、BLUP和AMMI估值的精度比较[J].作物学报,2001,27(4):428-433
    [93]张群远,孔繁玲,杨付新.作物品种区域试验中品种均值估计的模型和方法——算术平均值、加权最小二乘估值和BLUP的比较[J].作物学报,2003,29(6):884--891
    [94]张旭东,蔡焕杰,付玉娟.黄土区夏玉米叶面积指数变化规律的研究[J].干旱地区农业研究,2006,24(2):25-30.
    [95]张竹琴,周顺利,乔嘉,等.冬小麦产量形成过程模型及群体优化设计方法[J].中国农业大学学报,2010,15(6):13-19.
    [96]赵炳样,徐富安.水肥条件对小麦,玉米N,P,K吸收的影响[J].植物营养与肥料学报,2000,6(3):60-266.
    [97]赵春江,诸德辉.小麦栽培管理计算机专家系统的研究与应用[J].中国农业科学,1997,30(5):42-49.
    [98]赵姣,郑志芳,方艳茹,等.基于动态模拟模型分析冬小麦干物质积累特征对产量的影响[J].作物学报,2013,39(2):300-308.
    [99]赵明,李少昆.作物产量研究三理论及其应用与发展(综述)[J].北京农业大学学报,1995,1.
    [100]赵明,王树安,李少昆.论作物产量研究的“三合结构”模式[J].北京农业大学学报,1995,21(4):359-363.
    [101]郑丽敏,任丽梅,任发政.农业专家系统的发展与精确农业[J].中国农业科技导报,2002,4(4):62-65.
    [102]郑志芳,赵姣,姜兴芳,等.玉米不同生育阶段养分效应评价方法研究[J].中国生态农业学报,2013,21(9):1064-1072
    [103]周竹青.不同类型小麦品种(系)十物质积累和运转动态比较[J].作物杂志,2002,(01):16-19.
    [104]朱艳,曹卫星.小麦栽培管理知识模型系统的设计与实现[J].南京农业大学学报,2002,25(3):12-16.
    [105]朱艳,曹卫星,戴廷波,等.小麦目标产量设计及适宜品种选择的动态知识模型[J].应用生态学报,2004,15(2):231-236.
    [106]朱艳,曹卫星,戴廷波,等.小麦栽培氮肥运筹的动态知识模型[J].中国农业科学,2003,36(9):1006-1013.
    [107]朱艳,曹卫星,姜东,等.冬小麦适宜播期和播种量设计的动态知识模型研究[J].中国农业科学,2003,36(2):147-154.
    [108]朱艳,曹卫星,姚霞,等.小麦栽培管理动态知识模型的构建与检验[J].中国农业科学,2005,38(2):283-289.
    [109]朱艳,曹卫星,王其猛,等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.
    [110]朱艳,曹卫星,周治国,等.冬小麦生长适宜动态指标的知识模型[J].中国农业科学,2004,37(1):43-50.
    [111]朱艳,沈维祥,曹卫星,等.油菜栽培管理知识模型及决策支持系统研究[J].农业工程学报,2004,20(6):141-144.
    [112]Banedjschafie S, Bastani S, Widmoser P, et al. Improvement of water use and N fertilizer efficiency by subsoil irrigation of winter wheat[J]. European journal of agronomy,2008,28(1):1-7.
    [113]Barber J S, Jessop R S. Factors affecting yield and quality in irrigated wheat[J]. The Journal of Agricultural Science,1987,109(01):19-26.
    [114]Belonsky G M, Kennedy B W. Selection on individual phenotype and best linear unbiased predictor of breeding value in a closed swine herd [J]. Journal of Animal Science,1988,66(5): 1124-1131.
    [115]Blackman F F. Optima and limiting factors[J]. Annals of Botany,1905 (2):281-296.
    [116]Bouman B A M, Van Keulen H, Van Laar H H, et al. The'School of de Wit'crop growth simulation models:a pedigree and historical overview[J]. Agricultural Systems,1996,52(2): 171-198.
    [117]Bouman B A M, Van Laar H H. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions[J]. Agricultural Systems,2006,87(3):249-273.
    [118]Colnenne C, Meynard J M, Reau R, et al. Determination of a critical nitrogen dilution curve for winter oilseed rape[J]. Annals of Botany,1998,81(2):311-317.
    [119]De Wit C T. Simulation of assimilation, respiration and transpiration of crops[J].1978.
    [120]De Vries F W T P, Van Laar H H. Simulation of growth processes and the model BACROS[J]. Simulation of Plant Growth and Crop Production, Pudoc, Wageningen,1982:114-135.
    [121]Diepen C A, Wolf J, Keulen H, et al. WOFOST:a simulation model of crop production[J]. Soil use and management,1989,5(1):16-24.
    [122]Donald C M. In search of yield[J]. J. Aust. Inst. Agric. Sci,1962,28(3):171-178.
    [123]Dordas C. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations[J]. European Journal of agronomy,2009, 30(2):129-139.
    [124]Engels C. Effect of root and shoot meristem temperature on shoot to root dry matter partitioning and the internal concentrations of nitrogen and carbohydrates in maize and wheat[J]. Annals of Botany,1994,73(2):211-219.
    [125]Engledow F L, Wadham S M. Investigations on yield in the cereals. I[J]. The Journal of Agricultural Science,1923,13(04):390-439.
    [126]Evans J R. Partitioning of nitrogen between and within leaves grown under different irradiances[J]. Functional Plant Biology,1989,16(6):533-548.
    [127]Fang K T, Lin D K J, Winker P, et al. Uniform design:theory and application[J]. Technometrics, 2000,42(3):237-248.
    [128]Fang K T. Theory, method and applications of the uniform design[J]. International journal of reliability, quality and safety engineering,2002,9(04):305-315.
    [129]Fang Q, Yu Q, Wang E, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain[J]. Plant and Soil,2006,284(1-2):335-350.
    [130]Fredeen A L, Raab T K, Rao I M, et al. Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr[J]. Planta,1990,181(3):399-405.
    [131]Grace J. Temperature as a determinant of plant productivity[C]//Symposia of the Society for Experimental Biology.1987,42:91-107.
    [132]Grindlay D J C. REVIEW Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area[J]. The Journal of Agricultural Science,1997,128(04): 377-396.
    [133]Henderson C R. Selection index and expected genetic advance. In statistic genetics and plant breeding. Nat. Acad. Sci., Nat. Res. Council, Publication 982, Washington, DC.1963:141-163
    [134]Henderson C R. Best linear unbiased estimation and prediction under a selection model. Biometrics,1975a,31(2):423-447
    [135]Hocking P J. Dry-matter production, mineral nutrient concentrations, and nutrient distribution and redistribution in irrigated spring wheat [J]. Journal of plant nutrition,1994,17(8):1289-1308.
    [136]Hodges T, Botner D, Sakamoto C, et al. Using the CERES-Maize model to estimate production for the US cornbelt[J]. Agricultural and Forest Meteorology,1987,40(4):293-303.
    [137]Hodges T, Ritchie J T. The CERES-Wheat phenology model[M]. CRC Press, Boca Raton, FL, 1991.
    [138]Hunt R. Plant Growth Analysis. London:Edward Armold Publishers,1982
    [139]Ingestad T, Agren G I. The influence of plant nutrition on biomass allocation[J]. Ecological Applications,1991:168-174.
    [140]Iqbal M A, Shen Y, Stricevic R, et al. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation[J]. Agricultural Water Management,2014,135:61-72.
    [141]Jamieson P D, Porter J R, Goudriaan J, et al. A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought[J]. Field Crops Research,1998,55(1):23-44.
    [142]Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model [J]. European journal of agronomy,2003,18(3):235-265
    [143]Jones J W, Tsuji G Y, Hoogenboom G, et al. Decision support system for agrotechnology transfer: DSSAT v3[M]//Understanding options for agricultural production. Springer Netherlands,1998: 157-177.
    [144]Justes E, Mary B, Meynard J M, et al. Determination of a critical nitrogen dilution curve for winter wheat crops[J]. Annals of Botany,1994,74(4):397-407.
    [145]Kang S, Zhang L, Liang Y, et al. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China[J]. Agricultural water management,2002,55(3):203-216.
    [146]Karlen D L, Whitney D A. Dry matter accumulation, mineral concentrations, and nutrient distribution in winter wheat [J]. Agronomy Journal,1980,72(2):281-288.
    [147]Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy,2003,18(3):267-288.
    [148]Keulen H, Seligman N G, Benjamin R W. Simulation of water use and herbage growth in arid regions-re-evaluation and further development of the model ARID CROP[J]. Agricultural Systems, 1980,159-193.
    [149]Laine P, Ourry A, Macduff J, et al. Kinetic parameters of nitrate uptake by different catch crop species:effects of low temperatures or previous nitrate starvation[J]. Physiologia plantarum,1993, 88(1):85-92.
    [150]Lemaire G, Salette J. Relation entre dynamique decroissance et dynamique de pre'le'vement d'azote pour unpeuplement de gramine'es fourrage'res. I. Etude de l'effet du milieu. Agronomie 1984,4:423-430.
    [151]Lenz-Wiedemann V I S, Klar C W, Schneider K. Development and test of a crop growth model for application within a Global Change decision support system[J]. Ecological Modelling,2010,221(2): 314-329.
    [152]Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial & Applied Mathematics,1963,11(2):431-441.
    [153]McCown R L, Hammer G L, Hargreaves J N G, et al. APSIM:An agricultural production system simulation model for operational research[C]//Proceedings International Congress on Modelling and Simulation, Modelling Change in Environmental and Socioeconomic Systems. University of Western Australia, Perth.1993:6-10.
    [154]McCown R L,Hammer G L, Hargreaves J N G, et al. APSIM:a novel software system for model development, model testing,and simulation in agricultural systems research[J].Agricultural Systems, 1996,50:255-271.
    [155]Mendes F F, Guimaraes L J M, Souza J C, et al. Adaptability and stability of maize varieties using mixed model methodology [J]. Crop Breeding and Applied Biotechnology,2012,12(2):111-117
    [156]Nichiporovich A A. Photosynthesis and the theory of obtaining high crop yields[M]. Department of Scientific and Industrial Research, Lending Library Unit,1960.
    [157]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions [J]. Field Crops Research,2002,74(1):93-101.
    [158]Page M B, Smalley J L, Talibudeen O. The growth and nutrient uptake of winter wheat[J]. Plant and Soil,1978,49(1):149-160.
    [159]Pampana S, Mariotti M, Ercoli L, et al. Remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by genotype and environment[J]. Italian Journal of Agronomy,2007,2(3): 303-314.
    [160]Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal,1987,51(5):1173-1179.
    [161]Pask A J D, Sylvester-Bradley R, Jamieson P D, et al. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth[J]. Field Crops Research,2012,126:104-118.
    [162]Peng S, Huang J, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(27):9971-9975.
    [163]Penning de Vries F W T. Simulation of ecophysiological processes of growth in several annual crops[M]. Int. Rice Res. Inst,1989.
    [164]Piepho H P, Mohring J, Melchinger A E, et al. BLUP for phenotypic selection in plant breeding and variety testing[J]. Euphytica,2008,161(1-2):209-228.
    [165]Ple'net D, Lemaire G.2000. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops, determination of critical N concentration. Plant and Soil 216,65-82.
    [166]Popova Z, Kercheva M. CERES model application for increasing preparedness to climate variability in agricultural planning-calibration and validation test[J]. Physics and Chemistry of the Earth, Parts A/B/C,2005,30(1):125-133.
    [167]Porter J R, Gawith M. Temperatures and the growth and development of wheat:a review[J]. European Journal of Agronomy,1999,10(1):23-36.
    [168]Ritchie J T, Godwin D. CERES Wheat 2.0[J]. Documentation.(02.10.2006)< http://nowlin. css. msu. edu/wheat_book,2000.
    [169]Robinson G K. BLUP is a good thing:The estimation of random effects [J]. Statistical Science, 1991,6(1):15-51.
    [170]Royo C, Blanco R. Growth analysis of five spring and five winter triticale genotypes. Agron J, 1999,91:305-311.
    [171]Sayed H I, Gadallah A M. Variation in dry matter and grain filling characteristics in wheat cultivars. Field Crops Res,1983,7:61-71.
    [172]Schaeffer L R. Application of random regression models in animal breeding [J]. Livestock Production Science,2004,86(1):35-45.
    [173]Schneeberger M, Barwick S A, Crow G H, et al.. Economic indices using breeding values predicted by BLUP [J]. Journal of Animal Breeding and Genetics,1992,109(1-6):180-187.
    [174]Sinclair T R, Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency:a review [J]. Crop science,1989,29(1):90-98.
    [175]Slafer G A, Rawson H M. Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers [J]. Functional Plant Biology,1994,21(4):393-426.
    [176]Spitters C J T, Schapendonk A. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation[M]//Genetic Aspects of Plant Mineral Nutrition. Springer Netherlands,1990:151-161.
    [177]Sun H Y, Liu C M, Zhang X Y, et al. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain[J]. Agricultural water management,2006,85(1):211-218.
    [178]Sylvester-Bradley R, Kindred D R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency [J]. Journal of Experimental Botany,2009,60(7): 1939-1951.
    [179]Viana J M S, Sobreira F M, De Resende M D V, et al.. Multi-trait BLUP in half-sib selection of annual crops [J]. Plant Breeding,2010,129(6):599-604
    [180]Viana J M S, Valente M S F, Scapim C A, et al. Genetic evaluation of tropical popcorn inbred lines using BLUP [J]. Maydica,2012,56(3):273-281
    [181]Vincent C D, Gregory P J. Effects of temperature on the development and growth of winter wheat roots[J]. Plant and soil,1989,119(1):87-97.
    [182]Waldren R P, Flowerday A D. Growth stages and distribution of dry matter, N, P, and K in winter wheat[J]. Agronomy Journal,1979,71(3):391-397.
    [183]Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of non-leaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear[J]. Photosynthetica, 2001,39(2):239-244.
    [184]Went F W. The effect of temperature on plant growth[J]. Annual Review of Plant Physiology, 1953,4(1):347-362.
    [185]Williams, J.R. EPIC, The Erosion-Productivity Impact Calculator, Volume 1. Model Documentation, Agric. Res.Service, United States Department of Agriculture.1983.
    [186]Wit C T. Photosynthesis of leaf canopies [M]. Centre for Agricultural Publications and Documentation,1966.
    [187]Wit C T, Brouwer R, Vries F, et al. The simulation of photosynthetic systems[C]//Prediction and measurement of photosynthetic productivity. Proceedings of the IBP/PP Technical Meeting, Tfebon,[Czechoslovakia],14-21 September,1969. Wageningen, Netherlands, PUDO,1970:47-70.
    [188]Yao X, Ata-Ul-Karim S T, Zhu Y, et al. Development of critical nitrogen dilution curve in rice based on leaf dry matter [J]. European Journal of Agronomy,2014,55:20-28.
    [189]Zhao Y S, Gowda M, Liu W X, et al. Accuracy of genomic selection in European maize elite breeding populations[J].Theoretical and Applied Genetics,2012,124 (4):769-776.
    [190]Zhang W L, Tian Z X, Zhang N, et al. Nitrate pollution of groundwater in northern China[J]. Agriculture, Ecosystems & Environment,1996,59(3):223-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700