防虫网覆盖塑料大棚小气候模拟模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单栋塑料大棚是我国南方地区蔬菜生产的主要设施类型,近年来用防虫网覆盖塑料大棚进行绿色农产品生产的面积不断扩大。防虫网覆盖塑料大棚内的小气候状况直接关系到棚内作物的生长、上市期和产量。由于防虫网覆盖塑料大棚属于简易设施,棚内一般没有环境监测仪器。防虫网覆盖塑料大棚小气候预测模型可以利用棚外气象要素预测棚内小气候状况,因此,是获取防虫网覆盖塑料大棚小气候信息的重要手段。本研究以防虫网覆盖塑料大棚小白菜生产为研究对象,将大棚内空气热量与质量平衡的理论分析与不同定植期的小白菜生产试验研究相结合,定量分析棚外气象条件—大棚结构——棚内小气候——棚内作物之间的关系。在此基础上,建立了塑料大棚内小气候模拟模型,并进一步用独立的试验数据对模型进行了检验。本文的主要研究结果如下:
     1.建立了小白菜叶面积指数和叶宽的模拟模型
     根据小白菜生长对光温的反应,综合光温指标——辐热积为预测指标,构建了小白菜叶面积指数(LAI)和叶宽(d)的模拟模型:式中,RTE(tin)为棚内气温tin的相对热效应,PTEPPT和TEP分别为日辐热积和累计辐热积(MJ·m-2);Tb、Tm、T(?)和Tou别为小白菜生长下限温度、上限温度、最适温度下限和最适温度上限(℃)。C为小白菜叶面积指数或叶宽的最大值,a、b为与小白菜有关的参数。小白菜叶面积指数模拟值与实测值之间1:1线的r2>0.97,RMSE<0.300m2·m-2,RE<18.0%。小白菜叶宽模拟值与实测值之间1:1线的R2>0.94,RMSE<0.27cm,RE<11.0%.
     2.建立了塑料大棚塑料薄膜透光率的计算模型
     根据田间试验资料,应用回归统计分析方法,建立了大棚塑料薄膜透光率与太阳高度角(τ)的统计模型:式中,β为太阳高度角,(?)为地理纬度,δ为太阳赤纬,ω为时角,Dy为日序,以1月1日为1,依次排列。塑料薄膜透光率的模拟值与实际值之间1:1线的R2、RMSE和RE分别为0.91、1.45%和1.85%。
     3.建立了大棚内净辐射统计模型
     根据试验观测资料,用回归统计分析方法建立了棚内净辐射与棚外总辐射之间的统计模型:
     R。=-5.5143+0.6967·τ·S0式中,Rn为大棚内净辐射(w·m-2),τ为大棚薄膜透光率(%),S0为棚外太阳总辐射(w·m-2)。大棚内净辐射模拟值与实测值之间1:1线的R2、RMSE和RE分别为0.96、22.4w·m-2和19.6%。
     4.建立了小白菜叶温的统计模型
     根据大棚内田间试验观测数据,应用多元回归分析方法,建立了小白叶温的统计模型:
     T1=20.38476+0.14778tin+1.67901×10-2Rn式中,T1为小白菜叶温,℃;Rn为棚内净辐射,J·s-1·m-2;tin为棚内气温,℃。小白菜叶温模拟值与实测值之间1:1线的R2、RMS和RE分别为0.63、1.5℃和5.6%。
     5.确定了不同目数防虫网的流量系数和综合风压系数
     根据不同防虫网覆盖塑料大棚内小白菜蒸腾实测数据和棚内外的气象数据,应用Penmam-Monteith蒸腾模型,确定了20目、25目和28目防虫网覆盖塑料大棚自然通风下的流量系数和综合风压系数。20目、25目和28目防虫网覆盖塑料大棚的平均流量系数分别为0.771、0.758和0.736,平均综合风压系数分别为0.33、0.37和0.39。
     6.构建了防虫网覆盖塑料大棚内小气候模拟模型
     充分考虑作物蒸腾对棚内小气候的反馈作用,根据能量平衡和质量平衡原理,建立了以塑料大棚外气象要素(太阳辐射、温度、相对湿度、风速、气压)为驱动变量,以塑料大棚结构(容积、表面积、通风窗面积、棚内地表面积)、覆盖材料(塑料薄膜、防虫网)、小白菜(叶宽、叶面积指数)等为参数的塑料大棚内小气候模拟模型:式中,q8为大棚内温度变化导致的空气能量变化,J/s;qv为自然通风导致大棚内空气能量变化,J/s;qc为通过大棚塑料薄膜的热交换量,J/s;qrad为到达大棚内太阳辐射能导致大棚内的空气能量变化,J/s;qrran为小白菜蒸腾消耗的潜热,J/s;qs为大棚内空气与小白菜之间的显热交换,J/s;Xin为大棚内空气绝对湿度,kg·m-3;Xout为大棚外空气绝对湿度,kg·m-3,t为时间,s;Gv为大棚自然通风率,m3·s-1;V为大棚容积,m3;A为大棚内地表面积,m2;E为小白菜蒸腾速率,g·m-2·s-1。
     用试验观测数据(独立样本)对模型进行了检验。结果表明,模型对夏季晴天、多云天、阴天蒸腾速率预测值与实际观测值之间1:1线的决定系数(R2)分别为0.95、0.91、0.94,回归估计标准误差(RMSE)分别为0.018g·m-2·s-1、0.014g·m-2·s-1和0.015g·m-2·s-1,相对误差(RE)分别为14.27%、18.05%和15.80%;对夏季晴天、多云天、阴天棚内空气温度预测值与实测值之间1:1线的决定系数(R2)分别为0.96、0.93和0.92,RMSE分别为1.6、1.5和1.2℃,RE分别为5.6%、5.5%和4.5%;对夏季晴天、多云天、阴天棚内空气相对湿度预测值与实测值之间1:1线的R2分别为0.89、0.88和0.80,RMSE分别为4.4%、4.6%和4.0%,RE分别为5.4%、5.5%和4.4%。
     本研究建立的防虫网覆盖塑料大棚内小气候模拟模型,以大棚外气象因子为驱动变量,以大棚结构、地理位置和作物等为参数,预测防虫网覆盖塑料大棚内空气温度和相对湿度。模型预测精度高,机理性强,实用性强,为我国该类塑料大棚内温湿度预测、大棚结构优化和农业气象服务提供了理论依据和决策支持。
Plastic greenhouse tunnel is the major type of greenhouses used for the growth of vegetables in Southern China. The area of plastic greenhouse tunnels covered with insect-proof nets has been increasing in recent years due to the considerations of product safety of vegetable productions. Crops grown in plastic greenhouse tunnels covered with insect-proof nets are strongly affected by the inside microclimate conditions. Models for predicting the microclimate inside the greenhoused tunnels are useful tool to obtain the information of the inside microclimate due to the lack of instruments for monitoring the inside microclimate. The objective of this study was to develop a model for predicting the microclimate inside the plastic greenhouse tunnels covered with insect-proof nets using outside weather data. For this purpose, experiments with different sowing dates for Brassica chinensis L. were conducted in plastic greenhouse tunnels covered with insect-proof nets located at Shanghai (latitude30°56'42"N, Longitude121°19'1" E) in2006. Based on the analysis of energy and mass balances of air inside the plastic greenhouse tunnels, a model for predicting the microclimate inside the plastic greenhouse tunnels covered with insect-proof was developed. Independent experimental data were used to validate the model. The main results are presented as follows:
     1. Predicting the leaf area and leaf width of Brassica chinensis L.
     The integrated photo-thermal index, the product of thermal effectiveness and PAR (TEP) was used to predict the leaf area and leaf width of Brassica chinensis L. The product of thermal effectiveness and PAR can be calculated as follows: where RTE is the relative thermal effectiveness, PTEP and TEP are the daily total product of thermal effectiveness and PAR and the accumulated of PTEP, respectively; Tb, Tm, Tab Tou are the base temperature, the maximum temperature, the base optimum temperature, and the upper optimum temperature, respectively, for Brassica chinensis L. growth; y stands for the leaf width or LAI of Brassica chinensis L.; C is the maximum leaf width or LAI of Brassica chinensis L.; a and b are the curve fitting coefficients. The determination coefficient (R2), the root mean squared errors (RMSE) and the relative prediction error between the predicted and measured values based on the1:1line are0.97,0.300m2·m-2and18.0%for leaf area index, respectively; and0.94,0.27cm and11.0%for leaf width, respectively.
     2. Calculation of the transmittance of plastic tunnels
     According to the experimental data, the transmittance of plastic tunnels is dependent on the solar elevation angle and can calculated as follows:
     τ=0.649+0.254·10-3.esinβ0127
     sin β=sinφ·sin δ+cosφ·cos δ·cos[2π(ω-1)/24]
     sin δ=-sin(π·23.45/180)·cos[2π(Dy+10)/365]
     cos δ=(1-sin δ·cos δ)0.5where β is the solar elevation angle,φ is the latitude,8is the solar declination, ω is the hour angle, Dy is day of year. Based on the1:1line, the determination coefficient (R2), the root mean squared errors(RMSE) and the relative prediction error (RE) between the calculated and the observed values of transmittance is respectively0.91,1.45%and1.85%, respectively.
     3. Statistical model of net radiation inside of the plastic tunnels
     According to experiment data, the net radiation inside of the plastic tunnels is dependent on the total radiation outside of the tunnesl and can calculated as follows:
     Rn=-5.5143+0.6967·r·S0
     Where Rn is net radiation inside of the plastic tunnels (w-m"2), τ is the transmittance of plastic tunnels (%), So is the total radiation outside of the plastic tunnels (w·m-2). Based on the1:1line, the determination coefficient (R2), the root mean squared errors (RMSE) and the relative prediction error between the calculated and observed values of based on the1:1line are0.96,22.4w·m-2and19.6%, respectively, for net radiation inside of the plastic tunnels.
     4. Determination of the leaf temperature of Brassica Chinese L.
     According to the experimental data, a statistical model for calculating leaf temperature of Brassica Chinese L. was developed.
     Tl=20.38476+0.14778tin+1.67901×10-2Rn where T1is the leaf temperature of Brassica Chinese L.,℃; Rn is the net radiation inside the plastic tunnels, J·s-1·m-2;tm is temperature inside the plastic tunnels,℃. Based on the1:1line, the determination coefficient (R2), the root mean squared errors (RMSE) and the relative prediction error (RE) between the simulated and observed values are, respectively,0.63、1.5℃and5.6%for leaf temperature.
     5. Determination of the dilution coefficient of different insect-proof nets and the coefficient of synthetic wind pressure
     According to the measured transpiration data of Brassica chinensis L. and the microclimate data inside and outside of the plastic tunnels, the coefficients of dilution and synthetic wind pressure of plastic tunnels, respectively, covered with20numbers,25numbers and28numbers insect-proof nets were determined by using the Penmam-Monteith equations. The dilution coefficient and the coefficient of synthetic wind pressure, are, respectively,0.7710.33for the insect-proof net of20numbers,0.758and0.37for the insect-proof net of25numbers, and0.736and0.39for the insect-proof net of28numbers.
     6. The microclimate simulation model of the plastic greenhouse tunnel covered with the insect-proof nets
     Taken account into the interaction between crop transpiration and the microclimate inside the plastic tunnel, a microclimate simulation model of the plastic greenhouse tunnel covered with the insect-proof nets was developed based on the principle of energy and mass balances.
     qa=qv+qc+qrad=qtran+qs
     dχin/dt=[(A/U)·E·10-3]+(Gv/V)(χout-χin)
     where qa (J·s-1) stands for air energy change resulted from the temperature change inside the plastic tunnel; qv (J·s-1) stands for air energy change resulted from natural ventilation of the plastic tunnel; qc (J·s-1) stands for the amount of heat exchange of the plastic tunnel; qrad (J·s-1) stands for air energy change resulted from radiation; qtran(J·S-1) stands for latent heat consumed by transpiration of Brassica chinensis L.; qs (J·s-1) stands for sensible heat exchange between air inside the plastic tunnel and Brassica chinensis L.; Xin (kg·m-3) stands for air relative humidity inside the plastic tunnel; Xout (kg·m-3) stands for air relative humidity outside of the plastic tunnel; t stands for time; Gv (m3·s-1) stands for natural ventilation efficiency of the plastic tunnel; V(m) stands for volume of the plastic tunnel; A (m2) stands for superficial area of the plastic tunnel; E (g·m-2·s-1) stands for transpiration rates of Brassica chinensis L..
     Independent experimental data were used to validate the model. The results show that based on the1:1line, the determination coefficient (R2) between the observed and the predicted transpiration rate under sunny, cloudy and overcast conditions in summer were0.95,0.91,0.94, respectively; the root mean squared errors(RMSE) were0.018g·m-2·s-1,0.014g·m-2·s-1,0.015g·m-2·s-1, respectively, and the relative prediction error (RE) were14.27%,18.05%,15.80%, respectively. The determination coefficient (R2) were0.96,0.93,0.92, respectively; the root mean squared errors (RMSE) were1.6℃,1.5℃,1.2℃and the relative prediction error (RE) were5.6%5.5%and4.5%, respectively, for air temperature inside the tunnel. The determination coefficient (R2) were0.89,0.88,0.80, respectively; the root mean squared errors (RMSE) were4.4%、4.6%and4.0%; the relative prediction error (RE) were5.4%、5.5%and4.4%, respectively, for relative humidity inside the tunnel.
     The microclimate simulation model developed in this study can predict the air temperature, the relative humidity and crop canopy transpiration inside the plastic tunnels covered with insect-proof nets by using the weather data outside the tunnel and information about the structure of the tunnels and crop as inputs. From the results obtained in this study, it can be concluded that the model developed in this study can give a satisfactory predictions and can be used for decision making for predicting the humidity-temperature inside the tunnel, optimum the structure of tunnel and the service of agricultural meteorology.
引文
[1]平英华,胡进鑫,何生保.我国设施农业发展体系建设构想[J].现代农业,2007,2:40-42.
    [2]高翔,齐新丹,李骅.我国设施农业的现状与发展对策分析[J].安徽农业科学,2007,35(11):3453-3454.
    [3]刘宏军.关于我国设施农业、设施园艺业发展现状与对策研究[J].农业与技术,2007,27(4):5-8.
    [4]张英,徐晓红,田子玉.我国设施农业的现状、问题及发展对策[J].现代农业科技,2008,12:83-85.
    [5]Young P C, Lees M.J. Silmplicity out of complexity in glasshouse climate modeling[J]. Acta Horticulturae.1996,(406):15-28.
    [6]Bakker J C. Glasshouse with closed cover and ventilation system for air treatment[J]. Acta Hortieulturae.1992,(312):115.
    [7]Bakker J C.1995. Greenhouse climate control:constraints and limitation[J]. Acta Horticulturae, 1995, (399):25-35.
    [8]Korner O, Challa H. Process-based humidity control regime for greenhouse crops[J]. Computers and Electronics in Agriculture.2003,39:173-192.
    [9]崔引安.农业生物环境工程[M].北京:中国农业出版社,1994.
    [10]Businger J A. The glasshouse climate. Physics of plant environment[M]. Amsterdam:North Holland Publing company,1963:277-318.
    [11]Takakura T, Jordan K A, Boyd L L. Dynamic simulation of plant growth and environment in the greenhouse[J]. Transactions of the ASAC,1971,14(5):964-971.
    [12]Gerard P A Bot. Greenhouse climate:from physical processes to a dynamic model:[PHD thesis].Wageningen, The Netherlands:Agriculture University,1983.
    [13]Deltour J, de Halleux D, Nijskens J, et al. Dynamic modeling of heat and mass transfer in greenhouses[J]. Acta Horticulturae,1985,174:119-126.
    [14]Nijsken J, de Halleux D, Deltour J. Sensitivity study of a greenhouse dynamic climate model. Bull.Rech.Agron[J]. Gembloux,1991,26(3):389-410.
    [15]Gpieters J, Deltour J. Performances of greenhouses with the presence of condensation on cladding materials[J]. J.agric.Engng Res,1997,68:125-137.
    [16]Vollebregt H J.H,van de Braak N J. Analysis of radiative and conveetive heat exchange at greenhouse walls[J]. J. Agric. Eng. Res.1995,60(2):99-106.
    [17]Pieters J G, Deltour J M. Performances of greenhouses with the presence of condensation on cladding materials[J]. J.Agric. Eng. Res.1997,68(2):125-137.
    [18]Wang S, Zhu S, Deltour J. Simulation and measurement of tunnel greenhouse climate[J]. Trans. Chin. Soc. Agric. Eng.1997,13(4):139-144.
    [19]Navas L M, de la Plaza S, Garcia J L, Duran J M, Retamal N, Luna L, Benavente R. Formulation and sensitivity analysis of a dynamic model of the greenhouse climate validation for a mild Mediterranean climate[J]. Acta Horticulturae.1998,452:305-312.
    [20]Jolliet O. HORTITRANS, A model for predicting and optimizing humidity and transpiration in greenhouse[J]. Journal of Agricultural Engineering Research,1994,57(1):23-57.
    [21]Stanghellini C, De Jong T. A model of humidity and its applications in greenhouse [J]. Agricultural and forest meteorology,1995,76:129-148.
    [22]Critten D L. Direct sunlight losses in North-South alighted Multi-span greenhouses with symmetric roofs at UK Latitudes[J]. Agric. Eng. Res,1988,40(2):71-79.
    [23]Yang X. The microclimate and transpiration of a greenhouse cucumber crop. Trans of the ASAE, 1989,32(6):2143-2150.
    [24]Albright L. D, Both A.J, Chiu A. J. Controlling greenhouse light to a consistent daily integral[J]. Trans of the ASAE,2000,43(2):421-431.
    [25]杜军,王怀彬,杨励丹.温室微气候及其供热技术研究发展现状[J].农业系统科学与综合研究,2000,16(2):135-138.
    [26]李良晨.保护地设施内的热湿状态的计算方法[J].西北农业大学学报,1991,19(4):25-32.
    [27]李元哲,吴德让,于竹.日光温室微气候的模拟与实验研究[J].农业工程学报,1994,10(1):130-136.
    [28]杨晓光,陈端生,郑海山.日光温室气象环境综合研究(四):日光温室地温场模拟初探[J].农业工程学报,1994,10(1):150-156.
    [29]陈青云,汪政富.节能型日光温室热环境的动态模型[J].中国农业大学学报,1996,1(1):67-72.
    [30]陈端生.中国节能日光温室建筑与环境研究进展.农业工程学报[J],1994,3:123-129.
    [31]郭慧卿,李振海,张振武,等.日光温室温度环境动态模拟:数学模型的建立与程序验证[J].沈阳农业大学学报,1994,25(4):438-443.
    [32]郦伟,董仁杰,汤楚宇,等.日光温室的热环境理论模型[J].农业工程学报,1997,13(2):160-163.
    [33]董仁杰.生态温室系统环境研究[Phd]:中国农业大学,1997.
    [34]司慧萍,苗香雯,崔绍荣.温室动态温度预测模型及试验研究[J].农机化研究,2003,4:182-184.
    [35]杜尚丰,王一鸣,马承伟,等.温室环境温度智能控制算法研究[J].计算机测量与控制,2003,11(11):850-852.
    [36]陈端生,王刚.几种日光温室外保温覆盖材料的保温性能[J].农业工程学报,1997,12():108-115.
    [37]邱建军,李哲敏.温室保温覆盖材料传热系数的测定[J].农业工程学报,1997,12(A00):116-122.
    [38]周新群,董仁杰.日光温室外保温蜂窝结构覆盖材料的研究[J].农业工程学报,1998,14(14):159-163.
    [39]亢树华,陈端生.节能型日光温室墙体材料及结构的研究[J].中国蔬菜,1992,(6):1-5.
    [40]佟国红,王铁良,白义奎,等.日光温室建筑参数对室内温度环境的影响[J].沈阳农业大学学报,2003,34(3):203-206.
    [41]李树海,马承伟,张俊芳,等.多层覆盖连栋温室热环境模型构建[J].农业工程学报,2004,20(3):217-221.
    [42]戴剑锋,罗卫红,徐国彬,等.长江中下游地区Venlo型温室空气温湿度以及黄瓜蒸腾速率模拟研究[J].农业工程学报,2005,21(5):107-112.
    [43]Korner O, Challa H. Process-based humidity control regime for greenhouse crops[J]. Computers and Electronics in Agriculture,2003,39:173-192.
    [44]Bailey B J. Constraints, limitations and achievements in greenhouse natural ventilation[J]. Acta Horticulturae,2000,534:21-30.
    [45]Boulard T, Feuilloley P, Kittas C. Natural ventilation performance of six greenhouse and tunnel types[J]. Journal of Agricultural Engineering Research,1997,67:249-266.
    [46]Baptists F J, Bailey B J, Randall J M et al. Greenhouse ventilation rate:theory and measurement with tracer gastechniques[J]. Journal of Agricultural Engineering Research,1999,72:363-374.
    [47]Kittas C, Boulard T, Papadakis G. Natural ventilation of a greenhouse with ridge and side openings: sensitivity to temperature and wind effects[J]. Transactions of the ASAE,1997,40 (2):415-425.
    [48]Boulard T, Baille A. Modelling of air exchange in a greenhouse equipped with continuous roof vents[J]. Journal of Agricultural Engineering Research,1995,61:37-48.
    [49]Fernandez J E, Bailey B J. Measurements ans prediction of greenhouse ventilation rates[J]. Agric.For.Meteorol.,,1992,58:229
    [50]Papadakis G, Mermier M, Meneses J F et al. Measurement and analysis of air exchange rates in a greenhouse with continuous roof and side openings[J]. Journal of Agricultural Engineering Research,1996,63:219-228.
    [51]Fatnassi H, Boulard T, Demrati H et al. Ventilation performance of a large canarian-type greenhouse equipped with insect-proof nets. Biosystems Engineering,2002,82 (1):97-105.
    [52]Okushima L, Sase S, Nara M. A support system for natural ventilation design of greenhouses based on computational aerodynamics. Acta Horticulturae,1989,284:129-136.
    [53]Kacira M, Sase S, Okushima L. Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind induced ventilation[J]. Transactions of the ASAE,2004, 47(6):2059-2067.
    [54]Boulard T, Wang S. Experimental and numerical study on the heterogeneity of crop transpiration in a plastic tunnel[J]. Computers and Electronics in Agriculture,2002,34(1-3):173-190.
    [55]Molina-Aiz F D, Valera D L, Alvarez A J. Measurement and simulation of climate inside Almeria-type greenhouses using computational fluid dynamics[J]. Agricultural and Forest Meteorology,2004,125(1-2):33-51.
    [56]周林光.置换通风及其数值模拟.[硕士学位论文].上海:同济大学,1996
    [57]蔡龙俊,鲁雅萍,蔡志红.农业温室通风系统的设计与研究[J].节能技术,2000,18(11):19-23.
    [58]司慧萍,苗香雯.华东型连栋塑料温室自然通风开窗度模型及试验研究[J].浙江大学学报(农业与生命科学版),2005,31(1):113-118.
    [59]刘方,弓南,严治军.建筑开口流量系数及其对火灾烟流的影响[J].重庆建筑大学学报,2000,22(3):86-92.
    [60]王吉民,孙炳楠,楼文娟.双坡屋面薄膜结构模型风压系数的风洞试验研究[J].工业建筑,2002,32(4):58-60.
    [61]侯翠萍,马承伟,杜尚丰.温室自然通风量计算中风压系数的研究[J].中国农业大学学报,2007,12(5):73-78.
    [62]李永欣,李保明,李真,等Venlo型温室夏季自然通风降温的CFD数值模拟[[J].中国农业大学学报,2004,9(6):44-48.
    [63]童莉,张政,陈忠购,等.机械通风条件下连栋温室速度场和温度场的CFD数值模拟[J].中国农业大学学报,2003,8(6):33-37.
    [64]陈教料,胥芳,张立彬,等.基于CFD技术的玻璃温室加热环境数值模拟[J].农业机械学报,2008,39(8):114-118.
    [65]Yazar A, Howell TA, Dusek DA, et al. Evaluation of crop water stress index for LEPA irrigatedcorn. Irrigation Science,1999,18:171-180.
    [66]Flerchinger GN, Kustas WP, Wehz MA. Simulating surface energy fluxes and radiometric surface temperatures for two arid vegetation communities using the SHAW model. Journal of Applied Meteorology,1998,37:449-460.
    [67]Young M H, Wierenga P J, Mancino C F. Monitoring near-surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry. Socience Society of America Journal, 1997,61:1138-1146.
    [68]Bailey B, Montero J, Biel C, et al. Transpiration of Ficus benjamina:comparison of measurements with predictions of the Penman-Monteith model and a simplified version[J]. Agricultural and Forest Meteorology,1993,65:229-243.
    [69]Boulard T, Wang S. Greenhouse crop transpiration simulation from external climate conditions[J]. Agricultural and Forest Meteorology,2000,100:25-34.
    [70]Montero J L, Anton A, Munoz P, et al. Transpiration from geranium growth under high temperatures and low humidities in greenhouses[J]. Agricultural and Forest Meteorology,2001, 107:323-332.
    [71]Saylan L, Bernhofer C. Using the Penman-Monteith approach to extrapolate soybean evapotranspiration[J]. Theor Appl Climatol,1993,46:241-246.
    [72]Bhaskar J C. Global pattern of potential evaporation calculated from the Penman-Monteith equation using satellite and assimilated data[J]. Remote Sens Environ,1997,61:64-81.
    [73]Katsoulas N A, Baille A, Kittas C. Effect of misting on transpiration and conductances of a greenhouse rose canopy[J]. Agricultural and Forest Meteorology,2001,106:233-247.
    [74]Evangelina Medrano, Pilar Lorenzo, Maria Cruz Sanchez-Guerrero, et al. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions[J]. Scientia Horticulturae,2005,105:163-175.
    [75]Boulard T, Wang S. Greenhouse crop transpiration simulation from external climate conditions. Agricultural and Forest Meteorology[J],2000,100:25-34.
    [76]Markus Moller, Josef Tanny, Yan Li, Shabtai Cohen. Measuring and predicting evapotranspiration in an insect-proof screenhouse[J]. Agricultural and Forest Meteorology,2004,127:35-51
    [77]Leonardi C, Baille A, Guichard S. Predicting transpiration of shaded and non-shaded tomato fruits under greenhouse environments[J]. Scientia Horticulturae,2000,84:297-307.
    [78]Fatnassi H, Boulard T, Lagier J. Simple indirect estimation of ventilation and crop transpiration rates in a greenhouse[J]. Biosystems Engineering,2004,88 (4):467-478.
    [79]雷水玲,孙忠富.基于气候阻力的温室黄瓜蒸腾速率模拟[J].农业工程学报,2006,22(9):176-179.
    [80]王晓丽,邓璐娟.温室作物模糊蒸腾模型的设计与仿真[J].现代化农业,2004,10:30-32.
    [81]陈新明,蔡焕杰,李红星,等.温室大棚内作物蒸发蒸腾量计算[J].应用生态学报,2007,18(2):317-321.
    [82]戴剑锋,金亮,罗卫红,等.长江中下游Venlo型温室番茄蒸腾模拟研究[J].农业工程学报,2006,22(3):99-103.
    [83]李雪,毛罕平,左志宇,等.温室内草皮蒸腾量预测的试验研究[J].农机化研究,2008:119-121.
    [84]Kittas C, Boulard T, Bartzanas T, Katsoulas N, Mermier M. Influence of an insect screen on greenhouse ventilation[J]. Transactions of the ASAE,2002,45(4):1083-1090.
    [85]Shilo E, Teitel M, Mahrer Y, Boulard T. Air-flow patterns and heat fluxes in roof-ventilated multi-span greenhouse with insect-proof screens[J]. Agricultural and Forest Meteorology,2004, 122:3-20.
    [86]Miguel A F, van de Braak, N J, Silva A M, Bot G P A, Physical modeling of natural ventilation through screens and windows in greenhouses[J]. Journal of Agricultural Engineering Research, 1998,70:165-176.
    [87]沈明卫,郝飞麟.连栋塑料温室自然通风流场的稳态模拟—防虫网对温室内流场的影响[J].浙江大学学报(工学版),2006,40(11):1582-1587.
    [88]王双喜,李志伟,刘淑珍,等.防虫网对节能日光温室通风性能影响的研究[J].农业工程学报,2002,18(5):123-126.
    [89]侯翠萍,马承伟,王顺生,等.温室防虫网通风局部阻力试验研究[J].农业工程学报,2007,23(1):179-182.
    [90]陈家金,吴振海,卓先贻.蔬菜防虫网覆盖栽培的小气候效应分析[J].福建农业科技,2000,1:12-13.
    [91]李军,施建萍.遮阳防虫网的小气候效应及其对鸡毛菜生长的影响.西南农业大学学报(自然科学版),2004,26(3):356-359,367.
    [92]曹卫星,罗卫红.作物系统模拟与智能管理[M],北京:华文出版社.2000.
    [93]李晓明,孙红敏.作物生长模拟模型的研究与应用[J].东北农业大学学报.2005,36(6):812-815.
    [94]Moriondo M, Orlandini S, Villalobos F J. Modelling compensatory effects of defoliation on leaf area growth and biomass of sunflower (Helianthus annuus L.) [J]. European Journal of Agronomy, 2003,19:161-171.
    [95]Probert M. E.1998.Water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems[J]. Agn, System.1998,50(1),28.
    [96]日片节男.番茄生理基础[M].上海:上海科技出版社,1985.
    [97]Madsen E. Effect of CO2 concentration on the morphological, histological and cytological changes in tomato plants. Acta Agricultures Scandinavia,1973,23:241-246.
    [98]中国农业科学院蔬菜研究所主编.中国蔬菜栽培学[J].北京:农业出版社,1987.
    [99]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(5):861-867.
    [100]Marcelis L F M, Gijzen H. A model for prediction of yield and quality of cucumber fruits [J]. Acta Horticulturae,1998:476,237-242.
    [101]Heuvelink E, Marcelis L F M. Influence of assimilate supply on leaf formation in sweet pepper and tomato[J]. Journal of Horticultural Science,1996,71:405-414
    [102]Heuvelink E, Marcelis L F M. Evalution of dynamic simulation model tomato crop growth and development [J]. Annals of Botany,1999,83:413-422.
    [103]李永秀,罗卫红,倪季恒,等.用辐热积法模拟温室黄瓜叶面积、光合速率和干物质产量[J].农业工程学报,2005,21(12):131-136.
    [104]殷新佑.水稻发育温度效应的非线性模型及其应用[J].作物学报,1994,20(6):692-700.
    [105]米娜,姚克敏.我国主要水稻雄性不育系的光温特性研究[J].南京气象学院学报,2005,28(1):108-116.
    [106]邱新法,曾燕.影响我国冬小麦产量的气象因子研究[J].南京气象学院学报,2000,23(4):575-578.
    [107]邓振墉,尹宪志,陈艳华,等.甘肃三种特色作物气候生态适应性分析与适生种植区划[J].南京气象学院学报,2004,27(6):814-821.
    [108]陈慧,耿建武,王永红.冷、暖冬预测与三麦等越冬作物防减灾对策研究[J].气象利学,2003,23(4):491-495.
    [109]Perry K B, Wehner T C, Johnson G L. Comparison of 14 methods to determine heat unit requirements for cucumber harvest[J]. Hortscieuce,1986,21(4):419-423.
    [110]Perry K B, Wehner T C. Prediction of cucumber harvest date using a heat unit model[J]. Hortscience,1990,25(3):405-406.
    [111]Marcelis L F, Baan Hofman-Eijer L R. Effect of temperature on the growth of individual cucumber fruit[J]. Physiological Plant,1993,87(3):313-320.
    [112]Marcelis LFM, Gijzen H. A model for prediction of yield and quality of cucumber fruits[J]. Acta Horticulturae,476,237-242.
    [113]杨再强,罗卫红,陈发棣,等.温室标准切花菊叶面积预测模型研究[[J].中国农业科学,2007,40(11):2569-2574.
    [114]van Keulen H, Penning de Vries FWT, Drees EM. Sumulation of plant growth and crop production[M]. In:Penning de Vires&van Laar eds. Simulation Monographs. Wageningen pudec, the Netherlands,1982,87-97.
    [115]de Visser CLM. ALCEPAS, an onion growth model based on SUCROS87.1. Development of the model[J]. Journal of Horticultural Science,1994,69:501-518.
    [116]Heuvelink E. Tomato growth and yield:quantitative analysis and synthesis. PhD dissertation, Wageningen Agriculture University, the Netherlands,1996:235-254.
    [117]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635.
    [118]杨再强,罗卫红,陈发棣,等.温室标准切花菊叶面积预测模型研究[[J].中国农业科学,2007,40(11):2569-2574.
    [119]刁明,戴剑锋,罗卫红,等.温室甜椒叶面积指数形成模拟模型[J].应用生态学报,2008,19(10):2277-2283.
    [1]吕家龙.蔬菜栽培学各论(南方本)[M].北京:中国农业出版社,2001.
    [2]郁樊敏.现代保护地蔬菜栽培实用技术[M].上海:上海科学技术出版社,1998.
    [3]Montero J I, Anton A. Analysis of thermally driven ventilation in tunnel greenhouses using small scale models[J]. Journal of Agricultural Engineering Research,2001,79(2):213-222.
    [4]Mears D R, Both A J. A positive pressure ventilation system with insect screening for tropical and subtropical greenhouse facilities[J]. Acta Horticulturae,2002,578:125-132.
    [5]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003,19(4):241-244.
    [6]李军,杨秋珍,吴元中.非加温型四连栋塑料温室内外温湿度关系研究[J].气象,2005,31(8):22-24.
    [1]郁樊敏.现代保护地蔬菜栽培实用技术[M].上海:上海科学技术出版社,1998.
    [2]李军,施建萍.李军,施建萍.遮阳防虫网的小气候效应及其对鸡毛菜生长的影响[J].西南农业大学学报(自然科学版),2004,26(3):356-359、367.
    [3]Evangelina Medrano, Pilar Lorenzo, Maria Cruz Sanchez-Guerrero, et al. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions[J]. Scientia Horticulturae,2005,105:163-175.
    [4]Boulard T, Wang S. Greenhouse crop transpiration simulation from external climate conditions. Agricultural and Forest Meteorology,2000,100:25-34.
    [5]Markus Moller, Josef Tanny, Yan Li, Shabtai Cohen. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agricultural and Forest Meteorology,2004,127:35-51.
    [6]Leonardi C, Baille A, Guichard S. Predicting transpiration of shaded and non-shaded tomato fruits under greenhouse environments[J]. Scientia Horticulturae,2000,84:297-307.
    [7]Fatnassi H, Boulard T, Lagier J. Simple Indirect Estimation of Ventilation and Crop Transpiration Rates in a Greenhouse[J]. Biosystems Engineering,2004,88 (4):467-478.
    [8]De Zwart H F. Analyzing-saving option in greenhouse cultivation using a simulation model[D]. The Netherlands:Agricultural University of Wageningen,1996.
    [9]Pieters J G, Deltour J M. Performances of greenhouses with the presence of condensation on cladding materials[J]. Journal of Agricultural Engineering Research,1997,68(2):125-137.
    [10]Stanghellini C, Jong T. A model of humidity its applications in a greenhouse[J]. Agriculture and Forest Meteorology,1995,76:129-148.
    [11]Gary C, Tchamitchian M, Bert in N, et al. SIMULSERRE:an educational software simulating the greenhouse-crop systems [J]. Acta Horticulturae,1998,456:451-458.
    [12]戴剑锋,罗卫红,徐国彬,等.长江中下游地区Venlo型温室空气温湿度以及黄瓜蒸腾速率模拟研究[J].农业工程学报,2005,21(5):107-112.
    [13]雷水玲,孙忠富.基于气候阻力的温室黄瓜蒸腾速率模拟[J].农业工程学报,2006,22(9):176-179.
    [14]胡弘劫,毛罕平.夏季温室内黄瓜蒸腾规律的研究[J].农业装备技术,2006,32(3):21-22.
    [15]彭致功,杨培岭,段爱旺,等.日光温室条件下番茄植株蒸腾规律研究[J].干旱地区农业研究,2004,22(1):62-65.
    [16]彭致功,段爱旺,刘祖贵,等.日光温室条件下茄子植株蒸腾规律的研究[J].灌溉排水,2002,21(2):47-50.
    [17]李树海.华北型连栋温室热环境模型[D].北京:中国农业大学,2003.
    [18]张亚红,陈端生.日光温室内空气湿度数学模型初探[J].农业工程学报,1998,14(增),109-114.
    [19]郦伟,董仁杰,汤楚宇,等.日光温室的热环境理论模型[J].农业工程学报,1997,13(2):160-163.
    [20]李元哲,吴德让,于竹.日光温室微气候的模拟与实验研究[J].农业工程学报,1994,10(1):130-136.
    [21]邓玲黎,李百军,毛罕平.长江下游地区温室内温湿度预测模型的研究[J].农业工程学报,2004,20(1):263-266.
    [22]司慧萍,苗香雯,崔绍荣.温室动态温度预测模型及试验研究[J].农机化研究,2003,4:182-184.
    [23]刘钰,L. S. Pereira, J. L. Teixeira.参照腾发量的新定义及计算方法对比[J].水利学报,1997,6:27-33.
    [24]Wang S, Boulard T, Haxaire R. Air speed profiles in a naturally ventilated greenhouse [J]. Agriculture Forest Meteorology,1999,96:181-188.
    [25]Boulard T, Draoui B. Natural ventilation of a greenhouse with continuous roof vents:measurements and data analysis[J]. Journal of Agricultural Engineering Research,1995,61:27-36.
    [26]Bailie M, Laury J P, Baille A. Influence of the covering material on the thermal exchanges in greenhouse[J]. Agronomie,1983,3(3):197-206.
    [27]祝庆棠.气象学[M].北京:中国林业出版社,2002.
    [28]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.
    [29]Young M H, Wierenga P J, Mancino C F. Monitoring near-surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry. Socience Society of America Journal, 1997,61:1138-1146.
    [30]Bailey B, Montero J, Biel C, et al. Transpiration of Ficus benjamina:comparison of measurements with predictions of the Penman-Monteith model and a simplified version[J]. Agricultural and Forest Meteorology,1993,65:229-243.
    [31]Boulard T, Wang S. Greenhouse crop transpiration simulation from external climate conditions[J]. Agricultural and Forest Meteorology,2000,100:25-34.
    [32]Stanghellini C. Transpiration of greenhouse crops, an aid to climate management[M]. The Netherlands:Agricultural University of Wageningen,1987.
    [33]Monteith J L, Unsworth M H. Principles of environmental physics. London:Edward Arnold,1990.
    [34]Monsi M, Saeki T. Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die stoff-produktion[J]. Japanese Journal of Botany,2001,14:22-52.
    [35]中国气象局.地面气象观测规范.北京:气象出版社,2003.
    [36]翁笃鸣,陈万隆,沈觉成,等.小气候和农田小气候[M].农业出版社,1981.
    [37]Boulard T, Baille A, Mermier M, et al. Measures et modelisation de la resistance stomatique foliaire et de la transpiration d'un couvert de tomate de serre[J]. Agronomie,1991,11:259-274.
    [38]Boulard T, Wang S. Greenhouse crop transpiration simulation from external climate conditions. Agricultural and Forest Meteorology,2000,100:25-34.
    [39]Marcelis L F M, Gijzen H. A model for prediction of yield and quality of cucumber fruits [J]. Acta Horticulturae,1998:476,237-242.
    [40]Heuvelink E, Marcelis L F M. Influence of assimilate supply on leaf formation in sweet pepper and tomato[J]. Journal of Horticultural Science,1996,71:405-414.
    [41]Heuvelink E, Marcelis L F M. Evalution of dynamic simulation model tomato crop growth and development [J]. Annals of Botany,1999,83:413-422.
    [42]李永秀,罗卫红,倪季恒,等.用辐热积法模拟温室黄瓜叶面积、光合速率和干物质产量[J].农业工程学报,2005,21(12):131-136.
    [43]米娜,姚克敏.我国主要水稻雄性不育系的光温特性研究[J].南京气象学院学报,2005,28(1): 108-116.
    [44]邱新法,曾燕..影响我国冬小麦产量的气象因子研究[J].南京气象学院学报,2000,23(4):575-578.
    [45]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635.
    [46]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(5):861-867.
    [47]杨再强,罗卫红,陈发棣,等.温室标准切花菊叶面积预测模型研究[[J].中国农业科学,2007,40(11):2569-2574.
    [48]刁明,戴剑锋,罗卫红,等.温室甜椒叶面积指数形成模拟模型[J].应用生态学报,2008,19(10):2277-2283.
    [49]袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜发育模拟模型研究[J].园艺学报,2005,32(2):262-267.
    [50]牛文元.农业自然条件分析[M].北京:农业出版社,1984.
    [1]刘宜生主编.蔬菜生产技术大全[M].北京:中国农业出版社,2001.
    [2]胡繁荣.蔬菜栽培学[M].上海:上海交通大学出版社,2003.
    [3]黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2004.
    [4]高亮之.农业模型学基础[M].香港:天马图书有限公司,2004.
    [5]苗香雯,崔绍荣.华东型连栋塑料温室室内光环境的研究[J].浙江大学学报(农业与生命科学版),2000,26(5):533-536.
    [6]刘贤赵,康绍忠.不同光照条件下作物蒸腾量计算的研究[J].水利学报,2001,6:45-50.
    [7]侯翠萍,马承伟,杜尚丰等.温室自然通风量计算中风压系数的研究[J].中国农业大学学报,2007,12(5):73-78.
    [8]范海平,曾小林.基于计算流体动力学的流量系数研究[J].机电设备,2007,2:9-12.
    [9]张东飞,苏中地,史晓妍,等.不同雷诺数下均速管流量计流量系数的确定[J].中国计量学院学报,2007,18(1):18-21.
    [10]刘方,弓南,严治军.建筑开口流量系数及其对火灾烟流的影响[J].重庆建筑大学学报,2000,22(3):86-92.
    [11]王吉民,孙炳楠,楼文娟.双坡屋面薄膜结构模型风压系数的风洞试验研究[J].工业建筑,2002,32(4):58-60.
    [12]侯翠萍,马承伟,杜尚丰.温室自然通风量计算中风压系数的研究[J].中国农业大学学报,2007,12(5):73-78.
    [1]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635.
    [2]杨再强,罗卫红,陈发棣,等.温室标准切花菊叶面积预测模型研究[[J].中国农业科学,2007,40(11):2569-2574.
    [3]Boulard T, Wang S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel[J]. Computers and Electronics in Agriculture,2002,34:173-190.
    [4]Markus Moller, Josef Tanny, Yan Li, Shabtai Cohen. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agricultural and Forest Meteorology,2004,127:35-51
    [5]郑有飞,颜景义,张卫国.小麦气孔阻力对气象条件的响应[J].中国农业气象,1995,16(3):9-13.
    [6]张启昌,杜凤国,夏富才,等.美国椴光合蒸腾的生理生态[J].北华大学学报(自然科学版),2000,1(5):436-438.
    [1]李元哲,吴德让,于竹.日光温室微气候的模拟与实验研究[J].农业工程学报,1994,10(1):130-136.
    [2]杨晓光,陈端生,郑海山.日光温室气象环境综合研究(四):日光温室地温场模拟初探[J].农业工程学报,1994,10(1):150-156.
    [3]郦伟,董仁杰,汤楚宇,等.日光温室的热环境理论模型[J].农业工程学报,1997,13(2):160-163.
    [4]司慧萍,苗香雯,崔绍荣.温室动态温度预测模型及试验研究[J].农机化研究,2003,4:182-184.
    [5]李树海,马承伟,张俊芳,等.多层覆盖连栋温室热环境模型构建[J].农业工程学报,2004,20(3):217-221.
    [6]戴剑锋,罗卫红,徐国彬,等.长江中下游地区Venlo型温室空气温湿度以及黄瓜蒸腾速率模拟研究[J].农业工程学报,2005,21(5):107-112.
    [7]戴剑锋,金亮,罗卫红,等.长江中下游Venlo型温室番茄蒸腾模拟研究[J].农业工程学报,2006,22(3):99-103.
    [8]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(5):861-867.
    [9]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005, 38(8):1629-1635.
    [10]杨再强,罗卫红,陈发棣,等.温室标准切花菊叶面积预测模型研究[[J].中国农业科学,2007,40(11):2569-2574.
    [11]Boulard T, Wang S. Greenhouse crop transpiration simulation from external climate conditions. Agricultural and Forest Meteorology[J],2000,100:25-34.
    [12]Wang S, Zhu S, Deltour J. Simulation and measurement of tunnel greenhouse climate[J]. Trans. Chin. Soc. Agric. Eng.1997,13(4):139-144.
    [13]刘方,弓南,严治军.建筑开口流量系数及其对火灾烟流的影响[J].重庆建筑大学学报,2000,22(3):86-92.
    [14]Kittas C, Boulard T, Papadakis G. Natural ventilation of a greenhouse with ridge and side openings: sensitivity to temperature and wind effects[J]. Transactions of the ASAE,1997,40 (2):415-425.
    [15]王吉民,孙炳楠,楼文娟.双坡屋面薄膜结构模型风压系数的风洞试验研究[J].工业建筑,2002,32(4):58-60.
    [16]侯翠萍,马承伟,杜尚丰.温室自然通风量计算中风压系数的研究[J].中国农业大学学报,2007,12(5):73-78.
    [17]于强编著.农田生态过程与模型[M].北京:科学出版社,2007.
    [18]郑有飞,颜景义,张卫国.小麦气孔阻力对气象条件的响应[J].中国农业气象,1995,16(3):9-13.
    [19]张启昌,杜凤国,夏富才,等.美国椴光合蒸腾的生理生态[J].北华大学学报(自然科学版),2000,1(5):436-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700