自动气象站可视化监控系统与防雷电功能设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动气象站作为地面气象观测的主要方式,改变了人工观测在时空密度和精确度方面的不足,提高了气象观测效率。但是自动气象站长期运行在户外,极易受到各种因素的干扰,因此,为保障自动气象站的正常运行,提高气象观测准确性,研究自动气象站的保障技术是非常必要的,且具有重要意义。
     本文分析了自动气象站运行中遇到的问题,研究了自动气象站保障技术措施,提出了自动气象站可视化监控方案,采用嵌入式技术设计了自动气象站可视化监控系统,实现对自动气象站的可视化监控管理。同时,研究了自动气象站的雷电防护方法,对自动气象站进行接地系统、防直击雷、防感应雷设计,防止雷电过电流对自动气象站设备的损坏。具体研究内容为:
     利用自动气象站气象要素传感器与采集器的原有连接方式,通过增加监控主控板和C328摄像模块,复用原自动气象站的通信方式,提出了可视化监控系统的整体方案。
     采用ARM7体系结构的LPC2387处理器,设计了最小系统及串口通信、CAN总线和存储等功能电路,构成监控系统硬件运行平台,并设计了上位机命令、RTC定时和红外感应三种硬件方式控制C328摄像模块。
     软件方面,移植μ C/OS-II操作系统到LPC2387处理器,并进行裁剪。然后划分了数据发送、C328驱动、命令接收处理、气象要素数据接收处理等四个任务及其优先级,通过使用邮箱和信号量两种通信机制,实现任务间的快速切换和数据传递。
     研究分析了自动气象站的雷电防护技术与方法,采用特定规格的接地体,对观测场地进行联合共用接地网设计,降低了各地网间的电位差,使雷电流泄放入大地。采用在风杆上架设避雷针的方法,通过规范施工,防止自动气象站的设备遭受直击雷的破坏。在RS485总线接口、电源接口处使用浪涌保护器,避免感应雷过电压的冲击,保障数据安全传输及电源正常工作,并在PCB板电源接口处进行二级防雷,防止过电压对主控系统造成损坏。
     采用可视化监控系统和防雷措施的自动气象站已在野外进行了一年的实验运行,取得了良好的应用效果。实验表明:该监控系统能保证气象要素信息的可靠获取,并能够实时监控自动气象站的运行情况,系统稳定、可靠且易于移植。防雷效果经实践检验,可对自动气象站进行有效的雷电防护,该防雷措施规范合理,具有推广价值。
As the main way of surface weather observations, automatic weather stations (AWS) improve the efficiency of meteorological observations by overcoming the defects such as low temporal and spatial distribution density and low accuracy of artificial observations. However, due to long-running outdoor, AWS is vulnerable to the interferences of various factors. Therefore, in order to maintain normal operation of AWS and improve the accuracy of meteorological observations, it is very necessary and significant to make research on guarantee technology of AWS.
     This paper analyzes the problems encountered in the operation of an automatic weather station, researches the measures of AWS guarantee technology, the AWS visualization monitoring program is proposed, and the AWS visualization monitoring system is designed with embedded technology, which achieves the visualization monitoring and management of the automatic weather station. Meanwhile, the lightning protection method of AWS is studied, including such designs as grounding system, direct lightning protection, induction lightning protection, to prevent the damage posed by lightning over-current on the automatic weather station equipment. The specific research contents include:
     Using the original connections between the meteorological elements sensor and collectors on AWS, adding a main control board used for monitoring and a C328camera module, reusing the original communication means of the AWS, the whole program of the visualization monitoring system is developed.
     Using ARM7architecture LPC2387chip, functional circuits such as the smallest system, serial communication ports, CAN bus and storage circuit are designed, which consist of the hardware platform of the monitoring system, according to the monitoring requirements, three hardware approaches including host computer command, RTC timing and infrared sensing are proposed to drove the C328camera module.
     As to software, the cut μC/OS-II operating system is transplanted to the LPC2387processor. Then the priorities of such four tasks as data transmission, C328driver, command receiving and processing and meteorological elements data receiving and processing are divided, through two communication mechanisms of mailboxes and semaphores, quick tasks switch and data transmission can be achieved.
     The technology and method of AWS lightning protection are analyzed and researched, joint hared grounding grid designed with specific specifications grounding electrode under the bservation site is introduced to reduce the potential difference among the ground screens, so that the lightning current discharges into the earth. Erecting the lightning rod on the wind shaft by the standard construction, the AWS equipments can be protected against the damages posed by direct lightning flash. Surge protective device is installed at the RS485interface and power port to avoid the over-voltage impact of the induction lightning, ensuring the security of data transmission and the power supply; the2-level lightning protection is adopted at the power connector on the PCB board to prevent the damage on the core chips of control system posed by the over-voltage.
     An AWS outfitted the visualization monitoring system and lightning protection measures me ntioned above has been running in the field more than one year, and satisfactory results are obtain ed, the experiment results show that the monitoring system can ensure the reliable access of the meteorological elements information, real-time monitoring on the running AWS can be achieved, and the monitoring system is stable, reliable and easy to transplant. Though the practical applicati on, the lightning protection measures can effectively protect the automatic weather station from t he damage posed by lightning, and the lightning protection measures are normative and reasonabl e, worthy of promoting.
引文
[1]孟昭晖,李庆军.自动气象站综述[J].气象海洋水文仪器,2009,4:054-059.
    [2]和文弄.气象事业在三次产业中的定位和发展研究[J].气象软科学,2005,1:113-120.
    [3]曾波.嵌入式气象数据采集系统的研究[D].武汉理工大学,2009.
    [4]胡玉峰主编.自动气象站原理与测量方法[M].气象出版社,2004.
    [5]林英.我国自动气象站建设发展迅速自动气象站[N].光明日报.2003-08-17.
    [6]高太长,刘西川.自动气象站及气象传感器发展现状和前景分析[J].仪器仪表学报,2008,29(8):127—133.
    [7]刘兴丽.基于GPRS的多要素自动气象站的设计与实现[D].哈尔滨工程大学,2010.
    [8]郁波.自动气象站数据传输系统设计[D].南京信息工程大学,2008
    [9]朱向东.基于ARM和Linux及GPRS的自动气象站系统设计与实现[D].河北工业大学,2009.
    [10]战明君.基于GPRS的自动气象站系统[D].哈尔滨工程大学,2007.
    [11]周欣,行鸿彦,季鑫源.多功能自动气象站控制与管理系统[J].电子测量与仪器学报,2011,25(04):348-354.
    [12]朱显新,黄涛,卢珞先uC/OS和uClinux的比较[J].单片机与嵌入式系统应用,2004,(10):005-007.
    [13]杨宗德,张兵μC/OS-Ⅱ标准教程[M].北京:人民邮电出版社,2009.
    [14]董超.基于电力线载波的嵌入式协议转换器设计[D].南京理工大学,2008.
    [15]李福勤,李明.从较高电源电压获取较低直流电压的方法[J].河南机电高等专科学校学报,2008,16(04):012-013.
    [16]曾江波.GPON系统中ONU的研究与硬件设计[D].浙江工业大学,2009.
    [17]张小艳.基于嵌入式技术的USB存储系统的设计与实现[D].内蒙古大学,2011.
    [18]吕峰,王恒,李建勇.基于CAN总线的特种自动化立体仓库设计[J].机电工程,2011,28(09):1073-1085.
    [19]刘新生,余红英,王忠庆,王铁钢.基于DSP和CAN的现场总线控制系统设计[J].微计算机信息,2008,(31):061-063.
    [20]谢完成.基于LPC 2129的车载智能天线跟踪系统[J].通信技术,2009,42(5):040-047.
    [21]王洪有,邵明省.基于红外热释电处理芯片BISS0001的安全防范系统设计[J].山西电子技术,2008,(04):016-018.
    [22]赵文昌.基于RS-485总线的深度指示器研制[J].煤炭工程,2009,(12):108-110.
    [23]丁霞,司文娟,王福明.基于单片机的红外测温仪设计[J].山西电子技术,2011,(04): 021-023.
    [24]周学全.基于GPRS技术的气象监测数据实时传输系统设计[J].南通航运职业技术学院学报,2007,6(02):058-061.
    [25]陈洪图,张庆.基于μ C/OS-II的电动车电池管理系统设计[J].电源技术,2009,33(6):509-511.
    [26]李磊.基于ARM的无纸记录仪的设计[D].中国农业大学,2006.
    [27]李佳南.基于ARM的1C卡机房管理终端设计[D].成都理工大学,2009.
    [28]谭永宏.高速公路气象信息采集系统的研究[D].湖南大学,2008.
    [29]陈达军,严勇,陈钟荣,肖稳安μ C/OS-II及其在ARM微处理器上的移植与应用[J].南京气象学院学报,2006,29(2):270-273.
    [30]陈鸣丰.基于ARM和u C/OS-II的火灾报警系统研究[D].湖南大学,2009.
    [31]JEAN.J.L著,邵贝贝译.嵌入式实时操作系统μ C/OS-II [M],第2版.北京航天航空大学出版社,2003:001-405.
    [32]李毅,万衡,李慕君.基于ARM的机器人移动底盘设计[J].华东理工大学学报(自然科学版),2008,34(05):755-758.
    [33]郭荣祥,陈树树.基于ARM处理器与GPRS技术的水厂监控系统[J].微型机与应用,2010,(19):066-069.
    [34]程卫东,董永贵.利用热释电红外传感器探测人体运动特征[J].仪器仪表学报,2008,29(5):1020—1023.
    [35]韩晓萍,邵宏强.GPRS技术在电力远程抄表系统中的应用[J].电子测量与仪器学报,2005,19(4):81—84.
    [36]王久栓.浅析如何做好自动气象站防雷工程[J].科技传播,2010,(16):030-031.
    [37]卢永祺,苏远东.浅析自动气象站防雷技术[J].科技与企业,2011,(06):070-071.
    [38]何明远.关于自动气象站雷电防护的探讨[J].贵州气象,2006,30(06):039-041.
    [39]李国晋,邬铭法,孙荆茶,李杰.自动气象站雷电防护浅析[J].大众科技,2010,(03):094-095.
    [40]郑康年.防雷标准与防护措施研究[J].上海计量测试,2011,(01):007-015.
    [41]张国莉,赵苗稳,尚晓立,张革新.自动气象站防雷经验点滴[J].科技创新导报,2010,(25):123-123.
    [42]陈代亮,陈俊.自动气象站防雷板的安全性[J].气象水文海洋仪器,2010,(03):097-0909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700