温度对小菜蛾咬食后菜心释放挥发物及其功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物次生物质在植物的化学防御和植食性昆虫行为的协同进化上起着非常重要的作用,对害虫具有成虫趋避、产卵趋避、幼虫拒食或毒杀等活性。温度作为植物生长发育过程重要的环境因子,可以调节植物的次生代谢。因此,本文从温度的角度研究十字花科蔬菜—四九菜心挥发性物质释放及其对小菜蛾生物学特性的影响,对全球气候变化情况下的害虫控制具有理论指导的意义。
     研究结果表明,除15℃外,正常菜心和虫害菜心释放挥发物的量总的趋势是随着温度的升高而增加;虫害菜心释放挥发物的量与正常菜心比较都有所降低,尤其是在20℃和25℃下有显著性下降。在不同温度下虫害后烷烃类、萜烯类、酯类、醇类、酚类物质的总量都显著下降,但是虫害后烷烃类和酯类物质的含量却是增加的。除了在35℃下虫害菜心有少量的醛类物质出现,其余温度下仅在正常菜心出现且在25℃含量最高。在15℃下菜心受害前后酚类物质尤其是2,6-二叔丁基-4-甲基苯酚的峰面积和含量较高,而其余温度下则都很低。在不同温度下菜心虫害后释放邻苯二甲酸二异丁酯的量都显著下降,但是虫害后其百分含量却是增加的。在30℃下虫害后萜烯类物质量和含量都显著增加,其余温度下均有所减少。根据文献报道大多数萜烯类物质具有生物活性,而本研究结果是在不同温度下正常菜心和虫害菜心释放的萜烯类物质较烷烃类物质不仅种类少而且含量低。此外,萜烯类物质的峰面积和含量也呈现出无规律变化。
     虫害菜心挥发物对小菜蛾雄虫的引诱量较正常菜心有所减少,雌虫也是如此。说明虫害菜心营养物质的改变对小菜蛾产生了微弱的拒避作用。从虫害菜心对小菜蛾的拒避作用来看,雌虫的敏感性要高于雄虫。而虫害菜心挥发物对盘绒茧蜂雄蜂的引诱量较正常菜心显著增大,雌蜂也是如此。说明虫害菜心挥发物对盘绒茧蜂有了显著的引诱作用。从虫害菜心气味对盘绒茧蜂的引诱作用来看,雌蜂敏感性要高于雄蜂。正常菜心对小菜蛾的引诱量在25℃达到最大;虫害菜心挥发物对盘绒茧蜂的引诱量在30℃时达到最大。
     本研究有助于了解挥发性物质的活性成分,明确温度胁迫下蔬菜、小菜蛾和盘绒茧蜂之间的协同进化,进一步揭示植物-害虫-天敌之间相互作用的机理,为在全球气候变暖情况下的害虫综合治理提供新的思路。
Semiochemicals(SC) of plants play an important role on the co-evolution between chemical defence of plants and behavior of phytophagous insects. SC could protect cruciferous vegetables, including different ways, repelling of insect pests away from the plant, deterring egg laying of adults, hamperring feeding of larvae, and insect death after feed toxicity. Temperature is an important environment factor in growth and development of plants which effecting could regulate the secondary metabolism of plants. We studied on the release of volatiles of cruciferous vegetable Brassica parachinensis Bariley and their impact on biological characteristics of Plutella xylostella Linnaeus to optimize integrated control of the pest in the view of warming-up of the global climate.
     The result showed that the overall trend of volatile compounds increased in amount with the increase of temperature in intact and herbivored B. parachinensis except at 15℃. Plants damaged by diamondback moth larvae produced less volatiles in amount than the intact plants at all test temperatures between 15℃and 35℃, especially decreased significantly at 20℃and 25℃. The total amount of hydrocarbon, terpene, ester, alcohol and hydroxybenzene were all decreased significantly in herbivored plants at different temperatures, but only the percentages of hydrocarbon and ester were increased in herbivored plants. The aldehyde appeared only in herbivored plants at 35℃, but in control at all temperatures, with the content most at 25℃. The peak area and content of hydroxybenzene especially 2,6-bis(1,1-dimethylethyl)-4-methyl-phenol were obviously high in intact and herbivored leaves at 15℃, and all lower at other temperatures. The amount of 1,2-benzenedicarboxylic acid, bis (2-methylpropyl) ester was decreased significantly in herbivored plants at different temperatures, but the percentage was increased. The amount and percentage of terpene was increased significantly in herbivored plant at 30℃and decreased at other temperatures. It is reported that terpene had biological activity according to the literatures, and the result of our study showed that not only were the species of terpene fewer in intact and herbivored plants than hydrocarbon , but also the content was quite lower. Moreover, the changes of peak area and content of terpene presented no regularity.
     The numbers of male and female diamondback moth attracted to volatiles from herbivored plants were smaller than for the control. This result suggested that the nutrient change of herbivored plants showed a faint repellent effect on diamondback moth. From the repellent effect of moth herbivored plants, the susceptibility of female was attracted higher than male. The numbers of male and female Cotesia plutellae Kurdjumov attracted to herbivored plants were increased more significantly than for the intact plants, which suggested that the volatiles of herbivored plants showed a significant attractive effect on wasp. From the attractive effect of herbivored plants to wasp, the susceptibility of female wasp was higher to volatiles than for male wasp. The numbers of the control attracted to P. xylostella were most at 25℃. The numbers of herbivored plants attracted to C. plutellae were most at 30℃.
     This research helps to identify plant volatiles with biological activity, clarify the coevolution among plants, pests and natural enemies, and disclose the mechanisms of tritrophic interaction to develop a new strategy of integrated pest management in the circumstance of warm-up of global climate.
引文
Abeel S M, Vickens A K, Decker D. Comparison of European and American techniques for the analysis of volatile organic compounds in environmental matrices [J]. Journal of Chromatographic Science, 1994, 32(8): 306-311.
    Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers [J]. Analytical Chemistry, 1990, 62: 2145-2148.
    Barbosa P, Letourneau D K (eds ). Novel aspects of insect-plant interactions [M]. John Wiley and Sons, 1988.
    Barra A, Baldovini N, Lizzani C L. Chemicalanalysis of French beans (Phaseolus vulgaris L.) by headspace solid phase microextraction (HS-SPME) and simultaneous distillation/extraction (SDE) [J]. Food Chemistry, 2007, 101(3): 1279-1284.
    Bellar T A, Lichtenberg J J. Determining volatile organics at microgram-per-litre levels by gas chromatography [J]. Journal of the American Water Works Association, 1974, 66: 739.
    Birkett M A, Campbell C A M, Chamberlain K, et al.. New roles for cis-jasmone as an insect semiochemical and in plant defense [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(16): 9329-9334.
    Bolter C J, Dicke M, Van Loon J J A, et al.. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination [J]. Journal of Chemical Ecology, 1997, 23(4): 1003-1023.
    Bolzoni I, Barbieri G, Virgili R. Changes in volatile compounds of Pamm Ham during maturation [J]. Meat Science, 1996, (43): 301-310.
    Buckingham J. Dictionary of Natural Products [M]. London: Chapman and Hall, 1993.
    Bufler U, Wegmann K. Diurnal variation of monoterpene concentrations in open-top chambers and in the Welzheim forest air [J]. Atoms Environment, 1991, 25A: 251-256.
    Buttery R G, Ling L C. Corn leaf volatiles,identification using Tenax trapping for possible insect attractants [J]. Journal of Agricultural Food Chem, 1984, 32: 1104-1106.
    Cheng J A, Lou Y G, Ping X F, et al.. Isolation and identification of herbivore-induced rice synomone used by the egg parasitoid, Anagrus nilaparvatae Pang et Wang, in search for ahost [A]. Proceedings of first Asia-Pacific conference in chemical ecology [C]. Shanghai, China: Shanghai Insititute of entomology, CAS.1999, 127-128.
    De Moraes C M, Mescher M C, Tumlinson J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females [J]. Nature, 2001, 410: 577-580.
    Dement W A, Mooney H A. Mechanism of monoterpene volatilization in saliva melifera [J]. Phytochemistry, 1975, 14: 2555-2557.
    Dicke M, Sabelis M W. How do plants obtain predatory mites as bodyguards [J]. Netherlands Journal of Zoology, 1988, 38: 148-165.
    Dicke M, Sabelis M W, Takabayashi J, et al.. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control [J]. Journal of Chemical Ecology, 1990, 16 : 3091-3118.
    Dicke M. Local and systemic production of volatile herbivore-induced terpenoids, their role in plant-carnivore mutualism [J]. Journal of Plant Physiology, 1994, 143: 465-472.
    Edward M J, Robert S B, Micky D E. Effectiveness of Metal–Metal and Metal–Organic Compound Combinations against Plutella xylostella: Implications for plant elemental defense [J]. Journal of Chemical Ecology, 2006, 32(2): 239-259.
    Filella I, Penuelas J, Llusia J. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid [J]. New Phytologist, 2006, 169(1): 135-144.
    Gitelson I I, Tikhomirov A A, Kalacheva G S, et al.. Volatile metabolites of higher plant crops as a photosynthesizing life support system component under temperature stress at different light intensities [J]. Advances in Space Research, 2003, 31(7): 1781-1786.
    GouinguenéS P, Turlings T C. The effects of abiotic factors on induced volatile emissions in corn plants [J]. Plant Physiology, 2002, 129(3): 1296-1307.
    Guenther A B, Monson R K, Fall R. Isoprene and monoterpene emission rate variability: Observations with Eucalyptus and emission rate algorithm development [J]. Journal of Geophys ical Research, 1991, 96: 10,799-10,808.
    Guillot S, Peytavi L, Bureau S. Aroma characterization of various apricot varieties using headspace-solid phase microextraction combined with gas chromatography-massspectrometry and gas chromatography-olfactometry [J]. Food Chemistry, 2006, 96: 147-155.
    Harari A R, Ben-Yakir D, Rosen D. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: Scarabaeidae) [J]. Journal of Chemical Ecology, 1994, 20(2): 361-371.
    Harborne J B. Introduction to Ecological Biochemistry.4th edn [M]. London: Academic Press, 1993.
    Heil M and Bueno J C S. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(13): 5467-5472
    Jennings D W, Deutsch H M, Zalkow L H. Supercritical extraction of taxol from the bark of Taxus breviolia [J]. Supercritical Fluid, 1992, (5): 1.
    Kessler A, Baldwin I T. Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature [J]. Science, 2001, 291: 2141-2144.
    Koide I, Noguchi O. Determination of amphetamine and Methamphetamine in human hair by headspace solid-phase microextraction and gas chromatography with nitrogen-phosphorus detection [J]. Journal of Chromatography B, 1998, 707: 99-104.
    Loreto F, Barta C, Nogues I,et al.. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature [J]. Plant Cell Environment, 2006, 29(9): 1820-1828.
    Loughrin J H, Potter D A, Hamilton-Kemp T R, et al.. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popillia japonica Newmen) [J]. Journal of Chemical Ecology, 1995, 21(10): 1457-1467.
    Luckner M. Secondary Metabolism in Microorganism,Plants and Animals.3rd edn [M]. Berlin: Spring-Verlag, 1990, 15-61.
    Millar J G, Sims J J. Preparation, cleanup, and preliminary fractionation of extracts [A]. J G Millar and K F Haynes.Methods in chemical ecology [C]. Vol. 1. Boston/Dordrecht/London: Kluwer Academic Publishers, 1998, 1-37.
    Monson R K, Harley P C , Litvak M E . Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves [J]. Oecologia, 1994, 99: 260-270.
    Moraes C M D, Mescher M C, Tumlison J H. Caterpillar induced nocturnal plant volatiles repel conspecific females [J]. Nature, 2001, 410: 577-580.
    Muller T L. Volatile organic compounds emitted from beech leaves [J]. Phytochemistry, 1996, 43: 759-762.
    Price P W. Ecological aspects of host plant resistance and biological control: interactions among three trophic levels [A]. Boethel D J, Eikenbary R D. Interactions of plant resistance and parasitoids and predators of insects [C]. Chichester: Ellis Horwood, 1986, 11-30.
    Procida G, Conte L S, Fiorasi S. Study on volatile components in salami by reverse carier gas headspace gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 1999, (830): 175-182.
    Reed D W, Pivnick K Aand Underhill E W. Identification of chemical oviposition stimulants for the diamondback moth, Plutella xylostella, present in three species of Brassicaceae [J]. Experimental and Applied Entomology, 1989, 63: 13-26.
    Rennenberg H, Loreto F, Gessler A, et al.. Physiological responses of forest trees to heat and drought [J]. Plant Biology(Stuttgart), 2006, 8(5): 556-571.
    Renwick J A, Haribal M, Stadler E, et al.. Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella [J]. Journal of Chemical Ecology, 2006, 32(4): 755-766.
    Rizvi S S. Supercritical fluid extraction -operating principles and food applications [J]. Food Technology, 1986, 40(7): 57-64.
    Rohloff J. Volatiles from rhizomes of Rhodiola rosea L [J]. Phytochemistry, 2002, 59: 655-661.
    Schnee C, Held M, Turlings T C J, et al.. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(4): 1129-1134.
    Sharkey T D. Water stress temperature and light effects on the capacity for isoprene emission and photosynthesis of Kudzu leaves [J]. Oecologia, 1993, 95: 328-333.
    Shiojiri K, Kishimoto K, Ozawa R, et al.. Changing green leaf volatile biosynthesis in plants:An approach for improving plant resistance against both herbivores and pathogens [J].Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45): 16672-16676.
    Siani A C, Garrido I S, Monteiro S S. Protium icicariba as a source of volatile essences [J]. Biochemical Systematics and Ecology, 2004, 32: 477-489.
    Silva M D R, Neves H J C. Complementary use of hyphenated purge-and-trap gas chromatography techniques and sensory analysis in the aroma profiling of strawberries (Fragaria ananassa) [J]. Journal of Agricultural and Food Chemistry, 1999, 47(11): 4568.
    Stashenko E E, Jaramillo B E, Martínez J R. Analysis of volatile secondary metabolites from Colombian Xylopia aromatica (Lamarck) by different extraction and headspace methods and gas chromatography [J]. Journal of Chromatography A, 2004, 1025: 105-113.
    Stashenko E E, Puertas M A, Combariza M Y. Volatile secondary metabolites from Spilanthes americana obtained by simultaneous steam distillation-solvent extraction and supercritical fluid extraction [J]. Journal of Chromatography A, 1996, 752: 223-232.
    Talekar N S, Shelton A M. Biology, ecology, and management of the diamondback moth [J]. Annual Review of Entomology, 1993, 38: 275-301.
    Tasin M, Backman A C,Witzgall P, et al.. Synergism and redundancy in a plant volatile blend attracting grapevine moth females [J]. Phytochemistry, 2007, 68(2): 203-209.
    Tingey D T, Manning M, Grothaus L C. Influence of light and temperature on monoterpene emission rates from slash pine [J]. Plant Physiology, 1980, 65: 797-801.
    Turlings T C J, McCall P J, Alborn H T, et al.. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps [J]. Journal of Chemical Ecology, 1993, 19: 411-425.
    TurlingsT C J, Tumlinson J H. Do parasitoids use herbivore-induced plant chemical defenses to locate host? [J]. Florida Entomologist, 1991, 74: 42-50.
    Turlings T C J, Tumlinson J H, Eller F J, et al.. Larval-damaged plants: source of volatile syno nones that guide the parasitoid Cotesia marginiventris to the microhabitat of its hosts [J]. Entomologia Experimentalis et Applicata, 1991, 58: 75-82.
    Tyson B J, Dement WA, Mooney H A. Volatilization of terpenes from Saliva melifera [J]. Nature, 1974, 252: 119-120.
    Valero E, Villasenor M J, Castro I M, et al.. Comparison of two methods based on dynamic head-space for GC-MS analysis of volatile components of cheeses [J]. Journal of Chromatography A, 2000, 52: 340.
    Vallat A, Gu H, Dorn S. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ [J]. Phytochemistry, 2005, 66(13): 1540-1550.
    van Ruth S M, Roozen J P. Gas chromatography/sniffing port analysis of aroma compounds released under mouth conditions [J]. Talanta, 2000, 52(2): 253.
    Vandana V, Teja A S , Zalkow L H. Supercritical extraction and HPLC analysis of taxol from taxus brevifolia using nitrous oxide and nitrous oxide+ethanol mixtures [J]. Fluid Phase Equilib, 1996, 116(1-2): 162-169.
    Vanoli M, Visai C, Rizzolo A. The influence of harvest date on the volatile composition of Starkspur Golden apples [J]. Postharvest Biology and Technology, 1995, 6: 225-234.
    Vickery M L, Vickery B. Secondary Plant Metabolism [M]. London: Macmillan Press,1981,56-111.
    Wei J N, Wang L Z, Zhu J W, et al.. Plants Attract Parasitic Wasps to Defend Themselves against Insect Pests by Releasing Hexenol [J]. Public Library of Science One, 2007, 2(9): e852.
    Whitman D W, Eller F J. Parasitic Wasps orient to green leaf volatiles [J]. Chemoeco, 1990, 1: 69-75.
    Wu S, Krings U, Zorn H. Volatile compounds generated by basidiomycetes [J]. Food Chemistry, 2005, 92: 221-226.
    Yen G C, Lin H T. Changes in volatile flavor components of guava juice with high-pressure treatment and heat processing and during storage [J]. Journal of Agricultural and Food Chemistry, 1999, 47(5): 2082.
    You M S,Yang G. Physiological stress reaction of Chinese cabbage, Brassica chinesis, infested by diamondback moth, Plutella xylostella [J]. Entomologia Sinica, 2001, 8(2): 131-140.
    Zhang Z, Pawliszyn J. Quantitative extraction using internally cooled solid phase microextraction device with simultaneous heating of the sample [J]. Analytical Chemistry, 1995, 67: 34-43.
    Zhang Z, Yang M J, Pawliszyn J. Solid phase microextraction: a new solvent-free alternative for sample preparation [J]. Analytical Chemistry, 1994, 66: 844A-854A.
    陈宝生,李淑敏,张波.吹洗和捕集色/质联机法鉴定室内空气挥发性有机物[J].环境与健康杂志,1992,9(1):26-28.
    陈宗麒,缪森,罗开君.小菜蛾群体繁殖技术[J].昆虫知识,2001,38(1):68-70.
    杜家纬.昆虫信息素及其应用[M].北京:中国林业出版社,1988.
    杜家纬.植物-昆虫间的化学通讯及其行为控制[J].植物生理学报,2001,27(3):193-200.
    杜永均,严福顺.植物挥发性次生物质在植食性昆虫、寄主植物和昆虫天敌关系中的作用机理[J].昆虫学报,1994,37(2):233-250.
    高逢敬,蒲彪,黄公武.花椒香气成分提取方法的研究现状[J].四川食品与发酵,2006,(4):5-7.
    国大亮,朱晓薇.双水相萃取法在天然产物纯化中的应用[J].天津药学,2006,18(1):64-66.
    康凯,卢俊彪,范国梁.固相微萃取的发展近况[J].化学研究与应用,2002,14(4):371-375.
    李宁,刘杰民,温美娟,等.吹扫捕集-气相色谱联用技术在挥发性有机化合物测定中的应用[J].色谱,2003,21(4):343-346.
    刘杰民,李琳,范慧俐,等.新型单壁碳纳米管采样吸附剂性能的评价[J].分析化学研究报告, 2007,35(6):830-834.
    娄永根,程家安.植物-植食性昆虫-天敌三营养层次的相互作用及其研究方法[J].应用生态学报, 1997,8(3):325-331.
    娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制[J].生态学报, 2000,20(6):1097-1106.
    陆强,邓修.提取与分离天然产物中有效成分的新方法—双水相萃取技术[J].中成药, 2000, 22(9):653.
    吕小红,王彤彤,曲爱军,等.植物挥发性次生物质在植物-害虫-天敌三重营养关系中的作用与机理[J].中国植保导刊,2006,26(10):14-17.
    秦军,陈桐,吕晴.同时蒸馏萃取气质联用法测定花椒挥发油成分[J].贵州工业大学学报(自然科学版),2001,30(6):4-6,18.
    史刚荣.次生物质在植物与昆虫协同进化的意义[J].生物学杂志,1994(4):11-13.
    阎凤鸣.化学生态学[M].北京:科学出版社,2002,172-173.
    杨广,尤民生,魏辉.小菜蛾咬食后青菜释放的挥发性物质成分和含量的变化[J].应用生态学报,2004,15(11):2157-2160.
    杨广.十字花科蔬菜—小菜蛾—盘绒茧蜂之间的相互作用[D].博士学位论文.福州:福建农林大学. 2001:70-84.
    杨广,尤民生,魏辉.盘绒茧蜂对几种挥发性物质的定向行为[J].植物保护学报,2004,31(1):109-110.
    余小林,曹家树,徐立奎,等.优化白菜类蔬菜遗传转化体系的研究[J].浙江大学学报:农业与生命科学版,2005,31(5):529-534.
    曾桂华.超临界流体技术在环境科学中的应用进展[J].能源环境保护, 2007, 21(3):14-17.
    张桂华,巩振辉,张广辉.农杆菌介导的芸苔属作物遗传转化研究进展[J].西北农业大学学报,2000,28(2):80-84.
    章金明,韩宝瑜.具信号功能的植物挥发物研究进展[J].浙江农业学报, 2007, 19(2):135-140.
    张文彤,闫洁. PSS统计分析基础教程[M].北京:高等教育出版社,2004.
    张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报,1998,41(2):204-214.
    张卓旻,李攻科.生物体产生的挥发性有机物的分析[J].化学通报,2006,69(1):1-8.
    周天,郭继勋,田尚衣.黄蒿挥发油对蚊虫的毒杀活性及其化学成分[J].应用生态学报,2006,17(5):907-910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700