燃硫炉的数值模拟及其结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃硫炉是制糖工业中用来制备二氧化硫气体的主要设备。燃硫炉燃烧室的燃烧过程包括流体流动、传热、传质和化学反应以及它们之间相互作用的复杂的物理化学变化。长期以来,燃硫炉燃烧室结构的优化设计方法主要是依靠经验。随着燃烧学和计算流体力学的迅速发展,数值模拟在燃烧方面得到了广泛的应用,为燃烧室的结构优化设计研究提供了有力的工具。
     本文针对燃硫炉燃烧室的结构及硫磺燃烧的特点,建立了燃硫炉燃烧室中燃烧过程的数学物理模型。其中数学模型是以连续性方程、动量守恒方程、能量守恒方程及组分守恒方程为基础的控制方程,物理模型包括标准的k-ε湍流模型、通用有限速率/涡耗散模型、非预混合燃烧反应模型和蒸发离散项模型。并设置了合理的边界条件及模型的求解方法。
     通过对传统自熔式燃硫炉燃烧室中在不同过量空气系数α时的燃烧过程进行了数值模拟,得出最佳过量空气系数α为1.6,以及燃烧室中的速度场、温度场及各组分浓度场。通过对传统自熔式燃硫炉燃烧室内流场分析,结果表明其燃烧室中存在空气与燃气混合不均匀,导致燃烧不均匀,使出口燃气存在大量S_2及SO_3。在最佳的α条件下,出口燃气中,SO_2摩尔分数达到13.0%,S_2的摩尔分数达到0.011%,SO_3的摩尔分数达到0.088%。为了验证模拟方法的可行性及准确性,将模拟结果与实际运行结果进行比较,结果表明:在边界条件相同的条件下,模拟结果与实际运行结果吻合良好,说明模型的选择是合理的,模拟方法是可靠的。
     为克服传统自熔式燃硫炉的缺陷,本文选用旋风燃烧方式对硫磺燃烧进行数值模拟研究。由旋风炉的燃烧特性设计出燃烧量6吨/日的立式旋风燃硫炉,通过对立式旋风燃硫炉二次燃烧室在不同过量空气系数α时的燃烧过程进行了数值模拟,得出最佳过量空气系数α为1.10,以及燃烧室中的速度场、温度场及各组分浓度场。通过各流场分析及利用数值模拟方法对二次燃烧室的结构进行了优化,得到最优结构参数为:增加过度环型燃烧室(过度角45°)、混合燃气进口直径d_1为0.125 m、二次空气进口直径d_2为0.065m、前后燃烧室直径比为1:0.80、二次空气进口高度h为0.80 m。在最优结构参数条件下,出口燃气中SO_2、S_2、SO_3的摩尔分数分别为18.8%、0%、0.0188%。
     通过对比传统自熔式燃硫炉与立式旋风燃硫炉的燃烧过程的模拟结果,表明:旋风立式燃硫炉燃烧室内气体混合均匀,燃烧更完全,出口燃气中S_2为零,有极少的SO_3生成,SO_2浓度更高。达到了减少燃烧室中S_2和SO_3的含量,从而提高SO_2含量的优化设计的目的。
The brimstone furnace is one of the main installations in producing the sulphur dioxide in sugar production project. And the combustion is an important part of brimstone furnace. In studying the combusting process of the combustion chamber in the brimstone Furnace, theories of dynamics, heat transfer, and chemical reaction have to be applied. In the past, the design of the combustion chamber always depended on experience. However, with the rapid development of the numerical simulation in combustion, it provide strong tool for structure optimization and design.
     Based on the structure of combustion chamber and the character of combustion, the mathematical and physical models were established. The mathematical models mainly consist of continuity equation, momentum equation, energy equation and component equation. Thephysical models include standard k -εturbulence model, finite-rate or eddy-dissipationmodel, non-premixed combustion model and evaporation discrete phase model. The boundary conditions and solving method of model were set up.
     The combustion process in traditional self-fluxing brimstone furnace was simulated by computational fluid dynamics method. Under the different excess air ratio, obtained the optimum excess air ratio with 1.6 and the velocity field, the temperature field and the mass fraction field in the combustion chamber. The velocity field, the temperature field and the mass fraction field in combustion process were analyzed, and it is discovered that there are not well for mixing in the traditional self-fluxing brimstone furnace and have a quantity of SO_2, S_2, and SO_3 at the exit of furnace. Under the optimum excess air ratio, the molar fraction of SO_2, S_2, and SO_3 respectively achieve 13.0%, 0.011% and 0.088%. In order to prove numerical simulation method feasibility and the accuracy, the simulation results were compared with actual results. The numerical simulation results showed reasonably good agreement with the actual data under the same boundary conditions. The results showed that it was reasonable for choosing the model and the simulation method.
     In order to overcome the flaw in traditional self-fluxing brimstone furnace, the combustion process by using the way of cyclone borning was studied on numerical simulation. The 6 t/d vertical cyclone brimstone furnace was designed according to vertical cyclone boiler's combustion characteristic.The combustion process in the vertical cyclone brimstone furnace was simulated by numerical simulation under the different excess air ratio. It was obtained the optimum excess air ratio with 1.6 and the velocity field, the temperature field and the mass fraction field in the secondary combustion chamber.Then the secondary combustion chamber was optimized by numerical simulation. The optimal structure parameters were obtained and as follows: increasing excessively annular combustion (excessive angle 45°),the mixing fule gas's import diameter 0.125 m,the secondary air's import diameter 0.065 m,the pretage combustion and the postpositioned diameter ratio 1/0.80 and the secondary air's import high 0.80 m. Under the optimal structure parameters, the molar fraction of SO_2, S_2, SO_3 respectively achieve 18.8%, 0% and 0.0188%.
     By the result in vertical cyclone brimstone furnace constrasted with the result in traditional self-fluxing brimstone furnace, the conductions were obtained that the combustion efficiency in vertical cyclone brimstone furnace was higher than that in the traditional self-fluxing brimstone furnace. In the vertical cyclone brimstone furnace the quantity of S_2 was zero and the quantity of SO3 were very few. It can be concluded that the vertical cyclone brimstone furnace is better the traditional self-fluxing brimstone furnace.
引文
[1]关炜光.一种制造燃硫炉的新材料[J].广西蔗糖,1999,3:44-45
    [2]Randhawa N S,Subba Rao M V,陆殷吉译.能控制硫磺燃烧的新型连续汽化燃硫炉[J].广西轻工业,1994,4:38-42
    [3]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.1-34
    [4]姚世强.三组元液体火箭发动机推力室燃烧性能数值仿真研究[D].湖南:国防科学技术大学,2002
    [5]李海燕.旋转燃烧室燃烧性能数值模拟研究[D].西安:西北工业大学,2007
    [6]林阿彪,方月兰.旋流燃烧器空气动力场的数值模拟[J].东北电力技术,2007,8:5-6,37
    [7]陈思维,杜扬.新型燃油惰气发生器燃烧室的设计及流场分析[J].安全与环境工程,2007,14(3):83-86,91
    [8]闫萍,钱志博,张进军,等.旋转燃烧室内燃气湍流流动的数值分析[J].海军工程大学学报,2007,19(4):81-84
    [9]史光梅,李明海,罗群生,等.火烧炉内气相燃烧过程的三维数值模拟[J].强度与环境,2007,34(1):43-48,54
    [10]贾荣荣,刘训良,温治.低压旋流式煤气燃烧器的数值模拟[J].工业炉,2007,29(5):1-4
    [11]杨炜平,张健.湍流旋流扩散性燃烧温度脉动的数值模拟[J].动力工程,2007,27(5):748-751
    [12]王福军.计算流体力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2006.3-10
    [13]广东轻工业学校.甘蔗制糖机械设备[M].广东:轻工业出版社,1983.340-344
    [14]华南工学院.糖厂技术装备[M].北京:中国轻工业出版社,1981.31-55
    [15]黄福五.甘蔗制糖机械设备[M].北京:中国轻工业出版社,1992.340-347
    [16]尹晓东,王运东,费维扬.计算流体力学(CFD)在化学工程中的应用[J].石化技术,2000,7(3):166-169
    [17]瞿晓华,谢晶,徐世琼.计算流体力学在制冷工程中的应用[J].制冷,2003,22(1):17-22
    [18]Scott G M,Richardson P.The application of computational fluid dynamics in the food industry[J].Trends in Food Science and Technology,1997,8(4):119-124
    [19]Parviz M,John K.Tackling turbulence with supercomputers[J].Science American,1997,1:276
    [20]李春利,刘德新,王志英,等.计算流体力学在精馏塔研究方面的应用进展[J].化 工进展,2004,23(11):1204-1208
    [21]张永震,韩振为.计算流体力学在搅拌混合过程模拟中的应用[J].科技通报,2005,21(3):332-336
    [22]谢晶,瞿晓华,施骏业.计算流体力学在食品工业中的应用[J].上海水产大学学报,2004,13(2):171-175
    [23]Patankar S V,Spalding D B.Computer analysis of the three-dimensional flow and heat transfer in a steam generator[J].Forsch Ingenieurwe,1978,44(2):47-32
    [24]Thompson J F.Grid Generation Techniques in CFD[M].AIAA J,1984.22
    [25]Sankar N L,Tassa Y.An Algorithm for Unsteady Transonic Potential Flow Past Airfoils,Seventh International Conference on Numerical Methods in Fluid Dynamics[J].Standford U and NASA Ames Reasearch Center,1980,6
    [26]MacCormack R W.Current Status of Numerical Solutions of the Navier-Stokes Equations[J].AIAA 85-0032,1985,5
    [27]翟建华.计算流体力学(CFD)的通用软件[J].河北科技大学报,2005,26(2):160-165
    [28]Harvey P S,Greaves M.Turbulent Flow in an Agitated Vessel.Part Ⅱ:numerical Solution and Model Prediction[J].Transaction of the Institute of Chemical Engineers,1982,60:201-210
    [29]Harvey P S,Greaves M.Turbulent Flow in an Agitated Vessel.Part Ⅰ:predictive Model[J].Transaction of the Institute of Chemical Engineers,1982,60:195-200
    [30]Sun H Y,Mao Z S,Yu G Z.Experimental and numerical study of gas hold-up in surface aerated stirred tanks[J].Chemical Engineering Science,2006,61:4098-4110
    [31]Javed K H,Mahmud T,Zhu J M.Numerical simulation of turbulent batch mixing in a vessel agitated by a Rushton turbine[J].Chemical Engineering and Processing,2006,45:99-112
    [32]Wang F,Mao Z S,Wang Y F,et al.Measurement of phase holdups in liquid-liquid-solid three-phase stirred tanks and CFD simulation[J].Chemical Engineering Science,2006,61:7535-7550
    [33]王志锋,黄雄斌,施力田,等.垂直列管加热的搅拌槽中温度场的测量与数值模拟[J].化工学报,2002,53(11):1175-1181
    [34]侯拴弟,张政,王英琛,等.轴流桨搅拌槽三维流场数值模拟[J].化工学报,2000,51(1):70-76
    [35]Deglon D A,Meyer C J.CFD modelling of stirred tanks:Numerical considerations[J].Minerals Engineering,2006,19:1059-1068
    [36]Bujalski W,Jaworski Z,Nienow A W.CFD study of homogenization with dual Rushot turbines-comparison with experimental results Part Ⅱ:The multiple reference frame[J]. Transaction of The Institute of Chemical Engineers,2002,80:97-104
    [37]Fan L,Mao Z S,Wang Y D.Numerical simulation of turbulent solid-liquid two-phase flow and orientation of slender particles in a stirred tank[J].Chemical Engineering Science,2005,60:7045-7056
    [38]饶麒,樊建华,王运东,等.搅拌槽内黏性流体流动的DPIV测量与CFD模拟[J].化工学报,2004,55(8):1375-1379
    [39]马青山,聂毅强,包雨云,等.搅拌槽内三维流场的数值模拟[J].化工学报,2003,54(5):612-618
    [40]马青山,王英琛,施力田,等.多层搅拌桨流动场的测量与数值模拟[J].化工学报,2003,54(12):1661-1666
    [41]Ochieng A Y,Lewis A E.Nickel solids concentration distribution in a strirred tank[J].Minerals Engineering,2006,19:180-189
    [42]Carla S,Ricardo F,Dias P,et al.Thermal behaviour of stirred yoghurt during cooling in plate heat exchangers[J].Journal of Food Engineering,2006,76:433-439
    [43]Tri L N,Yasuyoshi K.New primed circuit heat exchanger with S-shaped fins for hot water supplier[J].Experimental Thermal and Fluid Science,2006,30:811-819
    [44]黄兴华,王启杰,陆震.管壳式换热器壳程流动和传热的三维数值模拟[J].化工学报,2000,51(3):297-303
    [45]熊智强,喻九阳,曾春.折流板开孔改进管壳式换热器性能的CFD分析[J].武汉化工学院学报,2006,38(4):67-70
    [46]邓斌,陶文铨.管壳式换热器壳侧湍流流动与换热的三维数值模拟[J].化工学报,2004,55(7):1053-1060
    [47]夏永放,张浩,吕洁,等.用CFD对间接蒸发冷却换热器的三维数值模拟[J].沈阳工业大学学报,2006,28(4):466-471
    [48]Vitankar V S,Mudde R F,Akker V D,et al.2D and 3D simulations of an internal airlift loop reactor on the basis of a two-fluid model[J].Chemical Engineering Science,2001,56:6351-6358
    [49]Vivek V B.Dynamics of gas-liquid flow in a rectangular bubble column:Experiments and single/multi-group CFD simulations[J].Chemical Engineering Science,2002,57:4715-4736
    [50]Volker,Michele,Dietmar,et al.Liquid flow and phase holdup-measurement and CFD modeling for two-and three-phase bubble columns[J].Chemical Engineering Science,2002,57:1899-1908
    [51]Krishna R.Using Monolithic Catalysts for Highly Selective Fischer-Tropsch Synthesis [J].Catalysis Today,2003,79-80
    [52]Petre C F,Larachi F,Iliuta I,et al.Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling[J].Chemical Engineering Science,2003,58:163-177
    [53]Larachi F,Petre C F,Iliuta I,et al.Tailoring the pressure drop of structured packings through CFD simulations[J].Chemical Engineering and Processing,2003,42:535-541
    [54]刘春江,成弘,袁希铜,等.筛孔塔板上气液流动及传质过程的数值模拟[J].天津大学学报,2001,34(6):741-744
    [55]孙津生,陈富荣,高虹.填料塔内气体分布结构设计原则的CFD模拟验证[J].沈阳理工大学学报,2006,25(3):8-11
    [56]张吕鸿,李鑫钢,姜斌,等.填料塔轴径向气体分布器气体流场的数值模拟[J].天津大学学报,2001,34(5):623-627
    [57]王丽华,张吕鸿,周海鹰,等.槽式液体分布器进液情况的CFD模拟及试验[J].石油化工设备,2005,34(5):12-15
    [58]周永生,张全强,周海鹰.填料塔内液体分布器均布性能的CFD模拟[J].天津化工,2003,17(2):15-17
    [59]Calis H P A,Nijenhuis J,Paikert B C,et al.CFD modeling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing[J].Chemical Engineering Science,2001,56(4):1713-1720
    [60]张鹏,刘春江.规整填料塔液相流动的计算流体力学模拟[J].化工学报,2004,55(8):1369-1374
    [61]Komori S,Takata K,Murakami Y.Flow Structure and Mixing Mechanism in an Agitated Thin-film Evaporator[J].Chemical Engineering,1988,21(6):639-644
    [62]汪蕊,贺小华.薄膜蒸发器内流体流动模拟[J].南京工业大学学报,2004,26(1):72-77
    [63]贺小华,唐平,李佳,等.薄膜蒸发器内流体流动特性的数值模拟[J].过程工程学报,2005,5(4):357-362
    [64]Belosevic S,Sijercic M,Simeon O,et al.Three-dimensional modeling of utility boiler pulverized coal tangengially fired furnace[J].International Journal of Heat and Mass Transfer,2006,49:3371-3378
    [65]范贤振,郭烈锦,高晖,等.200MW四角切向燃烧煤粉炉炉内过程的数值模拟[J].西安交通大学学报,2002,36(3):241-245
    [66]Fan J R,Qian L G,Ma Y L,et al.Computational modeling of pulverized coal combustion processes in tangentially fired furnaces[J].Chemical Engineering Journal,2001,81(2):261-269
    [67]王康健,张丹娅,金军,等.75t/h电站循环流化床锅炉燃烧和污染物排放的数值模拟[J].能源工程,2004,1:36-43
    [68]Sathe S B,Peck R E,Tong T W.Flame stabilization and multimode heat transfer in inert porous media:A numerical study[J].Combustion Science and Technology,1990,70:93-109
    [69]赵平辉,陈义良,刘明侯,等.多孑孔介质内层流预混燃烧的数值模拟[J].燃烧科学与技术,2006,12(1):46-50
    [70]赵振宙,赵振宁,孙辉.旋流燃烧器数值模拟和优化改造[J].锅炉技术,2006,37(4):49-54
    [71]冯良,洪鎏.低氮氧化物燃气燃烧器的CFD研究[J].上海煤气,2004,5:1-6
    [72]李国能,周昊,钱欣平,等.多孔介质内H_2S超绝热燃烧制氢的数值模拟[J].化工学报,2006,57(9):2176-2181
    [73]段锋,邢国正.高温空气燃烧器的数值模拟[J].安徽工业大学学报,2005,22(4):334-337
    [74]Lapin A,Schmid J,Reuss M.Modeling the dynamics of E.coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor-A structured-segregated approach[J].Chemical Engineering Science,2006,61:4783-4797
    [75]沈荣春,束忠明,黄发瑞,等.导流筒结构对气升式环流反应器内气液两相流动的影响[J].石油化工,2005,34(10):959-965
    [76]洪厚胜,张庆文,欧阳平凯.用CFD研究气升式内环流生物反应器下降管中的流体力学性质[J].高校化学工程学报,2006,20(1):85-90
    [77]赵卫宁,潘家祯,陈双喜,等.生物搅拌反应器的CFD模拟及在肌苷发酵中的应用[J].华东理工大学学报,2006,32(5):548-552
    [78]王煜,许克,李冰峰,等.用计算流体力学法建立热管生物反应器传热数学模型[J].化学工程,2004,32(3):20-23
    [79]Jaworski Z,Bujalsld W,Otomo N,et al.CFD study of homogenization with dual rushton turbines-comparison with experimental results[J].Transaction of the Institute of Chemical Engineers,2000,78(A):327-333
    [80]吴中华,刘相东.喷雾干燥过程的CFD模型[J].中国农业大学学报,2002,7(2):41-46
    [81]陶文铨.数值模拟传热学[M].西安:西安交通大学出版社,2001.1-27
    [82]王海峰.湍流非预混燃烧的数值模拟研究[D].北京:中国科学科技大学,2005
    [83]刘应中,缪国平.高等流体力学[M].上海:上海交通大学出版社,2000.174-187
    [84]王雪瑶.四通道煤粉燃烧器流场数值模拟研究[D].武汉:武汉理工大学,2006
    [85]张顺利.燃气轮机燃烧室燃烧流场的数值模拟[D].哈尔滨:哈尔滨工程大学,2005
    [86]王娇.二维稳态湍流非预混燃烧的数值模拟研究[D].内蒙古:内蒙古科技大学,2006
    [87]黄玉辉.液体火箭发动机燃烧稳定性理论、数值模拟和试验研究[D].湖南:国防科技大学研究生院,2001
    [88]任玉新,陈海昕.计算流体力学基础[M].北京:清华大学出版社,2006.80-84
    [89]Patankar S V,Spalding D B.A calculation processure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].Int J Heat Mass Transfer,1972,15:1787-1806
    [90]蔡吉栋,王桂洁.酸法制溴中SO_2气体供应系统的现状与改进[J].海湖盐与化工,2000,29(2):35-39
    [91]夏毓芳.焚硫炉设计的改造[J].硫酸工业,2002,(2):20-23
    [92]何邦全,张岩,谢辉,等.过量空气系数对HCCI汽油机燃烧特性的影响[J].燃烧科学与技术,2007,13(4):287-292
    [93]阎超.计算流体力学方法及应用[M].北京:北京航天航空大学出版社,2006.183-196
    [94]黄建彬.工业气体手册[M].北京:化学工业出版社,2002.22-44
    [95]岑可法,姚强,骆仲泱,等.高等燃烧学[M].浙江:浙江大学出版社,2002.487-508
    [96]霍汉镇.制糖工艺与装备的新概念与新实践[M].广州:全国甘蔗糖业信息中心,2002.467
    [97]王茂刚.旋风炉设计与运行[M].北京:机械工业出版社,1980.1-29
    [98]水利电力部热工研究所.旋风炉及其灰渣综合利用[M].北京:水利电力出版社,1979.142-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700