春季黄表面水二氧化碳体系的分层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洋是全球碳循环至关重要的纽带,它在大陆岩石圈、底沉积物圈、生物圈和大气圈之间碳的交换、流动过程中占主导地位。研究CO2在洋中的转移和归宿,即洋吸收、转移大气CO2的能力以及CO2在洋中的循环机制等已经成为当今国际洋科学诸多研究计划(特别是SOLAS研究)的重要内容。
     水微表层(Sea Surface Microlayer, SML)是界于洋和大气之间的一个薄层,是-气界面间物质交换的必由之路。它有着特殊的物理-化学-生物性质,对洋生物地球化学循环、物质的-气界面通量、乃至气候等等都有着直接而重要的影响。因此本文将“水微表层”引入中国陆架边缘-气界面CO2循环的研究之中,同时将重点放在表面水二氧化碳体系DIC、Alk、pH和pCO2四个参量的多层(包括水微表层SML、水次表层SSL和水表层SL)研究上。我们试图通过对表面水(特别是微表层)的研究,对中国黄表面水CO2体系的洋化学和水“微表层泵”理论做进一步的完善和补充。
     本文主要进行了以下几方面的工作:(1)将“水微表层泵(SML pump)”这一新的全球碳循环理论模型引入到-气界面CO2循环的研究中,并对中国SOLAS计划2006年4月份黄航次调查所得表面水CO2体系中DIC、Alk、pH、pCO2四个参量的多层分布规律作了系统地研究;(2)将2006年4月份黄航次所得结果与2005年3月份和5月份黄两个航次的结果进行了比较,希望可以在较大的时间尺度上发现它们的变化规律。
     本文的主要研究结果如下:
     1.黄表面水DIC、Alk、pH和pCO2的水平分布规律
     DIC、Alk的域水平分布规律均是由近岸向外逐渐降低。这可能是由于近岸大量的陆源物质的输入、近岸水与大洋水间的物质交换能力弱以及“青岛冷水团”等因素的影响,从而导致近岸DIC和Alk的浓度高于外。DIC与Alk二者之间具有很好的正相关性。pH的水平分布是由近岸向外逐渐降低,而pCO2的水平分布规律与pH相反。在A2站位和A1站位附近出现了pH的低值区,相应的出现了pCO2的高值区,这可能是由于酸雨和黄暖流的影响。在G11站位附近有一个pH的高值区,相对应的有一个pCO2的低值区,本文认为这主要是生物活动的影响。pH与pCO2二者之间具有很好的负相关性。
     2.黄表面水DIC、Alk、pH和pCO2的垂直分布规律
     黄春季(4月份)DIC和Alk浓度在水微表层(SML)、水次表层(SSL)和水表层(SL)中的垂直分布规律为:DICSML > DICSSL > DICSL,AlkSML>AlkSSL>AlkSL。在微表层中呈明显的富集状态,其富集倍数EF(enrichment factor,EF=DIC(SML)/DIC(SSL))皆大于1。DIC和Alk在从SML→SSL→SL的变化中,不是一般的线性减小,而是“非线性”的,这主要是由于水微表层具有多层的结构特征模型和水微表层中Gibbs吸附的异常共同作用所引起的。pH和pCO2在SML、SSL和SL中的分布规律分别为:pHSML pCO2 SSL> pCO2 SL。pH和pCO2在表面水中的垂直变化规律是相反的,这也可以证明pH与pCO2的呈负相关性。还可以看出pCO2的数值小于370μatm,故此本文所研究的春季4月份黄表现为大气CO2的“汇”,同时可以发现pH曲线的扭转方向为向“左”扭转,即向pH数值减小的方向扭转。
     3.黄表面水DIC、Alk、pH和pCO2的时间分布规律
     (1)周日变化:中国黄春季(4月份)连续站的DIC和Alk周日变化分布趋势一致,其浓度在SML、SSL和SL中存在着明显的分层现象,在SML中的浓度最大;并且在SML、SSL和SL中的变化趋势是一致的,具有多层分布趋势相同的特点。DIC和Alk的最大和最小值分别出现在02:00~03:00和14:00~ 15:00范围内,呈“单峰”分布。pH出现最小值和最小值的时间分别为02:00~03:00和14:00~15:00时间范围内;而pCO2则与之相反,二者均呈“单峰”分布。
     (2)年度变化:在黄春季表面水的SML、SSL和SL这三层中,DIC和Alk浓度由高到低为3月份、4月份、5月份;pCO2数值高到低为3月份、4月份、5月份;pH则与pCO2相反。
     4.黄表面水DIC、Alk、pH和pCO2与其它参量间的分布规律
     (1)温度和盐度:DIC、Alk与温度均呈现出比较明显的负相关性,同时,DIC随温度的变化要比Alk随温度的变化更加明显。DIC、Alk与盐度呈负相关性,pH与温度略呈负相关性,而pCO2则与温度呈正相关性。pH与盐度呈负相关性,而pCO2与盐度呈正相关性,本文认为这主要是由于黄暖流的影响。
     (2)经纬度:DIC、Alk均与经度呈比较明显的负相关性。DIC、Alk与纬度并没有明显的相关性。pH与经度略微呈现负相关性,而pCO2与经度略微呈现正相关性,pCO2与经度略现正相关性的原因,本文认为主要是离岸远近及温度的影响。pH与纬度呈现明显的正相关性;而pCO2与纬度呈现明显的负相关性,表现出“高纬度低pCO2”的分布规律,本文认为主要是由于温度的影响。
     (3)计算值与测量值:DIC、Alk和pH的计算值与测量值之间具有很好的相关性。pCO2的三个计算值之间也具有很好的相关性。
     5.二氧化碳通量的研究
     本文用四种计算碳通量方法(Liss & Merlivat方法、Peng & Takahashi方法、Tans方法、Wanninkhof方法)并采用微表层pCO2数据计算碳通量(FCO2),结果为-4.703mol?m-2?a-1,如果以tC计为-5.36×106tC。
     结合2005、2006两年的碳通量平均值计算而得出的碳通量数值为-5.639 mol?m-2?a-1,以tC计为-6.43×106 tC。
The ocean is a very important connection in global carbon cycles, which plays a leading role in carbon exchange and transfer between the lithosphere, seabed sediment, biosphere and atmosphere.
     The sea surface microlayer (SML) is a thin layer situated between the ocean and atmosphere, which is the inevitable way of materials exchange in the sea-air interface. Because of its unique physical, chemical and biological properties, the SML have an important and direct effect on biogeochemical cycles in ocean, materials fluxes in sea-air interface and global climates. In this article the SML is introduced to the carbon dioxide cycle in sea-air interface of the marginal sea in China. In addition, the key study is put upon the carbon dioxide system including DIC, Alk, pH and pCO2 in SML, SSL and SL of the sea surface waters. In this article, through the study of surface water, we will do our endeavor to make more perfections and complementarities of the carbon dioxide system in the surface water of Yellow Sea and the“SML pump”.
     This work includes: (1) The SML pump is introduced to the carbon dioxide cycle in sea-air interface of the marginal sea in China. In addition, systematical multilayer studies on carbon dioxide system including DIC, Alk, pH and pCO2 in SML, SSL and SL of the sea surface waters in the Yellow Sea have been made. (2) Comparing the results of April, 2006 to March and May, 2005, we hope to find the variation regularities of them in a long time.
     The main results are summarized as following:
     1. Multilayer horizontal distributions of DIC, Alk, pH and pCO2 in the surface waters of the Yellow Sea
     The horizontal distributions also show that DIC and Alk become higher from ocean to coast. It maybe because the influence of waste input from land, the weaker exchange ability between the coast and ocean, the effect of“Qingdao Cold Water Mass”. In addition, the positive relationship between DIC and Alk is found clearly.
     The horizontal distribution of pH and pCO2 is opposite, and the pH value is become lower from coast to the ocean. There is a lower pH value area around A1 and A2, and a higher pCO2 value area appeared accordingly. It maybe becomes the influence of acid rain and“Yellow Sea Warm Current”. In addition, there is a higher pH value area around G11, and a lower pCO2 value area appeared accordingly. The mainly probability is the affection of the biological activities. It shows that pH and pCO2 are in a clearly negative relationship.
     2. Multilayer vertical distributions of DIC, Alk, pH and pCO2 in the surface waters of the Yellow Sea
     There is a same vertical change regularity of DIC and Alk, and they both become lower in a turn of SML, SSL and SL. That is to say DIC and Alk show an obvious enrichment phenomenon in SML compared to their data in SSL and SL, whose enrichment factor (EF=DIC, Alk(SML)/DIC, Alk(SSL)或(SL)) is higher than 1. DIC and Alk show a“non-linearity distribution”regularity from SML to SL rather than the normal linearity distribution. It maybe because that the co-effect of the multilayer characteristic of SML and the abnormal Gibbs absorption in SML.
     There is an opposite vertical change regularity of pH and pCO2, and pCO2 values become lower from SML to SL. It can prove that pH and pCO2 is in a negative relation. All the pCO2 values of the Yellow Sea in April are less than 370μatm, that is to say, the Yellow Sea in April is a“sink”of the atmospheric CO2. In addition, it is found that the pH curve turn to the left direction, which is the direction of pH becomes lower.
     3. Multilayer temporal distributions of DIC, Alk, pH and pCO2 in the surface waters of the Yellow Sea
     (1) Diurnal variation: the diurnal variation regularities of DIC, Alk, pH and pCO2 in SML, SSL, SL of the sea surface waters in the Yellow Sea in spring are as following: DIC, Alk, pH and pCO2 all have obvious multilayer distribution regularity in the SML, SSL and SL. There are a same multilayer distribution regularity in DIC and Alk, and an opposite distribution regularity in pH and pCO2.
     DIC and Alk are both enriched in SML. The same multilayer distribution regularity of DIC and Alk is a study feature in the article. DIC and Alk appear the maximum around 02:00~03:00, and appear the minimum around 14:00~15:00. The distributions of DIC and Alk show a“single-peak”phenomenon.
     The pH maximum values appear around 14:00~15:00, and the pH minimum values appear around 02:00~03:00. The pCO2 maximum values appear around 02:00~ 03:00, and the pCO2 minimum values appear around 14:00~15:00.The distributions of pH and pCO2 show a“single-peak”phenomenon.
     (2) Yearly variation: DIC, Alk and pCO2 all become lower in a turn of March, April and May in the SML, SSL and SL, but the pH becomes lower in a turn of May, April and March in the SML, SSL and SL.
     4. Multilayer distributions between DIC, Alk, pH, pCO2 and other parameters in the surface waters of the Yellow Sea
     (1) The relationships of DIC, Alk, pH and pCO2 versus temperature/salinity: there is an obvious negative relationship of DIC and Alk versus temperature/salinity in spring. The change trend of DIC versus temperature is more obvious than the trend of Alk versus temperature. There is a positive relationship of pCO2 versus temperature/salinity, but the pH is opposite. Because of the influence of the“Yellow Sea Warm Current”, there is a negative relation of pH and pCO2 versus salinity.
     (2) The relationships of DIC, Alk, pH and pCO2 versus longitude/latitude: There is an obvious negative relationship of DIC, Alk versus longitude, but there is no obvious relationship of DIC, Alk versus latitude. The pH values become lower with the longitude enhancing, but the pCO2 is opposite. There is a positive relationship of pH versus latitude, but the pCO2 and latitude is in an opposite relationship. There is a distribution regularity of“high latitude and low pCO2”. In this article, the mainly reason of“high latitude and low pCO2”is the effect of temperature change.
     (3) The relationship between measurement and calculation of DIC, Alk, pH and three calculation values of pCO2: There is a well positive relationship between the calculation and measurement of DIC, Alk, pH. The relationship among the three calculation pCO2 values also show a good consistency.
     5. Study of carbon dioxide fluxes (FCO2)
     In this article it is believed that the FCO2 calculated on the basis of the pCO2 data in SML is more reliable than that on the basis of that in SL. The fluxes are as following: As a“sink”of atmospheric carbon dioxide, the FCO2 of the Yellow Sea in spring is about -4.703 mol?m-2?a-1 (or -5.36×106 t C).
     Comparison of 2005 and 2006, as a“sink”of atmospheric carbon dioxide, the average of carbon dioxide flux of the Yellow Sea in spring is about -5.639 mol?m-2?a-1 (or -6.43×106 t C).
引文
1.张正斌,宫东,刘莲生,张闯.洋碳循环过程中的水微表层泵.中国科学(B辑), 2005, 35(6): 459-465.
    2.宫东.中国黄、南和青岛近表面水二氧化碳体系的多层研究.中国洋大学博士论文. 2006. 427.
    3. Gong Haidong, Zhang Zhengbin, Zhang Chuang, Liu Liansheng and Xing Lei. Multilayer distribution of carbon dioxide system in surface water of the Yellow Sea in spring. Chinese Journal of Oceanology and Limnology, 2007, 25(1): 1-15.
    4. Falkowski P, Scholes R J, Boyyle E, et al. The global carbon cycle: A test of our knowledge of earth as a system. Science, 2000, 290: 291-296.
    5. Duce R A, Liss P S, Barber R, Farmer D, Huebert B, Jenkins W, Matrai P, Platt U, Taylor P, Wallace D. Surface Ocean-Lower Atmosphere Study (SOLAS). Science Plan. SOLAS Open Science Conference, Damp. Germany, 21 December, 2000. 87.
    6. Sabine C L, Feely R A, Gruber N, et al. The Oceanic Sink for Anthropogenic CO2. Science, 2004a, 305: 367-371.
    7. Sabine C L, Heimann M, Artaxo P, et al. Current Status and Past Trends of the Global Carbon Cycle. In: The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. Field C B and Raupach M R (Eds.). SCOPE 62, Washington DC: Island Press, 2004b. 17- 44.
    8.赵栋梁.大气洋间二氧化碳通量的估计及存在的问题.上层洋与低层大气研究的前沿科学问题,冯士筰主编, 2006. 65-70.
    9. Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429- 436.
    10. NOAA/CMDL, 2002. Climate Monitoring and Diagnostics Laboratory Summary Report No.26 (200022001). Available at http:// www.cmdl.noaa.gov/ publications/ annrpt26/ index. html. accessed on 2003203227.
    11. Wang Z H A, Wang Y C, Cai W J & Liu S Y. A long path-length spectro-photometric pCO2 sensor using a gas-permeable liquid-core waveguide. Talanta 2002, 57: 69-80.
    12. Millero F J. Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 2005, 59(4): 661-677.
    13. IGBP Terrestrial Carbon Working Group. The Terrestrial Carbon Cycle: Implication for the Kyoto Protocol. Science, 1998, 280: 1393-1394.
    14. Prentice K C and Fung I Y. The Sensitivity of Terrestrial Carbon Storage to Climate Change. Nature, 1990, 346: 48-51.
    15.易家康.防止气候变暖刻不容缓.世界科学, 2005, 5: 23-24.
    16. Fasham M J R, Balino B M, Bowles M C. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). AMBIO Special Report, 2001, 31.
    17. Lamb M F, Sabine C L, Feely R, et al. Consistency and synthesis of Pacific Ocean CO2 survey data. Deep-Sea Research II, 2002, 49: 21-58.
    18.张正斌,陈镇东,刘莲生,王肇鼎.洋化学原理与应用-中国近洋化学.北京:洋出版社, 1999. 504.
    19.张桂玲,张峰,张经,郑立晓.水中溶解甲烷和氧化亚氮的分析方法研究进展.上层洋与低层大气研究的前沿科学问题,冯士筰主编, 2006a. 141-147.
    20.张桂玲,张峰,张经.洋中溶存甲烷和氧化亚氮研究进展.上层洋与低层大气研究的前沿科学问题,冯士筰主编, 2006b. 148-155.
    21. Yang G P, Watanabe S, Tsunogai S. Distribution and cycling of dimethylsulfide in surface microlayer and subsurface seawater. Marine Chemistry, 2001, 76: 137-153.
    22. Yang G P and Tsunogai S. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer in the surface microlayer of western North Pacific. Deep-Sea ResearchⅠ, 2005a, 52: 553-567.
    23. Yang G P, Levasseur M, Michaud S, et al. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface water of the western North Atlantic during spring. Marine Chemistry, 2005b, 96: 315-329.
    24. Houghton J T, Ding Y, Griggs D J, et al. (eds.), Climate Change: The Scientific Basis, Contribution of Working Group 1 to Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), UK: Cambridge University Press, 2001. 944.
    25. Noble I R. Ocean and land carbon dynamics: Sinks forever versus sink saturation. Presented at the 2001 Amsterdam Global Change Open Science Conference. 2001.
    26. Manabe S, Tang W and Fu L L. Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature, 1993, 364: 215-218.
    27. Yang Y L, Li Y, Pan J. Characteristics of an Open Complex Giant System Carbon Cycling System in the Ocean. Journal of System Simulation, 2003, 15(1): 141-145.
    28.杨永亮,李悦,潘静.洋碳循环系统-开放的复杂巨系统的特点.复杂系统与复杂性科学, 2004, 1(1): 68-77.
    29.张远辉,黄自强,王伟强,黄宣宝,陈忠阳.台湾峡二氧化碳研究.台湾峡, 2000, 19(2): 163-169.
    30.高会旺,王辉. SOLAS研究的国家计划及关注的核心科学问题.上层洋与低层大气研究的前沿科学问题,冯士筰主编, 2006. 3-22.
    31.石广玉,高会旺,冯士筰.我国SOLAS研究的进展和展望.上层洋与低层大气研究的前沿科学问题,冯士筰主编, 2006. 206-211.
    32.戴民汉,翟惟东,鲁中明,蔡平河,蔡卫君,洪华生.中国区域碳循环研究进展与展望.地球科学进展, 2004, 19(1): 120-130.
    33.殷建平,王友绍,徐继荣,孙松.洋碳循环研究进展.生态学报, 2006, 26(2): 566-575.
    34. Millero F J, Dickson A G, Eischeid G, et al. Assessment of the quality of the shipboard measurements of total alkalinity on the WOCE Hydrographic Program Indian Ocean CO2 survey cruises 1994-1996. Marine Chemistry, 1998a, 63: 9-20.
    35. Millero F J, Lee K and Roche M. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry, 1998b, 60: 111-130.
    36. Johnson K M, Dickson A G, Eischeid G, et al. Coulmetric total carbon dioxide analysis for marine studies: assessment of the quality of total inorganic carbon measurements made during the US Indian Ocean CO2 survey 1994-1996. Marine Chemistry, 1998, 63: 21-37.
    37. Borgne R L, Feely R A and Mackey D J. Carbon fluxes in the equatorial Pacific: a synthesis of the JCOFS programme. Deep-Sea Research II, 2002, 49: 2425-2442.
    38. Gago J, Gilcoto M, Pérez F F, et al. Short-term variability of fCO2 in seawater and air-sea CO2 fluxes in a coastal upwelling system (Ría de Vígo, NW Spain). Marine Chemistry, 2003, 80: 247-264.
    39. West T and Mcbride A C. The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport and net emissions. Agriculture, Ecosystem and Environment, 2005, 108: 145-154.
    40.张正斌主编.洋化学.青岛:中国洋大学出版社, 2004. 441.
    41.张正斌,刘莲生.洋物理化学.北京:科学出版社, 1989. 811.
    42. Bakker D C E, de Baar H J W and Jong E. The dependence on temperature and salinity of dissolved inorganic carbon in East Atlantic surface waters. Marine Chemistry, 1999, 65: 263-280.
    43.宋金明,李学刚,李宁,高学鲁,袁华茂,詹天荣.一种水中溶解无机碳的准确简易测定方法.分析化学, 2004, 32(12): 1689-1692.
    44.áLVAREZ M, Fernández E and Peréz F F. Air-sea CO2 fluxes in a coastal embayment affected by upwelling: physical versus biological control. Oceanologica Acta, 1999, 22(5): 499-515.
    45. Chen C T A and Wang S L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J. Geophysical Research, 1999, 104(C9): 20,675-20,686.
    46. Cai W J, Dai M H, Wang Y C, et al. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research, 2004, 24: 1301-1319.
    47. Dyrssen D W. The biogeochemistry cycling of carbon dioxide in the oceans-perturbations by man. The Science of the Total Environment, 2001, 277: 1-6.
    48. Song Y, Chen B, Nishio M & Akai M. The study on density change of carbon dioxide seawater solution at high pressure and low temperature. Energy, 2005, 30: 2298-2307.
    49. Wong C S and Matear R J. Ocean Disposal of CO2 in the North Pacific Ocean: Assessment of CO2 Chemistry and Circulation on Storage and Return to the Atmosphere. Waste Management, 1997, 17(56): 329-335.
    50. Zeng J Y, Nokihiro Y, Murphy P P, et al. A comparison ofΔpCO2 distributions in the northern North Pacific using results from a commercial vessel in 1995-1999. Deep-Sea Research II, 2002, 49: 5303-5315.
    51. Falck E and Anderson L G. The dynamics of the carbon cycle in the surface water of the Norwegian Sea. Marine Chemistry, 2005, 94: 43-53.
    52. Bender M. A quickening on the uptake? Nature, 1996, 381: 195-196.
    53. Caldeira K and Duffy P B. The role of Southern Ocean in the uptake and storage of anthropogenic carbon dioxide. Science, 2000, 287: 620-622.
    54. Battle M, Bender M L and Tans P P. Global carbon sinks and their variability inferred fromatmospheric O2 andδ13C. Science, 2000, 287: 2467-2470.
    55. Tans P P, Fung I Y and Takahashi T. Observational constraints on the global atmospheric CO2 budget. Science, 1990, 247: 1431-1438.
    56. Schindler D W. Carbon Cycling: The mysterious missing sink. Nature, 1999, 398: 105-107.
    57.张龙军.东海海-气界面CO2通量研究.中国洋大学博士论文, 2003. 101.
    58. Schimel D S. The carbon equation. Nature, 1998, 393: 208-209.
    59. Wang S L, Chen C T A, Hong G H, et al. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research, 2000, 20: 525-544.
    60. Cao M K and Woodward F I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249-252.
    61. Schimel D L, House J I and Hibbard K A. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169-172.
    62. Kauppi P E. Biomass and carbon budget of European forest in 1971-1990. Science, 1992, 256: 70-74.
    63. Houghton R A. Is carbon accumulating in the northern temperature zones? Global Biogeochemical Cycles, 1993, 7: 611-617.
    64. Schindler D W and Bayley S E. The biosphere as an increasing nitrogen deposition. Global Biogeochemical Cycles, 1993, 7: 717-733.
    65. Prentice I C and Lloyd J C. Quest in the Amazon Basin. Nature, 1998, 396: 619-620.
    66.方精云,朴世龙,赵淑清. CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报, 2001, 25 (5): 594-602.
    67. Wofsy S C. Where has all the carbon gone? Science, 2001, 292: 2261-2263.
    68. Tans P P and White J W. In balance: with a little help from the plants. Science, 1998, 281: 183-184.
    69. Sarmiento J L, Hughes T M and Stouffer R J. Simulated response of ocean carbon cycle to anthropogenic climate warming. Nature, 1998, 393: 245-249.
    70. Murata A and Takizawa T. Summertime CO2 sinks in shelf and slope waters of the western Arctic Ocean. Continental Shelf Research, 2003, 23: 753-776.
    71. Bozec Y, Thomas H, Elkalay K, et al. The continental shelf pump for CO2 in the North Sea-evidence from summer observation. Marine Chemistry, 2005, 93: 131-147.
    72.戴民汉,魏俊峰,翟惟东.南碳的生物地球化学研究进展.厦门大学学报, 2001, 40(2): 545-551.
    73. Chen C T A. Marginal seas may export anthropogenic CO2 to the North Pacific Ocean. Proceedings, Global Carbon Cycle, Tsukuba, Japan, Feb. 1995.
    74. Chen C T A. Shelf-vs. dissolution-generated alkalinity above the chemical lysocline. Deep-Sea Research II, 2002, 49: 5365-5375.
    75. Tsunogai S, Watanabe S, Sato T. Is there a“continental shelf pump”for the absorption of atmospheric CO2? Tellus, 1999, 51B: 701-712.
    76.张龙军,王彬宇,张经.东冬、夏两季表层水的二氧化碳分压.青岛洋大学学报(增刊), 1999年10月, 149-153.
    77.谭燕,张龙军,王凡,胡敦欣.夏季东西部表层水中的pCO2及-气界面通量.洋与湖沼. 2004, 35(3): 239-244.
    78. Roy S, Sundby B, Vezina A F, et al. A Canadian JGOFS process study in the Gulf of St. Lawrence. Deep-Sea Research II, 2000, 47: 377-384.
    79. Frankignoulle M and Borges A. European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochemical Cycles, 2001, 15: 569-576.
    80. Chen C T A. New vs. export production on the continental shelf. Deep-Sea Research II, 2003, 50: 1327-1333.
    81. Chen C T A, Hou W P, Gamo T, et al. Carbonate-related parameters of subsurface waters in the West Philippine, South China and Sulu Seas. Marine Chemistry, 2006, 99: 151-161.
    82. Thomas H and Bozec Y. Response to Comment on“Enhanced Open Ocean Storage of CO2 from shelf Sea Pumping”. Science, 2004, 306: 1477d.
    83. Borges A V, Delille B, Frankignoulle M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters, 2005, 32, L14601 (doi:10.1029/2005GL023053).
    84. Borges A V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the Coastal Ocean? Estuaries, 2005, 28(1):3-27.
    85. Cai W J and Wang Y C. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Atlantic Rivers, Georgia. Limnol. Oceanogr., 1998, 43(4): 657-668.
    86. Cai W J and Dai M H. Comment on“Enhanced Open Ocean Storage of CO2 from shelf SeaPumping”. Science, 2004, 306: 1477c.
    87. Ito R G, Schneider B and Thomas H. Distribution of surface fCO2 and air-sea fluxes in the Southern subtropical Atlantic and adjacent continental shelf. J. Marine Systems, 2005, 56: 227-242.
    88.谭敏,陈燕珍.渤黄水体中的二氧化碳.洋环境科学, 1990, 9(1): 35-40.
    89.孙云明,宋金明.中国洋碳循环生物地球化学过程研究的主要进展(1998-2002).洋科学进展, 2002, 20(3): 110-118.
    90.魏皓,赵亮,冯士筰.渤氮磷营养盐的循环和收支.环境科学, 2002, 23(1): 78-81.
    91.魏皓,赵亮,冯士筰.渤碳循环与浮游植物动力学过程研究.洋学报, 2003, 25(增刊2): 151-156.
    92.张远辉,黄自强,马黎明,乔然,张滨.东表层水二氧化碳及其海气通量.台湾峡, 1997, 16(1): 37-42.
    93.乔然,王彰贵,张滨,于艳红,马黎明.洋中的CO2观测与研究.洋预报, 2005, 22(增刊), 106-114.
    94.韩舞鹰,王明彪,林洪瑛.南沙群岛域深层水碳垂直通量.洋学报, 1995, 17(3): 118-121.
    95.林洪瑛.南的碳通量研究.南研究与开发, 1996, 2: 30-35.
    96.韩舞鹰,林洪瑛,蔡艳雅.南的碳通量研究.洋学报, 1997, 19(1): 50-54.
    97. Chen C T A and Tsunogai S. Carbon and nutrients in the ocean. In: Galloway J. Mellillo J eds. Asian Change in the Context of Global Climate Change. UK: Cambridge University Press, 1998. 271-307.
    98. Chen Jianfang, Zheng Lianfu, Wiesner M G, et al. Estimations of primary production and export production in the South China Sea based on sediment trap experiments. Chinese Science Bulletin, 1998, 43: 583-586.
    99. Rehder G and Suess E. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 2001, 75: 89-108.
    100. Cai W J, Zhao P, Theberge S M, et al. Environmental Electrochemistry. In: American Chemistry Society, ACS Symposium. Series 811 (eds. Taillefect M, Roran T F), Washington: American Chemical Society, 2002. 188-209.
    101. Zhai W D, Dai M H, Cai W J, et al. The partial pressure of carbon dioxide and air-sea fluxesin the northern South China Sea in spring, summer and autumn. Marine Chemistry, 2005a, 96: 87-97.
    102. Zhai W D, Dai M H, Cai W J, et al. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Marine Chemistry, 2005b, 93: 21-32.
    103. Chou W C, Sheu D D, Chen C T A, Wang S L and Tseng C M. Seasonal variability of carbon chemistry at the SEATS time-series site, Northern South China Sea between 2002 and 2003. Terr. Atmos. Ocean. Sci. 2005, 16: 445-465.
    104.宋金明.洋碳的源与汇.洋环境科学, 2003, 22(2): 75-80.
    105. Libes S M. A Introduction to Marine Biogeochemistry, Inc. New York, John Wiley & Sons, 1992. 734.
    106. Honda M C, Imai K, Nojiri Y, Hoshi F, Sugawara T and Kusakabe M. The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997-2000). Deep-Sea Research II, 2002, 49: 5595-5625.
    107.邢如楠.带生物泵三维全球洋碳循环模式.大气科学, 2000, 24(3): 333-340.
    108.金心,石广玉.生物泵在洋碳循环中的作用.大气科学, 2001, 25(5): 683-688.
    109.胡敦欣,杨作升.东海海洋通量关键过程.北京:洋出版社,2001. 204.
    110. Canadell J G, Dickinson R, Hibbard K, Raupach M, Young O. Global Carbon project, the Science Framework and implementation: ESSP Report No. 1, Canberra. 2003, 1-69.
    111.许东禹,刘锡清,张训华,李唐根,陈邦彦,主编.中国近地质.北京:地质出版社, 1997. 310.
    112.顾宏堪,等.渤海海洋化学.北京:科学出版社, 1991. 500.
    113.邹娥梅,郭炳火,汤毓祥,李载学,熊学军,曾宪模.秋季南黄水文特征及水的混合与交换.洋学报, 1999, 21(5): 12-21.
    114.王保栋.黄冷水域生源要素的变化特征及相互关系.洋学报, 2000, 22(6): 47-54.
    115.楼如云,袁耀初,卜献卫. 1999年6月南黄和东东北部的水文及环流特征.洋学报, 2002, 24(增刊1): 42-52.
    116.赫崇本,汪园祥,雷宗文,等.黄冷水团的形成及其性质的初步探讨.洋与湖沼, 1959, 2: 1-14.
    117.苏纪兰.中国近的环流动力机制研究.洋学报, 2001, 23(4): 1-15.
    118.王保栋,刘峰,战闰.黄生源要素的生物地球化学研究评述.黄渤海海洋, 2001, 19(2): 99-106..
    119.王保栋,王桂云,郑昌洙,梁东范.南黄冬季生源要素的分布特征.黄渤海海洋, 1999a, 17(1): 40-45.
    120.王保栋,王桂云,郑昌洙,梁东范.南黄营养盐的平面分布及横向输运.洋学报, 1999b, 21(6): 124-129.
    121.陈洪涛,陈淑珠,张经,刘素美,吴强明.南黄海海水中各种形态磷的分布变化特征.洋环境科学, 2002, 21(1): 9-13.
    122. Hong G H, Chung C S, Kang D J, et al. Synoptic distribution of nutrients and major biogeochemical provinces in the Yellow Sea. Proceedings of ISEE, 1993, 85-99.
    123. Kim K R. Air-sea exchange of the CO2 in the Yellow Sea. Seoul: The 2nd Korea-China symposium on the Yellow Sea research, 1999.
    124. Oh D-C, Park M-K and Kim K-R. CO2 exchange at air-sea interface in the Huanghai Sea. Acta Oceanologica Sinica, 2000, 19(1): 79-89.
    125.王峰,张龙军,张经.南黄夏季表层水中pCO2分布的初步探讨.青岛洋大学学报, 2002, 32(6): 1007-1011.
    126.江春波,张龙军,王峰.南黄夏季水pCO2研究II-下层水涌升和长江冲淡水对-气界面CO2通量的贡献.中国洋大学学报, 2006, 36(Sup): 147-152.
    127.姬泓巍,徐环,辛惠蓁,宁霞.水中溶解无机碳DIC的分析方法.洋湖沼通报, 2002, 4: 16-24.
    128. Saruhashi K. Total carbonaceous matter and H-ion concentration in the sea water-metabolism in natural matter (I). Tokyo: Paper Met. Geophysical, 1953, 3: 202.
    129. Cai W J, Pometoy L R, Moran M A and Wang Y C. Oxygen and carbon dioxide mass balance in the estuarine/intertidal marsh complex of five rivers in the Southern, United States. Limnol. and Oceanogr., 1999, 44: 639-649.
    130. Cai W J and Reimers C E. Sensors for in situ pH and pCO2 measurements in seawater and sediment-water interface. In: In-situ Monitoring of Aquatic System: Chemical Analysis and Speciation (ed. Buffle J). IUPAC Book Series, 2000, Vol. 16.
    131.于玉忠,严河清.二氧化碳电化学传感器的研究现状和发展前景.武汉大学学报(自然科学版), 1998, 44(2): 179-182.
    132.张正斌,蔡卫君,刘莲生,等. pH微电极法原位直接测定水微表层的厚度.中国科学(B辑), 2003, 33(3): 201-210.
    133. Dickson A G. The determination of total dissolved inorganic carbon in seawater using extraction/coulometry: the first stage of a collaborative study. US Department of Energy Report. 1992. No. DOE/RL/01830T-H14.
    134. Goyet C, Millero F J, Possion A and Shafer D K. Temperature dependence of CO2 fugacity in seawater. Marine Chemistry, 1993, 44(2-4): 205-219.
    135. Takahashi T, Olafsson J, Goddard J G, Chipman D W and Sutherland S C. Seasonal variation of CO2 and nutrients in the high latitude surface oceans: A comparative study. Global Biogeochemistry cycles, 1993, 7: 843-878.
    136. Gordon L I and Jones L B. The effect of temperature on carbon dioxide partial pressure in seawater. Marine Chemistry, 1973, 1: 317-322.
    137. Copin-Montegut C. A formula of temperature on the partial pressure of carbon dioxide in seawater. Marine Chemistry, 1988, 25: 29-37.
    138. Dickson A G and Millero F J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research II, 1987, 34: 1733-1743.
    139. Takahashi T, Sutherland S C, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely R A, Sabine C, Olafsson J, Nojiri Y. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II, 2002, 49: 1601-1622.
    140. Bates N R, Takahashi T, Chipman D W and Knap A H. Variability of pCO2 on diel to seasonal timescales in the Sargasso Sea near Bermuda. J. Geophysical Research, 1998, 103(C8): 15,567-15,585.
    141. Winn C D, Li Y H, Mackenzie F T, et al. Rising surface ocean dissolved carbon at the Hawaii Ocean Time-series site. Marine Chemistry, 1998, 60: 33-47.
    142. McGillis W R and Wanninkhof R. Aqueous CO2 gradients for air-sea flux estimates. Marine Chemistry, 2006, 98: 100-108.
    143. Tsunogai S and Watanabe S. Role of the continental margins in the absorption of the atmospheric CO2: Continental Shelf Pump. In: Norjiri Y, ed. Proceedings of the 2ndInternational Symposium on CO2 in the Oceans. Tsukuba, Japan: Center for Global Environmental Research, National Institute for Environmental Studies, 1999, 299-308.
    144. Kawahata H, Suzuki A, Ayukai T and Goto K. Distribution of the fugacity of carbon dioxide in the surface seawater of the Great Barrier Reef. Marine Chemistry, 2000, 72: 257-272.
    145. Suzuki A and Kawahata H. Partial pressure of carbon dioxide in coral reef lagoon waters: Comparative study of atolls and barrier reefs in the indo-Pacific Oceans. Journal of Oceanography, 1999, 55(6):731-745.
    146. Bakker D C E, de Baar H J W and Bathmann U V. Changes of carbon dioxide in Surface waters during spring in the Southern Ocean. Deep-Sea Research II, 1997, 44: 91–128.
    147. Feely R A, Wanninkhof C C and Cosca P P. CO2 distribution in the equatorial Pacific during 1991~1992 ENSO event. Deep-Sea Research II, 1995, 42: 365-386.
    148. Murphy P P, Feely R A, Gammon R H. Assessment of air-sea exchange of CO2 in the South Pacific during austral autumn. J. Geophysical Research, 1991, 96: 20,455-20,465.
    149. Takahashi T, Olafsson J, Boecker W S. Seasonal variability of the carbon-nutrient chemistry in the ocean areas west and north of Iceland. Journal of Marine Research, 1985, 9: 20-36.
    150.李宁,李学刚,宋金明.洋碳循环研究的关键生物地球化学过程.洋环境科学, 2005, 24(2): 75-80.
    151. Bianchi T S, Baskaran M and Delord J. Carbon cycling in a shallow turbid estuary of southeast Texas: the use of plant pigement biomarkers and water quality parameters. Estuaries, 1997, 20: 404-415.
    152. Ternon J F, Oudot C, Dessier A, Diverres D. A seasonal tropical sink for atmospheric CO2 in the Atlantic Ocean: the role of the Amazon River discharge. Marine Chemistry, 2000, 68: 183-201.
    153.谭燕.长江口、黄口邻近域CO2通量及东pCO2估测模型的讨论.中国洋大学硕士论文, 2004. 85.
    154.王飞.黄河口无机碳的时空分布及其输运通量.中国洋大学硕士论文, 2005. 63.
    155. AgoguéH, Casamayor E O, Bourrain M, et al. A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiology Ecology, 2005, 54: 269-280.
    156. Haury H and Shulenberger E. Surface nutrient enrichment in the California Current off Southern California: description and possible causes. Deep-Sea Research II, 1998, 45:1577-1601.
    157. Liss P S and Duce R A. The Sea Surface and Global change. Cambridge: Cambridge University Press, 1997. 517.
    158. Oliver W and Obbard J P. A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Marine Pollution Bulletin, 2004, 48: 1016-1030.
    159. Zhou X L and Mopper K. Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Marine Chemistry, 1997, 56: 201-213.
    160.洪华生,林杰.厦门港、九龙江口洋微表层营养盐、有机物、微量金属分布特征初探.洋学报, 1988, 10(6): 695-703.
    161.黄西能,韩舞鹰,容荣贵,等.西太平洋赤道洋微表层化学的初步观测.热带洋, 1990, 9(4): 93-97.
    162.陈金斯,李飞永,朱卓洪.珠江口水域微表层中的痕量金属.热带洋, 1994, 13: 25-30.
    163. Yang Guipeng, Zhang Zhengbin, Liu Liangsheng, et al. Study on the analysis and distribution of dimethylsulfide in the East China Sea. Chin. J. Oceanol. Limnol., 1996, 14: 141-147.
    164. Yang Guipeng, Zhang Zhengbin, Liu Xintong, et al. Kinetic study of photochemical oxidation reaction of dimethylsulfide in aqueous solution. J. Ocean Univ. Qingdao, 1997, 27: 225-232.
    165. Yang G P, Liu X T, Li L, et al. Biogeochemistry of dimethylsulfide in the South China Sea. Journal of Marine Research, 1999, 57: 189-211.
    166. Yang G P, et al. Dimethylsulfide in the surface water of the East China Sea. Continental Shelf Research, 2000, 20: 69-82.
    167. Yang G P. Dimethylsulfide enrichment in the surface microlayer of the South China Sea. Marine Chemistry, 1999, 66: 215-224.
    168. Yang G P. Spatial distributions of dimethylsulfide in the South China Sea. Deep-Sea ResearchⅠ, 2000, 47: 177-192.
    169.张正斌主编.南沙域化学过程研究.北京:科学出版社, 1996. 152.
    170.张正斌,杨桂朋,刘莲生.物质-气通量计算的新建议.科学通报, 1997, 42: 943-946.
    171. Zhang Zhengbin, Liu Liansheng, Wu Zhijian, et al. Physicochemical studies of the sea surface microlayerⅠ. Thickness of the sea surface microlayer and its experimentdetermination. J. Colloid & Interface Science, 1998, 204(2): 294-299.
    172.于志刚,张正斌,刘莲生.洋微表层化学研究进展.洋环境科学, 2000, 19(3): 75-80.
    173. Zhang Zhengbin, Pan Mingxiang, Wang Zhaoding, et al. Biological and Chemical Studies of Sea-surface Microlayer (SML) in Daya Bay, China IIA: Biological and Chemical Characteristics of the SML and the Correlation among them. Chin. J. Oceanol. Limnol., 2001, 19(3): 272-281.
    174.张正斌,刘莲生.洋微表层的物理-生物-化学研究. 2001年中国化学会年会上的报告.北京:中国化学会, 2001. 1-23.
    175.张安慧.胶州湾和青岛近海海洋微表层粘度的研究.中国洋大学硕士论文, 2002. 83.
    176.张安慧,张正斌,刘莲生,林彩.胶州湾水微表层粘度及其在-气通量计算中的作用.青岛洋大学学报, 2002, 33(3): 456-462.
    177. Zhang Zhengbin, Liu Liansheng, Liu Chunying, et al. Studies on the sea surface microlayer II. The layer of sudden change of physical and chemical properties. J. Colloid & Interface Science, 2003a, 264: 148-159.
    178. Zhang Zhengbin, Zhang Anhui, Liu Liansheng, et al. Viscosity of Sea Surface Microlayer in Jiaozhou Bay and Adjacent Sea Area. Chin. J. Oceanol. Limnol., 2003b, 21(4): 351-357.
    179.张正斌,刘莲生.洋化学(曾呈奎主编,孙斌、张正斌副主编的洋科学).现代科学技术丛书中的洋化学卷,济南:山东教育出版社, 2003. 682.
    180. Zhang Zhengbin, Liu Chunying, Liu Liansheng, et al. Study on Dissolved Trace Metals in Sea Surface Microlayer in Daya Bay. Chin. J. Oceanol. Limnol., 2004, 22(1): 54-63.
    181. Zhang Zhengbin, Liu Chunying, Yu Zhigang, et al. Determination of copper complexation in surface microlayer of Daya Bay and Jiaozhou Bay. Chin. J. Oceanol. Limnol., 2005, 23(2): 238-245.
    182. Zhang Zhengbin, Gong Haidong, Liu Liansheng, Zhang Chuang. The SML pump of carbon cycles in oceans. Science in China (Series B), 2006, 49(2): 126-132.
    183.张正斌,刘莲生.洋化学进展.北京:化学工业出版社, 2005. 466.
    184. Li Jun, Ding Haibing, Wu Zhijian, Zhang Zhengbin. Determination of Apparent Sampling Thickness of sea surface microlayer. Chin. J. Oceanol. Limnol., 1998, 16(2): 177-182.
    185.刘春颖.大亚湾洋微表层和珊瑚礁的痕量金属研究.青岛洋大学硕士论文, 2001. 102.
    186. Broecker W S and Peng T H. Tracers in the sea. Lamont-Doherty Geological Observatory. Palisades, NY: Eldigeo Press, 1992. 690.
    187. Kozarac Z, ?osovi? B, Frka S, M?bius D and Hacke S. Complex methodological approach to the studies of natural microlayer at the air/water interface. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 219: 173-186.
    188.丁兵.洋微表层磷酸盐富集机理研究.青岛洋大学硕士论文. 1997.
    189. Guitart C, García-Flor N, Dachs J, et al. Evaluation of sampling devices for the determination of polycyclic aromatic hydrocarbons in surface microlayer coastal waters. Marine Pollution Bulletin, 2004, 48: 961-968.
    190. Henrichs S M and Williams P M. Dissolved and particulate amino acid and carbohydrates in the sea surface microlayer. Marine Chemistry, 1985, 17: 141-163.
    191. Carlson D J. Dissolved organic materials in surface microlayers: temporal and spatial variability and relation to sea state. Limnol. Oceanogr. 1983, 28: 415-431.
    192. Mehrbach C, Culberson C H, Hawley J E, et al. Measurement of the apparent dissociation constants of carbonic acids in seawater at atmospheric pressure . Limnol. Oceanogr., 1973, 18: 897-907.
    193. Roy R N, Roy L N, Vogel K M, et al. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperature 0 to 45℃. Marine Chemistry, 1993, 42: 249-267.
    194. Wanninkhof R, Lewis E, Feely R A and Millero F J. The optional carbonate dissociation constants for determining surface water pCO2 from alkalinity and total inorganic carbon. Marine Chemistry, 1999, 65: 291-301.
    195. Wanninkhof R H. Relationship between gas exchange and wind speed over the ocean. J. Geophysical Research, 1992, 97(C5): 7373-7381.
    196. Frankignoulle M, Bourge I, Canon C, and Dauby P. Distribution of surface seawater partial CO2 pressure in the English Channel and in the Southern Bight of the North Sea. Continental Shelf Research, 1996, 16 (3): 381-395.
    197. Liss P S and Merlivat L. Air-sea gas exchange rates: introduction and synthesis, In: The role of air-sea exchange in geochemical cycling. Adv. Sci. Inst. Ser. P. Buat-Menard, Ed. Reidel D, Norwell, Mass, 1986.
    198. Peng T H and Takahashi T. Carbon Dioxide in the Ocean. Under contract PE-ACO5-840R31400, April, 1989, publication No.3311, Environmental Sciences Division. ORNL.
    199. Smethie W M, Takahashi T, Chipman D W, et al. Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from Rn and pCO2 measurements. J. Geophysical Research, 1985, 90: 7005-7022.
    200.焦秀玲,詹滨秋.大气和洋δ13C研究的进展及意义.洋科学, 1996, 103(1): 30-32.
    201. Zhao D L and Toba Y. Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 2001, 57: 603-616.
    202. Zhao D L, Toba Y, Sugioka K and Komori S. New sea spray generation function for spume droplets. J. Geophys. Res., 2006, 111, C02007, doi: 10.1029/2005JC002960.
    203.刘辉,姬泓巍,辛梅.胶州湾水体中的二氧化碳体系.洋科学, 1998, 6: 44-47.
    204.王保栋,王桂云,刘峰.南黄春季水化学要素的分布特征.洋环境科学, 1998, 17(3): 45-50.
    205.于非,张志欣,兰健,刁新源,郭景松,葛人峰.南黄春季水温分布特征的分析.洋科学进展, 2005, 23(3): 281-287.
    206. Beardsley R C. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 1985, 4: 57-76
    207. Yates K K, Dufor C, Smiley N et al. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Marine Chemistry, 2007, 104: 10-124.
    208.黄明祥,陈镇东.南东北部之水碳酸盐现状.台湾峡, 1995, 14(2): 124-134.
    209. Takahashi T, Feely R A, Weiss R F, et al. Global air–sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference. The Proceedings of the National Academic of Sciences USA, 1997, 94: 8292–8299.
    210. DeGrandpe M D, Olbu G J, Beatty C M, et al. Air-sea CO2 fluxes on the US Middle Atlantic Bight. Deep-Sea Research II, 2002, 49: 4355-4367.
    211. Keir R S, Rehder G, Frankignoulle M. Partial pressure and air-sea flux of CO2 in the Northeast Atlantic during September 1995. Deep-Sea Research II, 2001, 48: 6087-6097.
    212. Rios A F, Perez F F,álvarez M, Mintrop L, González D M, Casiano J M S, Lefèvre N, Watson A J. Seasonal Sea-surface carbon dioxide in the Azores area. Marine Chemistry, 2005, 96: 35-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700