长江干流及其河口水体pCO_2的分布与影响因素的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳循环研究是全球变化研究项目“国际地圈生物圈计划”(IGBP)的核心内容,化石燃料的燃烧等人类活动每年向大气排放60多亿吨碳(Houghton et al.,2001;N oble,2001),大约有一半停留在大气中,这已被观测证实。工业革命以来,化石燃料燃烧等人类活动己经显著地改变了全球碳循环。CO2等微量气体的“温室效应”己成为影响全球气候变化的一个重要而不可忽视的因素。人类活动不仅加大了CO2在大气圈、洋和陆地生态系统之间的交换量,也加剧了河流的直接碳输运,加速了陆地的碳流失。因此,要深入系统地理解陆地生态系统的碳循环过程,总体把握陆地的碳收支状况,就有必要了解通过河流作用的陆地—洋间碳输运量和输运规律。
     长江是我国第一大河,是世界长度第三、径流量第五、输沙量第四的河流(Eisma,1998);长江河水中HCO3-的平均浓度为1.66mo1/m3,其中碳酸盐本身风化溶解贡献约45.7%的HCO3-,54.3%的HCO3-是在岩石风化作用中消耗的大气CO2,由此长江流域岩石化学风化过程每年消耗的大气CO2总量为828.00×109mol,约占世界流域岩石风化消耗大气CO2总量的3.45%,为中国岩石风化消耗大气CO2最多的流域盆地(李晶莹,2003)。
     本论文通过2006年2月对长江口及邻近域以及2006年4月-5月从重庆涪陵至南通的长江干流各主要站点碳参数进行的调查,同时,于2006年5月到2007年5月在长江下游安庆站做的每月两次的连续观测,结合相关水文、化学和生物等要素的同步观测资料,初步探讨了长江干流及河口各种形态碳的时空分布规律,估算了长江干流碳的水-气界面通量。本文主要内容如下:
     长江干流水体pCO2在867~1651μatm之间,平均值为1106μatm,在世界主要河流中应属于中等偏下水平,是大气CO2的源区;长江三峡库区奉节以上河段水体pCO2应受水体生物好氧呼吸作用控制,长江奉节以下河段总体上受碳酸盐体系控制。长江三峡库区一期蓄水后,长江干流水体DIC含量(1.36~2.8mM)普遍稍高于蓄水前(1.2~2.7mM),DIC沿程的逐步降低主要是受洞庭湖、鄱阳湖水体输入的物理稀释作用所引起的;长江干流水体PIC含量平均值仅有0.04 mg/l,且长江库区和中下游水体泥沙来源不同;长江安庆站水体pCO2主要是受pH的高低影响;冬季长江口水体pCO2自西向东逐渐降低,生物活动不是控制表层水pCO2分布的主要因素,温度和pH是影响长江河道内表层水pCO2分布的主要因素;冬季长江口混合区表层水pCO2的分布不受碳酸盐体系控制,而在外区没有咸淡水的剧烈混合pCO2的变化受碳酸盐体系的影响,但不构成主控因素。
Study on the carbon cycle is the central content in the IGBP, the fossil fuel and other human activities can release more than 6×109tC/yr(Houghton et al.,2001;
     Noble,2001),from our observation, we conform that about half of them still in the atmosphere. Since the Industrial Revolution, the fossil fuel and other human activities have changed the global carbon cycle. CO2 and other“green house”gases have being the important factor to influence the global climate. Human activities not only strengthen the exchange quantity of CO2 between atmosphere、sea and earth ecosystem, but also the river transport carbon directly and the run off of land carbon. So if we want to realize the carbon cycle progress in the earth ecosystem thoroughly and systemic, we must know the quantity and rules between land-sea systems from river.
     Yangtze river is the longest river in our country and the third long、fifths discharge、fourth sediment quantity in the world (Eisma,1998);The average concentration of HCO3- is 1.66mo1/m3, which is offered 45.7% by carbonate and 54.3% is offered by atmosphere CO2 what consume in the rock weathering. Therefore, Yangtze river drainage basin consumes atmosphere CO2 is 828.00×109mol by rock weathering, which about 3.45% of the rock weathering in the world drainage basin and it consumes the mostly atmosphere CO2 in the Yangtze river drainage basin.
     We investigate the Yangtze estuary in the Feb. 2006 and from Fuling to Nantong in the April to May, 2006. Meanwhile, we investigate the Yangtze River in Anqing twice a month from May, 2006 to May, 2007. The main content of the paper as flowing:
     pCO2 varies from 867 to 1651μatm; the average is 1106μatm in the mainstream of Yangtze river. This is lower than other important river in the world and it is the source of CO2. The upper reaches of Fengjie in the Three Gorge, the pCO2 is subjected to the biological aerobic respiration, the lower reaches of Fengjie in the Yangtze river, and the pCO2 is subjected to the carbonate system. After the first impound of Three Gorge, the DIC concentration in the mainstream of Yangtze river is 1.36 to 2.8mM, a little higher than not impound. The main reason of DIC decrease from upper to lower is dilution by Dongting lake and Poyang lake. The average of PIC in the Yangtze river mainstream is only 0.04 mg/l; this is because of the difference source of sediment. In Anqing, the pCO2 in the Yangtze river is subjected to pH; In winter Yangtze estuary, the pCO2 is subjected to pH and temperature.
引文
[1] Andres R J, Marland G, Boden T, and Bischof, S., 2000: Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991,and an estimate of their isotopic composition and latitudinal distribution. In: The Carbon Cycle, [Wigley, T.M.L. and D.S. Schimel (eds.)]. Cambridge University Press, New York, pp. 53-62
    [2] Berner E K,Berner R A.Water,air and geochemiccycles[M]. UpperSaddleRiver.NJ: Prentice-Hall, 1996
    [3] Bousquet P P, Peylin P&Ciais C. Regional changes of C02 fluxes over land and oceans since 1980[J]. Science, 2000, 290:1,342-1,346
    [4] Cai W J, Reimers C E. Sensors for in situ PH and pCO2 measurements in seawater and at the sediment-water interface[M]. In: Buffle J ,Horvai G, In-situ Monitoring of Aquatic System :Chemical Analysis and Speciation. 2000. John Wiley&Sons Ltd.
    [5] Cai W-J, Wang Y-C.The chemistry, fluxes and sources of carbon dioxide in the estrarine water of the Satilla and Altamaha Rivers,Georgia[J]. Limnoology and Oceanography,1998,43:657-668
    [6] Cauwet G. Abiotic particle matter. In: Iluursma E K, Dawson R, eds. Marine Organic Chemistry(洋有机化学). Ji Miughou(纪明侯),Qian Zuoguo(钱佐国) et al (translate) [M]. Beijing: Ocean Fress, 1992. 89-114
    [7] Cauwet G, Makenzie F T. Carbon inputs and distribution in estuaries of turbid rivers: the YangTze and Yellow Rivers(China) [J]. Marine Chemistry, 1993,43:235~246
    [8] Chen CTA, Lin C, Huang B, et al. Stoichiometry of carbon hydrogen nitrogen sulfur and oxygen in the particulate matter of the western North Pacific marginal seas[J]. Marine Chemistry, 1996, 54:179~190
    [9] Chen J,Wang F, Zhang L,et al.Major element chemistry of the Changjiang(Yangtze River) [J].Chemical Geology,2002,187:213~255
    [10] Chen, Z.Y., Li, J.F., Shen, H.T., Wang, Z.H.,.Yangtze River of China:historical analysis of discharge and variability and sediment flux[J]. Geomorphology.2001,41, 77~91
    [11] Colin N, Martin H, Richard J W. Dissolved carbon dioxide and oxygen in the River Thames: Spring-summer 1997[J]. The Science of the Total Environment, 1998, 210/211: 205~217
    [12] Cooper D J, Watson A J, Ling R D. Variation of pCO2 along a North Atlantic shipping route (U.K. to Caribbean): A year of automated observations[J]. Marine Chemistry, 1998, 60: 147~164
    [13] Copin-Montegut C. A method for the continuous determination of the partial pressure of carbon dioxide in the upper ocean[J]. Marine Chemistry, 1985, 17: 13~21
    [14] Crutzen P J&Ramanathan V. The Ascent of Atmospheric Sciences[J].Science,2000, 290:299-304
    [15] Deacon E L. Gas transfer to and across an air-water interface[J]. Tellus, 1977, 29: 363~374
    [16] Degens E T, Kempe S, Richey J E. Biogeochemistry of Major World Rivers[J]. Wiley, Toronto: SCOPE, 1991,42
    [17] Deptris P J, Kempe S. The impact of the EL Nino 1982 event on the Parana River, its discharge and carbon transport[J] . Palaeogeogr Palaeoclimatol Palaeocol, 1992, 89:239~244
    [18] Dickson A. G. & Goyet C. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water[M].1994,Version 2, ORNL/CDIAC-74
    [19] Ding T, Wan D, Wang C, Zhang F. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China[J]. Geochimica et Cosmochimica Acta.2004,68: 205~216
    [20] Eisma D. Intertidal Deposits: River Mouths,Tidal Flats and Coastal Lagoons[M].Boca Raton,Florida: CRC Press,1998.459
    [21] Fisher S G. Organic matter processing by a stream-segment ccosvstem: Fort River, Massachnsetts, USA[J]. Int Revue Ges Hydrobiol,1977,62:701~727
    [22] Frankignoulle M, Bourge I, Canon C, Dauby P. Distribution of surface seawater partial CO2 pressure in the English Channel and in the Southern Bight of the North Sea[J]. Continental Shelf Research, 1996, 16(3):381~395
    [23] Gihhs R J. Report on the Workshop Held on River Interaction with the Ocean(RIO) held at Essington, Pennsylvania,USA,1979. June 4~5. 1979. Sponsored by NSF,1979,99
    [24] Goyet C, Beauverger C, Brunet C, Poisson A. Distribution of carbon dioxide partial pressure in surface waters of the Southwest Indian Ocean[J]. Tellus, 1991, 43B:1~11
    [25] Guan Binxian. Circulations east of Taiwan and the Ryukyu Islands A brief review. Proceedings of China-Japan JSCRK[M]. Beijing:China Ocean Press,1994,18-28
    [26] Hedges J I. The biochemical and elemental compositions of marine plankton:A NMR perspective[J]. Marine Chemistry, 2002, 78:47~63
    [27] Heimann M. Review of the global carbon cycle nowadays and the foresights of Arrhenius and global 100 years ago[J].AmbioHuman and Environments,l997, 26:17-24
    [28] Hellings L, Dehairs F, van Damme S, Baeyens W. Dissolved inorganic carbon in a highly polluted estuary(the Scheldt) [J]. Limnoology and Oceanography, 2001,46:1406~1414
    [29] Houghton R A. Changes in storage of terrestrial carbon since 1859, In: Lal R Kimbkle J, Leine E, et al eds[M]. Soil and Global Change. Boca Raton: CRC Press,1995.45-65
    [30] Inoue H, Sugimura Y, Fushimi K. pCO2 andδ13C in the air and surface sea water in the western North Pacific[J]. Tellus, 1987, 39B: 228~242
    [31] Ittekkot V. Global trends in the nature of organic matter in river suspensions[J]. Nature, 1988, 332: 436~438
    [32] Jacobs C M J, Kohsiek W, Oost W A. Air-sea fluxes and transfer velocity of CO2 over the NorthSea: result from ASGAMAGE[J]. Tellus, 1999, 51B:629~641
    [33] Keeling C D, Whorf T P, Wahlen M, et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980[J]. Nature, 1995, 375: 666-670
    [34] Keeling C D. Atmospheric CO2 concentrations (ppmv) derived from in situ airsamples collected at Mauna Loa Observatory, Hawaii. T.P. Whorf, and the Carbon Dioxide Research Group, Scripps Institution of Oceanography (SIO),University of California, June 13, 2002. http://cdiac.esd.ornl.gov/ftp/maunaloa-co2/maunaloa.co2
    [35] Keeling C D, Rakestraw N W, Waterman L S. Carbon dioxide in surface waters of the Pacific Ocean.1. Measurements of the distributions[J]. Journal of Geophysical Research, 1965, 70: 6087~6097
    [36] Kempe S. Sinks of the anthropogenically enhanced carbon cycle in surface fresh water[J]. J Geophys Res, 1984, 89(D3):4657~4676
    [37] Kelley Jr. Carbon dioxide in the surface waters of the North Atlantic Ocean and the Barents and Kara Seas[J]. Limnology and Oceanography, 1970, 15: 80~97
    [38] Kevin T, Jan V. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin,Canada:carbon isotope perspectives[J]. Chemical Geology, 1999 , 159:61~68
    [39] Komori S. CO2 exchange mechanism across air-sea interface, J. Jp[J]. Ocean water Soc., 1993, 47: 59~66
    [40] Komori S., Shimada T. and Murakami Y., Laboratory Estimation of CO2 Transfer Velocity Across the Air-Sea Interface,. Biogeochemical Processes and Ocean Flux in the Western Pacific, Terra Sci[M]. Pub. , 1995,pp:69-81
    [41] Kortzinger A, Mintrop L.; Wallace D.W.R,et al. The international at-sea intercomparison of fCO2 systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean[J]. Mar.Chem.,2000, 72:171~192
    [42]Kortzinger A.At-sea intercomparison of two newly designed underway pCO2 systems-encouraging results[J]. Marine Chemistry, 1998, 52: 133~145
    [43] Liss P S. Process of gas exchange across an air-water interface[J]. Deep-Sea Research, 1973, 20: 221~238
    [44] Liss P S, Merlivat L. Air-sea gas exchange rates: introduction and synthesis, In: the role of air-sea exchange in geochemical cycling[M]. Adv. Sci. Inst. Ser. P. Buat-Menard, Ed. Reidel, D., 1986, Norwell, Mass
    [45] Liu S M,Zhang,J.,Chen,HT,etal.NutrientsintheChangjiang[J].Biogeochemistry.2003,62:1~18
    [46] Ludwig W , Probst J L, Kempe S. Predcting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemistry Cycle, 1996, 10(1):23~41
    [47] Malcom R L, Durum W H. Organic carbon and nitrogen concentrations and annual organic carbon load of six selected rivers of US[M]. US Geological Survey Water-Supply Paper,1976, 1817F:1~21
    [48] Mantoura R F C, Woodward E M S. Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications[J]. Geochim. Cosmochim. Acta, 1983,4: 1293~1309
    [49] Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282:401~450
    [50] Meybeek M, Jussieu P, C, N, P and S in rivers: from sources to global input. In: Wollast R et al, eds. Interactions of C, N, P, and S biogeuchemical cycle and global change[M]. New York: Sprmger, 1993. 163-194
    [51] Meybeck M. Riverine transport of atmospheric carbon: sources, global typology and budget[J]. Water. Air, and Suil Pollutrun,1993, 70: 443-463
    [52] Mukhopadhyay S K, Biswas H, De T K, Sen S, Jana T K. Seasonal effects on the air-water carbon dioxide exchange in the Hooghly estrary, NE coast of Bay of Bengal, India[J]. Journal of Environmental Monitoring,2002,4:549~552
    [53] Nightingale P D, Malin G, Law C S, Watson A J, Liss P S, Liddicoat M I, Boutin J, Upstill-Goddard R C. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers[J]. Global Biogeochemical Cycles, 2000, 15(1):31~42
    [54] Ohtaki E, Yamashita E, Fujiwara F. Carbon dioxide in surface sea waters of the Seto Inland Sea[J]. Jpn. Journal of Oceanography, 1993, 49: 295~303
    [55] Oost W A. The effect of long measurement times on flux measurements at sea[M], In: Report of the ASGAMAGE Workshop, 1997 ,22~25
    [56] Pepelis C,Hayes A F,Leckie J O.HYDRAQL:A program for the computation of chemical equilibrium composition of aqueous batch systems.Including surface complexation modeling of iron adsorption at the oxide/solution interface[J].Dept Civ Eng Tech,Standford University,1988,306
    [57] Peter A R, James E B, Jonathan J C. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary[J]. Limnol Oceanogr, 2000, 45(8): 1707~1717
    [58]Poisson A, Metzl N, Brunet C, Schauer B, Bres B, Ruiz-Pino D, Louanchi F. Variability of sources and sinks of CO2 in the Western Indian and Southern Oceans during the year 1991[J]. Journal of Geophysical Research, 1993, 98(C12): 22759~22778
    [59] Probst J L, Suchet P A. Fluvial suspended sediment transport and mechanical erosion in the Maghreb(North Africa) [J]. Hydrol Sci J, 1992, 37:621~637
    [60] Probst J L, Mortatti J, Tardy Y. Carbon river fluxes and weathering CO2 consumption in Congo and Amazon river basins[J]. Applied Geochemistry, 1994, 3:1~13
    [61] Raymond P A, Cole J J. Gas exchange in rivers and estuary: choosing a gas transfer velocity[J]. Estuaries,2001,24(2):312-317
    [62] Rehder G, Suess E. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures[J]. Marine Chemistry, 2001, 75(1):89~109
    [63] Richey J E, Melack J M, Aufdenkampe A K, et al. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2[J]. Nature, 2002, 416:617~620
    [64] Robertson J E, Watson A J. Thermal skin effect of the surface ocean and its implications for CO2 uptake[J]. Nature, 1992, 358: 738~740
    [65] Sarma V V S S, M. D. Krmar, and M. Marerikar,.Emission of carbon dioxide from a tropical estuarine systerm, Goa, India, 2001[J].Geophys. Res.Lett.,28, 1239~1242
    [66] Schlesinger W H, Melack J M. Transport of organic carbon in the world’s rivers[J]. Tellus,1981, 33:172~187
    [67] Schneider B, Kremling K, Duinker J C. CO2 partial pressure in Northeast Atlantic and adjacent shelf waters: Processes and seasonal variability[J]. J. Mar. Syst., 1992, 3: 453~463
    [68] Sharp J H. Size classes of organic carbon in seawater[J]. Limnol Oceanorg, 1973, 18 (3). 441-447
    [69] Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the ocean[J]. Nature, 1993, 365:119~125
    [70] Simpson J J, Zirino A. Biological control of pH in the Peruvian coastal upwelling area[J]. Deep-Sea Research, 1980, 27: 733~744
    [71] Smethie, W. M., Takahashi, T., Chipman, D. W. et al[J]. Gas exchange and CO2 flux in the tropical Atlantic ocean determined from Rn and P CO2 measurements. J. Geophys. Res. 1985,90:7005-7022
    [72] Suchet P A, Probst J L. A global model for present day atmospheric/soil CO2 consumption by chemical erosion of continental rocks(GEM-CO2) [J]. Tellus, 1995, 47:273~280
    [73] Takahashi T. Carbon dioxide in the atmosphere and in Atlantic Ocean water[J]. Journal of Geophysical Research, 1961, 66: 477~494
    [74] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2 budget[J]. Science, 1990, 247:1431~1438
    [75] Ternon J F, Oudot C, Dessier A, et al. A seasonal tropical sink for atmospheric CO2 in the Atlantic Ocean: the role of the Amazon River discharge[J]. Marine Chemistry, 2000, 68:183~201
    [76] Thurman E M. Organic geochemistry of natural waters United States Geological Survey[M], Denver, Colorado, USA. 1985
    [77] Wang Z A, Cai W J. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): A marsh CO2 pump[J]. Limnol Oceanogr, 2004, 49(2):341~354
    [78] Wanninkhof R H. Relationship between gas exchange and wind speed over the ocean[J]. Journal of Geophysical Research, 1992, 97 (C5):7373~7381
    [79] Wanninkhof R, McGillis W M. A cubic relationship between gas transfer and wind speed[J]. Geophysical Research Letter, 1999, 26:1889~1893
    [80] Weiss R F. Carbon dioxide in water and seawater: the solubility of a non ideal gas[J]. Marine Chemistry, 1974, 2:203~215
    [81] Wetzel R G, Rich P H. Carbon in fresh water systems[J]. Brookhaben Symposium in Biology, 1973, 24:241~263
    [82] Wiegran K, Trapp T, Cammann K. Development of a dissolved carbon dioxide sensor based on a coulometric titration[J]. Sensors and Actuators, 1999 ,B57:120~124
    [83] Wollast R, Mackenzie F T. The global cwcle of silica. In: Aston S, ed. Silicon Geochemistry and Biogeochemistry[M]. London: Academic Press, 1983. 39-76
    [84] Wu, Y. et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science .2006,1~13
    [85] Zhai W D, Dai M H, Cai W J, et al. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China[J]. Marine Chemistry,2005,93:21~32
    [86] Zhang J. Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: significance of riverine transport to the ocean[J]. Continental Shelf Research 1999,19:1521~1543
    [87] Zhang, J., Ren, J.L., Liu, S.M., Zhang, Z.F., Wu, Y., Xiong, H., Chen, H.T.,Dissolved aluminum and silica in the Changjiang (Yangtze River):Impact of weathering in sub-continental scale[J]. Global BiogeochemicalCycles ,2003,17,:1077~1088
    [88] Zhang J., Yu Z G., Liu S M,et al. Riverine sources and estuarine fates of particulate organic carbon from North China in late summer[J]. Estuarine, Coastal and Shelf Science.1998,46:439~448
    [89]陈静生,夏星辉,洪松.长江水质酸化与黄河水质浓化趋势及成因探讨[J].中国工程科学.2000,2(3):54~58
    [90]陈静生,王飞越,夏星辉.长江水质地球化学[J].地学前缘.2006,13(1):74~85
    [91]范德江,杨作升,毛登等.长江与黄河沉积物中粘土矿物及地化成分的组成.洋地质与第四季地质[J].2001,21(4):7~12
    [92]范德江,杨作升,王文正.长江、黄河沉积物中碳酸盐组成及差异.自然科学进展[J].2002,12(1):60~64
    [93]高众勇,陈立奇,王伟强.南大洋二氧化碳源汇分布及其-气通量研究[J].极地研究.2001,13(3):175~186
    [94]桂祖胜,张龙军,张向上,等.2005年秋季黄河口淡咸水混合过程中pCO2变化规律及行为[J].洋环境科学,2007,待刊
    [95]胡敦欣,杨作升.东海海洋通量关键过程[M].北京:洋出版社, 2001, 142
    [98]李晶莹.中国主要流域盆地的风化剥蚀作用与大气CO2的消耗及其影响因子研究.2003.博士论文
    [96]李岩,张龙军,苏征,等.长江口淡水端淡、盐水混合表层的pCO2的急剧变化及其影响机制[J].中国洋大学学报,2006,36(2):295~298
    [97]卢敏,张龙军,王彬宇,张经.水pCO2流通式光度测定方法研究[J].青岛洋大学学报, 2002, 32(1):94~100
    [98]乔淑卿,杨作升,范德江等.长江、黄河悬浮物质与山东尘暴物质组成研究[J].岸工程.2002,21(1):16~23
    [99]苏纪兰,袁业立.中国近水文.第一版[M].北京:洋出版社,2005,174~177
    [100]谭燕,张龙军,王凡等.夏季东西部表层水的pCO2及-气界面通量[J].洋与湖沼, 2004, 35:239~245
    [101]王保栋.长江冲淡水的扩展及其营养盐的输运[J].黄渤海海洋,1998,16(2):41-47
    [102]王峰,张龙军,王彬宇,张经.改进的喷淋-鼓泡式平衡器GC法测定水中的pCO2[J].分析科学学报, 2002, 18(1):66~69
    [103]王峰,张龙军,王彬宇,张经.水pCO2测定中喷淋-鼓泡式平衡器和层流式平衡器的互校[J].青岛洋大学学报, 2001, 31(4):573~578
    [104]王颖,朱大奎.岸地貌学[M].北京:高等教育出版社,1994.244
    [105]魏秀国.珠江流域河流碳通量与流域侵蚀研究.博士论文, 2003, 29~37
    [106]吴莹,张经,曹建平等.长江流域有机碳同位素地球化学特征.青岛洋大学学报[J].2000,30(2):309~314
    [107]张龙军,王彬宇,张经.东冬夏两季表层水的二氧化碳分压[J].青岛洋大学学报,1999,Vol.29:149~153
    [108]赵骞,田纪伟,褚忠信等.渤、黄、东海海流场和温度场的数值同化研究[J].武汉理工大学学报(交通科学与工程版),2005,29(6):821~825

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700