AZ91D镁合金在干态及去离子水介质下的冲击磨损特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,动态冲击载荷及介质腐蚀并存条件下镁合金的表面损伤情况还未见报道。本实验以去离子水为介质,探讨AZ91D镁合金在冲击载荷作用下的损伤行为,并与干态下的损伤情况做出对比,讨论了镁合金在干态与去离子水介质中,冲击条件下的损伤机理,并探讨影响冲击磨损性能的因素,具有重要的实际意义和理论意义。
     本文采用实验室自制冲击磨损试验机,对AZ91D镁合金在干态及去离子水介质下的冲击磨损行为进行了实验研究。系统考察了冲击载荷(20N和40N)及冲击次数(1×10~4~5×10~5)对磨损行为的影响;采用光学显微镜(OM)、激光共焦显微镜(LCSM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDX)及台阶仪等对冲击磨痕进行分析,探讨了冲击磨损机理,得出如下主要结论:
     1.干态下,AZ91D镁合金的冲击磨损表现出疲劳作用机制。磨损深度及面积随冲击次数的增加而缓缓增加。AZ91D镁合金磨损初期的主要损伤形式为塑性变形,塑变深度增加较快;随着冲击次数的增加,表层产生加工硬化,材料表现出粘着磨损和小块剥落损伤,深度增加速率减缓;后期表层材料塑变耗竭,萌生疲劳裂纹,裂纹扩展相交后导致材料发生大块疲劳剥层失效。
     2.去离子水介质下,AZ91D镁合金冲击磨损表现出疲劳剥层与腐蚀侵蚀的相互促进机制。磨损深度及面积随冲击次数的增加而快速增加。AZ91D镁合金磨损初期表面主要产生塑性变形和粘着磨损,后期表面萌生疲劳裂纹,裂纹出现后,水介质的腐蚀作用增强,液态介质渗入裂缝中,一方面去离子水本身对镁合金具有腐蚀作用,另一方面去离子水可引起点腐蚀,材料呈现深层脆性剥落的特征;同时,镁合金表面会生成一层腐蚀作用膜,冲击作用下,这层膜可能被持续破坏与生成,表现出深度的增加。总之,冲击力和水介质腐蚀共同作用加速了裂纹增殖和扩展,使AZ91D镁合金损伤严重。
     3.本试验两种冲击载荷下,去离子介质中AZ91D镁合金的磨损深度及面积均大于干态下的情况,并且增速也比干态下的快。去离子水介质中AZ91D镁合金的抗冲击磨损性能下低,去离子水介质并没有起到润滑或降低冲击磨损的作用,反而引起了材料表面的腐蚀,冲击磨损与表面腐蚀相互促进,加速了材料的损伤和失效。
Up to present, the surface damage of magnesium alloy under the conditions of both dynamic impact load and medium corrosion has not reported yet. In this study, the impact wear behaviors of AZ91D magnesium alloys in dry condition and de-ionized water were contrastively investigated, and the damage mechanisms were discussed. Further, the factors of influencing the impact wear properties were discussed. Therefore, the study has both practical significance and academic value
     The impact wear tests of AZ91D magnesium alloy in dry condition and de-ionized water had been performed by the impact tester. The influences of load (20 N and 40 N) and impact number (1×10~4 to 5×10~5) on impact wear behavior had been systemically investigated. The impact wear spots were measured and analyzed by means of optical microscope (OM), laser confocal scanning microscope (LCSM), X-ray diffraction (XRD), scanning electrical microscopy (SEM), energy dispersive spectroscopy (EDX) and surface profiler. Main conclusions are drawn as follows:
     1. In dry condition, the impact wear mechanism of AZ91D magnesium alloy was fatigue. The depth and area of the wear scar increased slowly with increasing impact number. The damage of AZ91D magnesium alloy at the initial stage was characterized by cyclic plastic deformation, then the phenomenon of adhesive wear and bit delamination appeared because of work-hardening of surface layer. The rate of depth increment was depressed. Finally, the plastic of surface layer exhausted and fatigue crack occurred, the spreading and joining of cracks would cause the failure of the material as big delamination.
     2. In de-ionized water, the wear mechanism showed as the mutual accelerating of fatigue delamination and corrosion. The depth and area increased rapidly with increasing impact number. At the initial stage, the wear damage of AZ91D magnesium alloy was characterized by cyclic plastic deformation and adhesive wear. With the increase of impact number, fatigue cracks occurred in the surface and sub-surface. The corrosive wear of the material became heavier after the crack appeared. The de-ionized water penetrated into the cracks, on one hand, it had an corrosion effect upon the AZ91D magnesium alloy, on the other hand, it could cause point corrosion, and thus the wear material was characterized by deep brittle spalling; meanwhile, a film appeared on the surface, but it would be destroyed and created circularly by the impact load, and thus the wear depth increased significantly. In a word, the cracks proliferated and spread rapidly by the impact load together with corrosion, , and the damage of AZ91D magnesium alloy was severe.
     3. Under the impact load of 20 N and 40 N, the wear depth and area and its growth rate of AZ91D magnesium alloy in de-ionized water were larger than that in dry condition. The impact wear resistance of the AZ91D magnesium alloy decreased in de-ionized water. De-ionized water did not play a role of lubricating and reducing the wear degree, contrastly, it brought corrosion mechanism on the worn surface, the impact wear and surface corrosion promoted mutually and accelerated the wear damage and failure of material.
引文
[1]刘家浚.材料磨损原理极其耐磨性[M].北京:清华大学出版社,1993
    [2]周仲荣,谢友柏.摩擦学设计[M].成都:西南交通大学出版社,2000
    [3]王家庆,丁厚福.成分对合金衬板钢材料腐蚀条件下冲击磨损性能与机理的影响.合肥工业大学硕士学位论文,2007
    [4]E.Rabinowicz.Impact wear of ductile metals,Proceedings of the JSLE International Tribology Conference,Ⅱ(1985)263-268
    [5]S.L.Rice.Formation of subsurface zones in impact wear.ASLE Transactions.(1981).2
    [6]王勇华,朱华,黄孝龙等.金属材料冲击磨损的研究现状.矿山机械,2004(12):87-88
    [7]李婷,傅戈雁.多冲行变失效研究现状与趋势探讨.苏州大学学报,2005(4):33-35
    [8]蔡立君,周仲荣.ZM5镁合金及其微弧氧化陶瓷层的冲击磨损特性研究.西南交通大学硕士学位论文,2007
    [9]R.G.Bayer,P.A.Engel,J.L.Sirico.Impact wear testing machine,Wear,19(3)(1972)343-354
    [10]P.A.Engel,T.H.Lyons,J.L.Sirico.Impact wear model for steel specimens,Wear,23(2)(1973)185-201
    [11]Stephen L.Rice,Steven F.Wayne.Wear of two titanium alloys under repetitive compound impact,Wear,61(1)(1980)69-76
    [12]Stephen L.Rice,Steven F.Wayne,Hans Nowotny.Material transport phenomena in the impact wear of titanium alloys,Wear,65(2)(1980)215-226
    [13]Stephen L.Rice,Hans Nowotny,F.Wayne.Characteristics of metallic subsurface zones in sliding and impact wear,Wear,74(1)(1981)131-142
    [14]Stephen L.Rice,Hans Nowotny,Steven F.Wayne.The role of specimen stiffness in sliding and impact wear,Wear,77(1)(1982)13-28
    [15]P.A.Engel,D.B.Millis.Study of surface topography in impact wear,Wear, 75(2)(1982)423-442
    [16]R.G.Bayer.Impact wear of elastomers,Wear,112(2)(1986)105-120
    [17]杨书申,彭竹琴.脉动冲击载荷对45钢磨损影响规律的试验研究.理化检验—物理分册,2000,36(12):525-538
    [18]杨书申,彭竹琴.T10钢脉动冲击磨损规律的试验研究.郑州纺织工学院学报,2001,12(2):52-54
    [19]许云华,熊建龙,武宏,傅永红等.高能量冲击接触载荷下高锰钢的耐磨性.材料研究学报,2000,14(6):665-669
    [20]许云华,袁善良.高能量冲击接触载荷下高锰钢磨损机理的研究.热加工工艺,2000,(1):10-12
    [21]许云华,熊建龙等.冲击接触加载下高锰钢表层纳米结构及其特意耐磨性.自然科学进展,2001,11(3):282-287
    [22]许云华,熊建龙等.高能量冲击载荷下高锰钢的耐磨性.材料研究学报,2000,14(6):665-669
    [23]朱绍峰,程正勇.中锰铸态耐磨钢的冲击磨损性能.热加工工艺,2004,(2):25-26
    [24]宋延沛,王文.微量元素对高碳中锰钢组织和冲击磨损性能的影响.2001,(11):59-60
    [25]罗署生,杨立华,李永民.小能量冲击磨损下中锰钢成分优选.热加工工艺,1993,(3):18-20
    [26]陈颜堂,白秉哲.中低碳空冷贝氏体钢的冲击磨损特性.钢铁研究学报,2001,13(3):40-43
    [27]陈颜堂,丁庆丰.中低碳空冷贝氏体钢的冲击磨损行为.金属热处理,2005,30(1):42-46
    [28]章建军,朱金华.贝氏体钢在多次冲击接触载荷下的反常磨损行为研究.2006,26(3):198-202
    [29]苻寒光.高铬铸铁基体组织对冲击磨损的影响.现代铸铁,1994,(3):10-15
    [30]彭晓春,郝建民.含锰奥氏体高铬铸铁抗冲击磨损性能的研究.水利电力机械,1996,(3):28-31
    [31]贺林,张长军.珠光体型低铬铸铁冲击疲劳抗力及冲击磨损性能.钢铁, 1996 31(11):48-52
    [32]武书兵.模具材料在冲击载荷下磨损性能的评价与研究.安徽工学院学报,1988,7(2):245-250
    [33]胡树兵,李志章.LD1、65Nb模具钢在动态冲击载荷下的磨损特性和影响因素.机械工程材料,1995,19(6):14-17
    [34]施占华,姜小波等.模具材料的高温滑动冲击磨损过程的电镜观察.安徽工学院学报,1988,7(2):159-165
    [35]丁厚福,崔方明.成分和组织对衬板钢在腐蚀料浆环境下的冲击磨损性能与机理的影响.摩擦学学报,2005,25(3):221-224
    [36]徐经忠,丁厚福.衬板用钢在石英砂介质中的冲击腐蚀磨损行为.合肥工业大学学报,2005,28(1):49-52
    [37]丁厚福等.冶金矿山湿式磨机衬板钢冲击腐蚀磨损行为的研究.兵器材料科学与工程,2003,26(6):31-35
    [38]饶启昌,马幼平.马氏体钢动载磨料磨损特性的研究.钢铁研究学报,1991,3(3):47-52
    [39]刘建华,张瑞军等.斜轧低铬白口铁磨球的抗多冲击破坏能力与耐磨性.上海金属,2000,22(3):25-28
    [40]李慧.斜轧中铬半钢磨球的冲击疲劳和磨损性性.特殊钢,2001,22(1):16-19
    [41]张云鹏,张兆云.离心铸造对白口铁抗冲击磨损性能的影响.西安理工大学学报,1995,11(3):183-187
    [42]章建军,朱金华.多次冲击载荷下TiNiNb合金的反常磨损行为.中国有色金属学报,2006,16(1):79-83
    [43]杨紫霞.20CrMnMo钢多冲疲劳损伤研究.机械工程材料,1995,19(5):46-48
    [44]D.H.Jones,A.Y.NehruJ,Skinner.The impact fretting wear of a nuclear reactor component,Wear,106(1-3)1985,139-162
    [45]G.Levy,J.Morri.Impact fretting wear in CO_2-based environments,Wear,106(1-3)(1985)97-138
    [46]陈瑜眉,朱健希等.不同温度下铁基粉末冶金材料的冲击磨损规律.西安交通大学学报,2001,35(9):962-965
    [47]大谷刚生等.发动机气门和气门座圈高温冲击磨损试验研究.柴油机,1998,(3):34-40
    [48]戴品强,黄水兴.热处理工艺对中碳合金钢冲击磨料磨损耐磨性的影响.金属热处理,1998,(12):19-21
    [49]K.K.Shih.Effect of nitrogen ion implantation on impact wear,Wear,105(4)(1985)341-347
    [50]向道平,唐建新.Cr/C比及热处理工艺对高铬铸铁抗磨粒磨损性能的影响.《热加工工艺》,2004,(5):21-23
    [51]贾利晓,石燕,温广宇.试验条件对钨铬铸渗层冲击磨损性能的影响.中国铸造装备与技术,15-17
    [52]许云华,朱金华.应力特性对冲击磨损机理的影响.《热加工工艺》,1991,(1):3-5
    [53]严小冲,丁厚福.冲击功对低碳高合金钢冲击腐蚀磨损性能的影响.合肥工业大学学报,2005,28(7):809-811
    [54]杜晓东,丁厚福,崔方明.不同应力状态下Mn13铸钢冲击腐蚀磨损特性及机理研究.兵器材料科学与工程,2006,29(4):18-22
    [55]杨业元,方鸿生.接触应力状态对材料冲击磨损特性的影响.金属学报,1995,31(7):324-328
    [56]邢文静,杜晓东,丁厚福.不同介质对三种钢的冲击腐蚀磨损性能的影响.材料热处理学报,2007,28(3):89-92
    [57]杜晓东,王家庆.腐蚀料浆环境下单相与双相合金衬板钢冲击磨损性能对比.金属热处理,2007,32(6):11-14
    [58]王家庆,杜晓东.腐蚀条件下以锰代镍低碳高合金钢的冲击磨损性能及机制.钢铁研究学报,2007,19(9):50-54
    [59]杜晓东,丁厚福,崔方明.腐蚀条件下中碳合金钢冲击磨损特性及机理.农业机械学报,2006,37(1):36-40
    [60]吴凯,丁厚福.碳含量对低碳高合金钢冲击腐蚀磨损性能的影响.矿冶工程,2006,26(2):96-99
    [61]杜晓东,丁厚福.碳含量对腐蚀条件下低碳高合金钢冲击磨损性能的影响.摩擦学学报,2006,26(6):535-540
    [62]吕振林.含碳量对低合金耐磨钢冲击磨损耐磨性的影响.铸造技术,1997, (1):16-18
    [63]马陟祚,魏世忠.碳含量对高钒高速钢冲击磨损性能的影响.钢铁钒钛,2006,27(1):38-43
    [64]陈颜堂,方鸿生.Si对高强度高韧性贝氏体钢冲击磨损性能的影响.金属热处理,2001,26(8):5-7
    [65]黄进峰,方鸿生.硅对贝氏体铸钢高应力冲击磨损性能的影响.钢铁研究学报,2001,13(1):40-45
    [66]黄进峰,方鸿生.稀土/钛变质贝氏体铸钢的高应力冲击磨损研究.金属热处理,2000,(1):21-27
    [67]R.Blickensderfer,J.H.Tylczak.Wear of materials.NewYork:ASME,1983
    [68]R.Blickensderfer.Large-scale impact spalling.Wear,1983,84:361-373
    [69]赵四勇,陈和兴.冲击磨损条件下残留奥氏体的作用.铸造技术,2000,(3):42-45
    [70]饶启昌,贺柏龄,周庆德.球磨机磨球冲击疲劳剥落抗力的研究.水利电力机械,1990,(1):22-27
    [71]胡镇华,杨旭春.冲击载荷条件下高硬度模具钢的磨损特性及影响因素.机械工程材料,1989,13(4):51-55
    [72]仝健民,张伟良.高铬铸铁中残余奥氏体对冲击疲劳磨损的影响.机械工程学报,1994,30(6):103-107
    [73]黄维刚,徐蓉.显微组织对中碳含硅贝氏体钢高应力冲击磨损性能的影响.机械工程材料,1997,21(1):4-7
    [74]O.Knotek,B.Bosserhoff,A.Schrey.A new technique for testing the impact load of thin films:the coating impact test,Surf.Coat.Tech.54-55(1992)102-107
    [75]R.Bantle,A.Matthews.Investigation into the impact wear behaviour of ceramic coatings,Surface and Coatings Technology,74-75(1995)857-868
    [76]A.A.Voevodin,R.Bantle,A.Matthews.Dynamic impact wear of TiCxNy and Ti-DLC composite coatings,Wear,185(1-2)(1995)151-157
    [77]J.C.A.Batista,C.Godoy,A.Matthews.Impact testing of duplex and non-duplex(Ti,Al)N and Cr-N PVD coatings,Surface and Coatings Technology,163-164(2003)353-361
    [78]SangYul Lee.Mechanical properties of TiN_x/Cr_(1-x)N thin films on plasma nitriding-assisted AISI H13 steel,Surface & Coatings Technology,326(2004)256-261
    [79]B.S.Mann.High-energy particle impact wear resistance of hard coatings and their application in hydroturbines,Wear,237(2000)140-146
    [80]Jeon G.Han,Kyung H.Nam,In S.Choi.The shear impact wear behavior of Ti compound coatings,wear,214(1998)91-97
    [81]Wilson Lin,Ming-Sheng Leu,Chung-Kwei Lin,Cherng-Yuh Su.The failure mechanism of diamond like coatings prepared by the filtered cathodic are technique for minting application,Surface and Coatings Technology,201(7)(2006)4430-4435
    [82]贾利晓,张永振,陈跃.钨铬复合铸渗层的冲击磨损性能研究.铸造技术,2004,25(5):346-348
    [83]贾利晓,陈跃,张永振.铸钢件表面铸渗钨铬复合层的研究.热加工工艺,2004,(3):9-11
    [84]上官宝,陈跃.高铬铸铁铸渗层的冲击磨损性能研究.中国铸造装备与技术,2004,(1):21-23
    [85]宋怀江,张国赏.碳化钨增强高锰钢基复合材料冲击磨损性能的研究.铸造技术,2005,26(6):468-470
    [86]李珍,陈跃.铸钢表面WC/高碳铬铁铸渗层冲击的磨损性能.表面技术,2005,34(4):32-34
    [87]李学敏.冲击载荷下热喷涂涂层的塑性变形行为分析.甘肃工业大学学报,1997,23(2):25-30
    [88]邵天敏,徐殿军.等离子喷涂涂层的冲击响应频谱分析.清华大学学报,1998,38(4):52-55
    [89]黄锦滨,李学敏等.电刷镀Ni-P(Ce)及Ni-Cu-P(Ce)镀层的冲击磨损行为.清华大学学报,1998,38(2):25-27
    [90]李学敏,何建强.冲击载荷作用下刷镀涂层的硬化行为分析.甘肃工业大学学报,1998,24(2):20-24
    [91]R.Bantle,A.Matthews,Investigation into the impact wear behaviour of ceramiccoatings.SurfaceandCoatingsTechnology,Volume:74-75,Part2,Octobe r,1995:857-868
    [92]王爱华,谢长生.铝合金表面激光熔覆Fe-Al青铜过渡区的组织结构及其在小能量多冲作用下的行为.稀有金属材料与工程,1999,28(5):289-292
    [93]石世宏,傅戈雁,史建军.多冲循环下激光涂覆件的形变硬化与软化.激光与红外,2005,35(8):554-556
    [94]陈从桂,张鹏程,石世宏,张国平.激光熔覆涂层多冲表面磨损机理.金属热处理,2005,30(12):55-57
    [95]于连玉,石世宏.激光熔覆涂层在多冲载荷下的力学行为分析.机械设计,2004,21(5):44-46
    [96]傅戈雁,石世宏,唐卫东.激光涂层零件的多冲碰撞形变效应与分析.激光杂志,2005,26(4):79-81
    [97]许云华,熊建龙.冲击接触载荷下45钢的微观塑性变形特征与损伤.金属学报,2000,36(8):809-812
    [98]许云华,熊建龙.冲击接触加载下高锰钢表层纳米结构及其特异耐磨性.自然科学进展,2001,11(3):282-287
    [99]许云华,陈渝眉.冲击载荷下应变诱导高锰钢表层组织纳米化机制.金属学报,2001,37(2):165-170
    [100]许云华,王发展.冲击接触载荷下45钢亚表层组织结构.热加工工艺,1999,(4):10-12
    [101]石世宏,傅戈雁.激光涂层及多冲后的组织结构变化.中国机械工程,2005,16(11):1005-1008
    [102]许振明,姜启川.冲击磨损下团球状共晶体奥-贝钢磨损表面层组织的变化.摩擦学学报,1999,19(1):39-44
    [103]J.W.Stead.Micyo-metallography and its practical application.J West Scot Iron & Steel Inst,1991-1912,19:169-204
    [104]张保法,刘英杰.冲击磨损中合金结构钢的组织结构变化.1996,8(4):34-36
    [105]张保法,刘英杰.低速冲击下的绝热剪切带.科学通报,1996,41(4):374-376
    [106]杨业元,方鸿生等.白层形态及形成机制.金属学报,1996,32(3):373-376
    [107]杨业元,方鸿生等.冲击磨损失效行为的研究.矿山机械,1995,(7):25-28
    [108]黄维刚,方鸿生等.高应力冲击磨损的白层剥落机制.钢铁研究学报,1998,10(1):53-57
    [109]许云华,袁善良等.退火45钢高能冲击载荷下的白层形态及形成机制.热加工工艺,2000,(1):3-5
    [110]N.P.Suh.Anoverview of the delamination theory of wear,Wear,44(1977)1-16
    [111]S.L.Rice.Formation of subsurface zones in impact wear,ASLE Trans,2(1981)264-268
    [112]S.L.Rice.Reciprocating impact wear testing apparatus,Wear,45(1)(1997)85-95
    [113]杨业元,方鸿生,郑燕康等.碳钢的高应力冲击磨损行为研究.摩擦学学报,1996,16(2):120-124
    [114]贾利晓.铸渗工艺及表面复合层冲击磨损性能研究.兰州理工大学硕士学位论文,2004
    [115]Y.L.Bai.Adiabatic shear banding,Res.Mechanical,31(2)(1990)133
    [116]B.J.Griffiths.Journal of tribology,109(7)(1987)525
    [117]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005
    [118]Tadaaki Sugita,Kazuo Suzuki,Yoshiyasu Nakata.Impact wear of MgO single crystals Ⅰ.Wear characteristics,Wear,58(2)(1980)283-291
    [119]Tadaaki Sugita,Kazuo Suzuki,Yoshiyasu Nakata.Impact wear of MgO single crystals Ⅱ.Impact and wear damage,Wear,58(2)(1980)293-299
    [120]李保成.镁合金冲击性能研究.新材料开发与研究,2005,(7):54-55
    [121]王玲.镁铝泡沫复合材料的基体组织及冲击性能.航空制造技术,2007,(1):100-101
    [122]贾素秋,贾树胜.压铸镁合金的腐蚀行为研究.材料保护,2007,40(6):20-23
    [123]A.Inoue.Mg-basedamorphousalloys.MaterialsScienceandEngineering,1993,173:1-8
    [124]郑玉贵,姚治铭,张玉生等.冲刷与腐蚀的交互作用与耐冲刷腐蚀合金 设计.金属学报,2001,36(1):51-54
    [125]刘新宽.泥浆型冲刷—腐蚀交互作用的研究.腐蚀与防护,1998,19(6):253-255
    [126]杨院生,曲敬信,邵荷生.两种金属材料腐蚀磨损的交互作用.摩擦学学报,1996,16(1):47-53
    [127]饶启昌,高义民,刘福玲等.介质酸根对高铬铸铁腐蚀磨损特性的影响.西安交通大学学报,1993,27(3):15-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700