重型发动机排气门/气门座材料制备及其相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备了一种新型的粉末冶金气门座合金,并研究了合金相应的冷致密化、热致密化以及热处理过程中组织和性能变化规律等一系列问题。与此相配套,研制了一种重型发动机用新型镍基合金气门,研究了包括气门合金的热成型、摩擦焊接、等离子堆焊等一系列工艺成型性能和规律。最后,为了评价所研制气门气门座合金使用性能的好坏,还研究了气门气门座合金的高温氧化特性以及气门气门座合金的摩擦磨损性能和规律。本文采用硬度,室温拉伸和高温拉伸、X射线物相分析(XRD)和应变分析方法、金相(OM)和电子显微分析方法(TEM、SEM、AFM),运用有限元方法和热力学计算等多种方法和手段,采用实验和理论相结合的方法,研究了气门气门座合金在整个制备环节中的性能和组织变化规律以及它们的高温氧化规律和摩擦磨损规律。获得了下列重要结论:
     1.研究了多元粉末体系的冷致密化规律,提出了一个新的适合于多组分粉末体系冷致密化本构方程1-ρ=k_1·e~((?)_1p~(1/2)+(?)_1)+k_2·e~((?)_2p~(1/2)+(?)_2)+…+k_n·e((?)_np~(1/2)+(?)_n);研究了生坯压制过程中裂纹形成的原因,发现多元粉末体系中硬度较大,颗粒尺寸较大,压制性能较差的铬铁和钼铁粉颗粒的微观偏聚是压制裂纹产生的内在原因,压坯高向上性能不均匀会加剧压制裂纹的出现,模具表面过于粗糙或模具的不对中是诱发压制裂纹出现的外在因素;利用有限元模拟方法研究了单向压制过程的应变场、应力场和密度分布,发现由于模具壁的摩擦作用,使压制生坯高度方向的应变场、应力场和密度分的不均匀,顶部的密度大于底部的密度;提出了一种摩擦辅助压制的方法,利用有限元的方法对这种压制方法进行了模拟,模拟结果显示,摩擦辅助压制能够得到比单向压制更加均匀的生坯密度分布。
     2.研究了多元粉末压坯烧结过程中的体积收缩规律,提出了临界压坯密度的概念,理论推导了临界压坯密度方程v·ρ~2=C_1ρ~2+C_2·m~2+C_3mρ,把合金烧结后的特性和烧结前的工艺因素联系到了一起;研究了烧结密度对合金的物理、力学性能的影响,提出了合金不同温度时的导热系数计算方程k_t=[1+α·(T-273)]·(1-ε)/(1+4.46ε~2)·k_s
     利用热模拟实验机,模拟了烧结温度、时间对合金性能和组织的影响,发现气门座圈合金用多元粉体在1240℃烧结保温30分钟,能够得到性能组织较好的烧结产品。
     3.利用GLEEBLE1500热模拟机,测定并研究了粉末冶金气门座圈合金的连续冷却曲线和等温冷却曲线。冷却曲线表明,气门座圈烧结合金的等温转变(TTT)曲线和连续冷却转变曲线中存在明显的珠光体和贝氏体转变区域,当冷却速度较慢时,会析出各类碳化物,合金的马氏体转变温度为296℃;研究了合金淬火温度、回火温度和回火时间对合金性能和组织的影响,发现合金的最佳热处理工艺为1100℃保温30分钟后淬火,然后在750℃回火2小时,得到气门座圈合金硬度为42HRC,抗拉强度为446 MPa,抗弯强度为996 MPa,冲击吸收功为3.2J/cm~2,达到用户要求;本章还用热力学软件计算平衡条件下的碳化物组成,计算与实验事实比较发现,在750℃回火,当回火时间为2小时,合金的组织中能够保留烧结过程中形成的部分原生碳化物,这些碳化物在较低温度时比较稳定,使合金零件具有较好的综合性能。
     4.研究了粉末冶金铁基气门座合金在250℃~650℃之间的抗氧化特性及氧化动力学规律,研究发现,450℃以下,合金的抗氧化性能良好;合金表面氧化产物在250℃~550℃主要为Fe_2O_3,但随着温度的变化,氧化产物的形貌有所变化,250℃的氧化产物形貌为针状,550℃表面氧化产物变为大片状,合金在650℃时,合金表面氧化产物转变为“菜花”状Fe_3O_4;光电子能谱结果和能谱分析表明,合金中参与氧化的主要元素是铁和铬,铬有由基体向氧化界面扩散的趋势,晶界是氧向基体扩散的重要通道。
     5.采用热压缩变形模拟研究了重型发动机气门用Ni76Cr19AlTi镍基合金的热变形行为,指出比较合宜的热变形温度为1050±30℃,应变速率可以为1S~(-1)以上;在分析Zerrilli-Armstrong关于面心立方金属热变形本构方程局限性和Ni76Cr19AlTi镍基合金热变形实验的基础上,提出了一个改进的本构方程σ=C_0+C_1ε~(1/2)exp(-C_2T+C_3ε+C_4Tln(?));研究了镍基合金电镦-热模锻成型后气门不同部位的力学性能和组织对应关系,发现气门头硬度高的部位的晶粒尺寸相对比较细小,透射电子显微组织中的位错密度高,硬度低的部位其组织特征则相反,为气门设计和失效分析提供指导;采用有限元方法对气门头的热成型过程进行了模拟,得到了气门头各个部位的温度、应力和应变的分布,这个结果能够很好解释气门头各个部位的组织和硬度的变化。
     6.研究了Ni76Cr19AlTi镍基合金的高温力学性能,当温度达到700℃,其抗拉强度为765MPa,远高于该温度下4Cr10Si2Mo的强度310MPa和用户单位原用发动机排气门材料4Cr14Ni14W2Mo的强度。利用惯性摩擦焊把4Cr10Si2Mo钢和Ni76Cr19AlTi镍基合金成功地焊接在一起,焊接后,接头强度达到1120MPa;研究了镍基合金气门头上等离子堆焊STELLITE6钴基合金的界面问题,研究发现堆焊界面冶金结合良好。
     7.研究了重型发动机气门用镍基合金在600℃~800℃之间的抗氧化特性及氧化动力学规律,导出了600℃~800℃各个温度段下的氧化动力学方程并计算了不同温度段里的氧化速率常数;研究发现,合金抗氧化性能良好;光电子能谱结果和能谱分析表明,合金中参与氧化的主要元素是铬、钛,氧化过程中,氧化过程中,合金的氧化速度要受到铬和钛的扩散速度的制约。
     8.研究了铁基粉末冶金气门座合金/重型发动机气门用镍基合金摩擦副的滑动摩擦磨损特性,发现当对偶件摩擦面为钴基合金堆焊层时,铁基粉末冶金气门座合金磨损量比较小;如果对偶件为未堆焊钴基合金的镍基合金时,铁基粉末冶金气门座合金表面会产生严重的粘着磨损,磨损速度加快;当粉末冶金气门合金和钴基合金堆焊层对磨时,如果载荷很小,气门座合金的磨损机制主要是犁沟效应,磨损相对比较轻微,当载荷比较大,磨损时间比较短时,磨损量增加较快,为中度磨损,当载荷较大,磨损时间比较长时,产生严重磨损
     9.利用发动机模拟实验机研究了工作面堆焊钴基合金的镍基合金气门/粉末冶金铁基合金气门座的冲击摩擦磨损特性,发现温度较低时,气门气门座的主要磨损机制为犁沟磨损,温度相对比较高、冲击次数比较少时,气门气门座的主要磨损机制为轻微粘着磨损,温度较高且冲击次数较多时,气门气门座的磨损机制是以粘着磨损为主;评价了堆焊镍基合金气门/粉末冶金铁基合金气门座这对摩擦副的磨损的好坏,发现经过25万次冲击磨损,其气门下沉量只有0.065mm,其下沉量明显小于比用户单位原先所用的4Cr14Ni14W2Mo/高铬铸铁气门座摩擦副,达到了预定目标。
A novel PM alloy used for valve seat of heavy duty engine has been prepared. Series theoretical problems such as ambient densification of multi-powders, hot densification of green compacts and heat treatment of the sintered alloy have been studied on this PM valve seat alloy. At the same time, a novel nickel-base alloy for valve of heavy duty engines has been prepared. Series problems such as plasticity of the valve alloy at elevated temperatures, inertia friction of the alloy with steel 4Cr10Si2Mo, cladding of stellite 6 powders on the valve alloy have been studied. At last, oxidization-resistance and wear-resistance of the both alloys have also researched. Property and microstructure evolution in preparing of the valve/valve seat materials and properties of the two materials at an operating mode of heavy duty engines have been studied using hardness measurement, tensile test at room temperature and at elevated temperatures, X-ray diffraction(XRD) ,micro-strain analysis, optical microscopy(OM), electronic microstructure analysis(SEM,TEM), atomic force microscopy(AFM) , finite element method(FEM) and thermal-mechanics calculation etc. Important conclusions can be summarized as follows:1. By researches on ambient compaction of multi-powders, a new compaction equation has been suggested asEffect of various factors on cracks in compaction of multi-powder has been discussed. Results show that the aggregation of Cr-Fe and Mo-Fe powder is the main reason for the formation of micro-cracks, the inhomogeneity of density in vertical direction and the misalign of dies can lead to crack formation and propagation. FEM simulation has been used to study evolution of strain, stress and density in unidirectional compaction of multi-powder. Simulation results show that density of top layer in green compacts is higher than that of bottom layer. A new friction-assisted compaction has been suggested. And FEM simulation has also been used to study this new compaction. Simulation results show that density of green compacts made in friction-assisted method is much more homogenized than that in unidirectional method.
     2. Shrinkage of the alloy in sintering has been discussed. It is discovered when the density of green compacts get to a threshold value, density of the sintered alloy will not increase with increasing of compact density. By theoretical deduction, a equation for calculation of threshold density has been brought out as:
     v.ρ~2=C_1ρ~2+C_2·m~2+C_3mρ
     Effects of sintering density on physical and mechanical property have been studied. It reveals that it is an effective way of increasing sintering density to promote properties of the alloy. A equation for calculation of conductivity coefficient at elevated temperatures has been suggested as: k_t=[1+α·(T-273)]·(1-ε)/(1+4.46ε~2)·k_s.
     Thermal simulator has been used to study the effects of such parameters as holding time and sintering temperature on microstructure and mechanical properties of the alloy. It is discovered that a suitable sintering process is sintering at 1240℃and holding 30 min.
     3. Continuous cooling transformation (CCT) diagram and isothermal temperature transformation (TTT) diagram of the PM valve seat alloy has been studied on a Gleeble1500 simulator. Results show that there are obvious phase transformation regions of pearlite and bainite on CCT and TTT diagrams. Carbides precipitate at a slow cooling rate and M_s of the alloy is 296℃. Effects of such parameters as quenching temperature, tempering temperature and tempering holding time on microstructure and mechanical properties have also been discussed. It is found that a suitable heat treatment of the alloy is quenching after holding 30 min. at 1100℃and tempering at 750℃for 2 hours. Thus, hardness of the alloy is 42 HRC, tensile strength of the alloy is 446MPa, transverse rupture of the alloy is 996MPa and impact toughness of the alloy is 3.2J/cm~2. A thermal dynamics calculation program has been used to calculation phases of the alloy at 750℃and the calculation results has been compared with experimental data. It is discovered that part of the original carbides of the alloy formed in sintering is stable after being tempered at 750℃for 2 hours, which leads to a good mechanical property of the alloy.
     4. Based on a discussion of oxidization resistance of the alloy from 250℃to 650℃, it is found the oxidization resistance of the alloy is excellent at temperatures lower than 450℃. Oxides formed at 250℃is "needle-like". Oxides formed at 550℃is "piece-like" and that formed 650℃is "flower-like". Chemical analysis shows that chrome is gathering at the boundary between the layer of oxides and matrix. Grain boundary is an important entrance for ambient oxygen from surface of samples to inner matrix.
     5. Deformation behavior of a nickel-base alloy Ni76Cr19AlTi has been studied on a thermal simulator. It is found that suitable deforming temperature of the alloy is 1050±30℃and the swain rate can be higher than 1S~(-1). Based on the Zerrilli-Armstrong constitutive equation used for f.c.c, metals, an improved constitutive equation for the studied nickel-base alloy has been suggested. Microstructure and mechanical property of the alloy after die forging has also been investigated. A finite element code has been used to investigate the die forging process. Simulation results can reasonably explain the microstructure evolution and mechanical property of the alloy after die forging.
     6. Friction welding has been used to join Ni76Cr19AlTi nickel-base alloy with 4Cr10Si2Mo steel. Strength of the welds is 1120MPa. Microstructure analysis shows that the-ultra-high dislocation density in nickel-base alloy and martensite transformation in 4Cr10Si2Mo steel makes a high strength of the welds. Plasma cladding of stellite 6 on Ni76Cr19AlTi-made valve has been researched. Researching results show that there are no obvious imperfects in the interface between stellite 6 coatings and the matrix.
     7. Based on a discussion of the oxidization resistance of Ni76Cr19AlTi nickel-base alloy from 600℃to 800℃, it is found the oxidization resistance of the alloy is excellent at these temperatures. The oxidization of the alloy depends on the diffusion rate of chrome and Ti at the temperatures.
     8. Sliding wear-resistance of the friction pair consisting of PM valve seat alloy and Ni76Cr19AlTi nickel-base alloy has been studied. It is found that wear loss of the PM alloy is minor if the counterpart nickel-base alloy has been coated with stellite 6 cobalt-base alloy, however if the counterpart nickel-base alloy is uncoated, then wear of the PM alloy is severe. In the condition of the friction pair consisting of PM valve seat alloy and the coated Ni76Cr19AlTi nickel-base alloy, effects of load and wearing time on wear mechanism of the PM alloy have been investigated. It is discovered that furrowing is a major wearing of the PM alloy if the loading is low. If the loading is heavy and the wearing time is short, wear loss is mediate. If he loading is heavy and the wearing time is long, PM alloy is worn severely. An engine simulator has been used to analyze the impact wear of the PM valve seat and the coated nickel-base alloy valve. Results show that if the ambient temperature is low, wear of both the PM valve seat and the coated nickel-base alloy valve is minor, if the ambient temperature is high, for example, higher than 700℃and the number of impacts is small, minor adhesion is the major wear mechanism. If the ambient temperature is high, for example, higher than 700℃and the number of impacts is big, severe adhesion is the major wear mechanism. At last, a comment on wear-resistance of the valve seat alloy by the sink quantity of the valve. It is found that valve sink quantity of the studied pair of PM valve seat/coated nickel-base valve is 0.065mm, much smaller than that of the pair of high-chrome valve seat/4Cr14Ni14W2Mo valve.
引文
[1] Greetham G , Development and performance of infiltrated and non-infiltrated valve seat insert materials and their performance[J].PowderMetallurgy, 1990, 33(2):112-114
    [2] Strong G, Liang X. Review of valve seat insert material properties required for success[C]. In: Proceedings of the 1997 International Symposium on Valve train System Design and Materials, USA, 1997
    [3] 徐晓娟,张丽英,李汶霞等,WC含量对铁基气门阀座材料性能的影响[J].粉末冶金技术,2002,20(4):215-218
    [4] Anon. Cobalt-flee P/M valve-seat insert alloy has high hardness [J].Advanced Materials and Processes, 2004, 162(6): 58-60
    [5] 牛洪军 孙一唐 黄显臣等,FeCrNiMo高碳奥氏体气门座圈材料的显微结果与性能[J].金属热处理学报,1992,13(4):13-18
    [6] 韩凤麟.汽车发动机粉末冶金阀座圈合金进展(续)——无铅汽油、LPG、CNG、柴油发动机用.[J]粉末冶金技术[J].2002,20(2):100-108
    [7] Fujiki Akira, Ishibashi, Aldyoshi. Characteristics of P/M Mo steel for valve seat inserts [J].Journal of the Japan Society of Powder and Powder Metallurgy , 1993, 40(6): 585-588
    [8] Salgado L., Jesus Filho E.S, Jesus E.R.B.et.al. Mechanical and microstructural characterisation of P/M high-speed steel valve seat inserts [J].Materials Science Forum, 2003, v 416-418(1):312-316
    [9] Chun Keyoung Jin, Hong Jae Soo.Engine valve and seat insert wear depending on speed changes [J].Journal of Automobile Engineering, 2005, 219(4):525-534
    [10] Wang Y.S., Narasimhan S., Larson J.M. et.al. Wear and wear mechanism simulation of heavy-duty engine intake valve and seat inserts [J].Journal of Materials Engineering and Performance, 1998, 7(1):53-65
    [11] Wang Y.S., Narasimhan S., Larson J.M.et.al. Effect of operating conditions on heavy duty engine valve seat wear [J].Wear, 1996, 201(1-2): 15-25
    [12] Oh Jungseok, Jung Seungcheal, Kim Youngwooet.al. Oxidation effect on the exhaust valve seat wear. In: Proceedings of the 6th International Pacific Conference on Automotive Engineering, 1991:477-484
    [13] Pidria M., Boretto G.Poggi M. E.et.al.Development of low-cost, interconnected matrix composites for valve seat application [J]. High Performance Structures and Materials, High Performance Structures and Composites, 2002(4): 57-64
    [14] Johnston S.V., Hainsworth S.V. Effect of DLC coatings on wear in automotive applications[J]. Surface Engineering, 2005, 21(1):67-71
    [15] Zhao R.,Barber G.C.,Wang, Y.S. et.al. Wear mechanism analysis of engine exhaust valve seats with a laboratory simulator [J].Tribology Transactions, 1997, 40(2):209-218
    [16] Budinski, Kenneth G. Tribological properties of titanium alloys [J].Wear, 1991, 151(2):203-217
    [17] Kwon Oh Geon, Han Moon Sik, Failure analysis of the exhaust valve stem from a Waukesha P9390 GSI gas engine, Engineering Failure Analysis, 2004, 11(3):439-447
    [18] Kane, Joe, Conoco natural gas engine oil passes 7000 hour field test in lean burn engine[J].Diesel Progress Engines & Drives, 1994, 60(10):40-41
    [19] Sinharoy S., Narasimhan S.L. Oxidation behavior of two nickel-base superalloys used as elevated temperature valves in spark ignited engines and diesel exhaust recirculation (EGR) applications[c].In:2004, Proceedings of the International Symposium on Superalloys, SUPERALLOYS 2004-Proceedings of the Tenth International Symposium on Superalloys:623-626
    [20] 朱远志 尹志民 曾渝等,重型发动机气门座圈工艺、材料研究进展[J].材料导报,2004,25(4):78-82
    [21] N.伯克斯等,高温金属氧化导论(赵公台等译)[M].北京:冶金工业出版社,1987
    [22] 王健 张宏飞,CNG发动机阀座材料开发及其与气门匹配性试验[J].汽车科技,2004(5):23-27
    [23] Oh Jungseok, Jung Seungcheal,Kim Youngwoo et.al.Oxidation effect on the exhaust valve seat wear[C].In:Proceedings of the 6th International Pacific Conference on Automotive Engineering, 1991: 477-484
    [24] 肖永清周文考,康明斯发动机汽缸盖镶嵌气门座圈[J].中国设备工程,2004(4):24-25
    [25] 朱正德徐涛,气门/缸盖阀座间气密性检测的研究[J].汽车科技,2004(3):37-40
    [26] 万能武蒙留记,别克V6发动机配气机构的分析与检修[J].车用发动机,2004,151(3):51-54
    [27] T. Ootani, Impact Wear Characteristics of Engine Valve and Valve Seat Insert Materials at High Temperature[J].Wear, 188,1995:175-184.
    [28] T.F.J.Quinn, Oxidational Wear modeling Part Ⅲ. The effects of speed and elevated temperatures[J].Wear, 1998, 216: 262-275.
    [29] 刘芳 周科朝 周涛,Co-Cr-Mo-Si颗粒强化铁基材料的研制[J].粉末冶金工业,2004,14(4):1-5
    [30] 刘兢生 刘佐民,磨损条件对气门气门座摩擦副摩擦性能的影响[J].摩擦学学报,1993,13(2):161-170
    [31] W.X.Chen, Tdbological application of carbon nanotubes in a metal-based composite coating and composites [J].Carbon,2003,.41:215-222
    [32 Sriram sundrarajan, Micro/nanotdbology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy[J].Wear, 1999,225-229:678-689
    [33] 傅茂林 高洪林 郭兰,现代发动机气门座圈材料的发展[J].汽车技术,2001(1):24-27
    [34] 徐润泽,粉末冶金结构材料学[M]长沙:中南工业大学出版社,2002
    [35] 李红艳等,发动机无凸轮轴气门驱动的研究与进展[J].车用发动机,2001,132(4):1-5
    [36] S.Yang, Vibration characteristics and comparisons of automotive engine valves made from conventional and non-conventional materials [J].J.sound and vibration, 1996, No.191(5): 986-992
    [37] Kawana A., Ichumura H, Iwata Y. et.al. Development of PVD ceramic coatings for valve seat [J]. Surface and Coatings Technology, 1996,86-87(1-3):212
    [38] Zhao J, An X., Huang X.P. Relationship between the thermal shock behavior and cutting performance of a functional gradient ceramic tool [J].Mater. Proc. Techn.,2002, 129(1-3):161
    [39] Sonsino C.M, Fatigue design of structural ceramic parts by the example of automotive intake and exhaust valves [J]. International Journal of Fatigue, 2003,25 (2): 107-116.
    [40] Blau P J, Dumont B, Braski D N et al. Reciprocating friction and wear behavior of a ceramic-matrix graphite composite for possible use in diesel engine valve guides[J].Wear, 1999,225(2): 1338-1349
    [41] 吕林,发动机陶瓷缸盖底板、气门座的研制[J].武汉交通科技大学学报,1995,19:353-357
    [42] 柴之龙,CA488发动机气门摇臂体的国产化研究[J].汽车工艺与材料,1999(6):13-16
    [43] 范明强 赵春强,国外轻型柴油机的现状及发展[J].汽车技术,1997(8):8-13
    [44] 王迎辉,一种高密度粉末冶金气门座的制造方法[J].粉末冶金工业,2002,12(5):60
    [45] 尹平玉 刘世民,高合金、高性能粉末冶金气门座圈的研制[J].粉末冶金工业,2002,12(2):31-34
    [46] 陈广志 田玉清,粉末冶金气门座的研制[J].新技术新工艺,1999(4):28-30
    [47] 美国TRW公司气门部编,内燃机气门手册[M].美国:2002.3:47-67
    [48] 王忠俊 吕林 喻方平,车用发动机在汽车排气制动时气门特性测试分析,[J].武汉理工大学学报(交通科学与工程版),2004,28(3):342-344
    [49] Larson J.M, Jenkins L.E Application of superalloys in internal combustion engine exhaust valves[J].ASTM Special Technical Publication, 1979, 672:578-600
    [50] Schaefer S K, Larson J M, et al. Evolution of Heavy Duty Engine Valves-Materials and Design[J].Valvertrian System Design and Materials. 1997, 14-15:250
    [51] 商治 罗成 陈爱军,机车柴油机气门失效及新型气门研究[J].内燃机车2004(9):11-15
    [52] 张庆昕 张玉峰,6BT排气门颈部断裂原因分析与对策[J].内燃机配件,2004(1):15-17
    [53] 马喆 甘春瑾 董文玲,气门断裂原因分析[J].理化检验.物理分册,2005,41(2):96-98
    [54] Zhao R, Barber G.C, Wang Y.S. et. al. Wear mechanism analysis of engine exhaust valve seats with a laboratory simulator[J].Tribology Transactions, 1997, 40(2):209-218
    [55] Phillipson E.A., Steam locomotive design: Data and formulae[J].Locomotive, 1963, 39(485-492): 494-496
    [56] Armco Steel Co. 21-4N, U.S.A. Patent3, 336, 1968
    [57] Schauer, Julia A. Hot corrosion of nickel-base exhaust valves in a natural gas engine. U.S.A., SAE Technical Paper Series, 910055, 1991
    [58] Hagiwara Yoshitoshi, Ishida Masao Oka, Tomooet.al.,Development of nickel-base superalloy for exhaust valves, U.S.A., SAE Technical Paper Series, 910429,1991
    [59] Jenkins L F and Larson J M.The Development of a New Austenitic Stainless Steel Exhaust Valve Material. U.S.A., SAE780245-78039, 1995
    [60] Gardner B, Bell A. Challenges, product development and qualification of the Kristin Field, Subsea Control and Data Acquisition: Experience and Challenges, U.S.A.Subsea Control and Data Acquisition: Experience and Challenges, 2004, p 249-257
    [61] Armco Steel Co.21-4N, USA Patent3, 336, 1968
    [62] Anon, Controlling maximum exhaust temperatures on vehicle and marine diesels [J].Diesel and Gas Turbine Progress, 1974, 40(12): 18-19
    [63] Anon, Guide to scientific instruments [J].Science, 1967, 158A(3804A):9-150
    [64] Saori Mitsuru, Okuda Takanari, new chromium-nickel-iron base superalloy for marine diesel engine exhaust valve [J]. R&D, Research and Development (Kobe Steel, Ltd), 1988, 38(1):55-58
    [65] Wallis P. B. high temperature corrosion resistant alloy, Turbomachinery International, 1977, v 18(6):52-54
    [66] 程世长 刘正东 杨钢,中国内燃机气阀钢的现状和建议[J].钢铁研究学报,2005,17(3):1-4
    [67] 赵龙,排气门复合塑性成形工艺的研究,锻压装备与制造技术,2004(6):57-59
    [68] 杨敬东 胡庆存,MANB&W6L48/60主机排气阀断裂原因分析[J].世界海运,2004,vol.(1):48-49
    [69] 陈文 梁升 段发明,气门电镦成形的常见缺陷原因及处理[J].机械工人.热加工,2000(6)
    [70] 余式昌 吴申庆 燕纪全,我国21-4N气阀钢的研究现状和发展趋势[J].特殊钢,2004,25(5):30-33
    [71] 于志伟 许晓磊,5Cr21Mn9Ni4N耐热钢等温时效组织研究[J].材料热处理学报,2004,25(2):5-8
    [72] 柳学胜 李玉清 钟松,5Cr21Mn9Ni4Nb2WN奥氏体耐热钢晶界碳化物对高温塑性的影响[J].材料科学与工艺,1997,5(1):125-128
    [73] 朱远志 尹志民 郭昌明等,6Cr21Mn10MoVNbN合金的流变特性,见:2004年材料 科学与工程新进展,北京:冶金工业出版社,2004:713-718
    [74] 邓益中.姚玲珍,6Cr21 Mn10 MoVNbN钢制堆焊排气阀断裂原因分析[J].金属热处理,2002,27(9):48-50
    [75] 吴旭初 沈文君,发动机气门材料应用及其进展[J]。内燃机工程,1999,(1):33-39
    [76] 郭连振 董以敏,国外柴油机文献题录,[J].柴油机,1999,(4):57
    [77] 世仓会利谚,发动机气门的新材料[J].国外内燃机车,1994,289(7):18-33
    [78] Sheng Wenbin, Li Dong, YangRuiet.al. Research on the Ti-48Al-2Cr-2Nb automobile exhaust valve formed in permanent mold during centrifugal casting process[J].Journal of Materials Science and Technology, 2001, 17(SUPPL):S97-S100
    [79] Bell T. Current status of duplex surface engineered Ti-based materials, Transactions of Nonferrous Metals Society of China (English Edition), 2004, 14(SUPPL. 2) :7-12
    [80] Takahashi Wataru, Nagata Tatuo, Okada Minoru et.al.Development of high performance titanium alloy for automobile use [J].Sumitomo Metals, 1992, 44(5): 58-65
    [81] 苏彦庆 郭景杰 丁宏升等,483Q发动机用TiAl基合金排气阀门的研制[J].材料工程,2000,(5):21-23
    [82] Wu Shiping, Numerical simulation of off-centred porosity formation of TiAl-based alloy exhaust valve during vertical centrifugal casting[J].Modelling and Simulation in Materials Science and Engineering, 2003, 11 (4): 599-608
    [83] 张耀宏,新材料在发动机气门上的应用[J].小型内燃机,1994,23(6):54-63
    [84] 粉末冶金产品标准编写组,粉末冶金产品标准[M].北京:粉末冶金研究所,1988
    [85] 孙学昆等,Application of Cam-Clay model in analysis of cold densification process of Si3N4 ceramic powder[J]. 东北大学学报,1998,19(4):395-397
    [86] Kim K.T.,Lee H.T. Effect of friction between powder and a mandrel on densification of iron powder during cold isostatic pressing[J].International Journal of Mechanical Sciences, 1998, 40(6):507-519
    [87] Sun Xue-Kun, Kim Ki-Tae, Wang Guo-Dong, Simulation of cold compaction densification behavior of silicon nitride ceramic powder[J].Journal of the American Ceramic Society, 1998, 81(12):3318-3320
    [88] Lee S.C.,Kim K.T. Densification behavior of aluminum alloy powder under cold compaction[j].International Journal of Mechanical Sciences, 2002, 44(7): 1295-1308
    [89] Eksi Abdulkadir, Saritas Suleyman, Effects of powder hardness and particle size on the densification of cold isostatically pressed powders[J].Turldsh Journal of Engineering and Environmental Sciences, 2002, 26(5):377-384
    [90] LANGE F.F, ATTERAAS~+ L,ZOK F. Deformation consolidation of metal powders containing steel inclusions[J].Acta metal, mater. 991,vol.39(2):209-219
    [91] Walker E.E, On the properties ofpowders[J].Trans.Faraday Soc.,1923, 19(55):73
    [92] Shapiro, I. Compaction of powders X. Development of a general compaction equation [J].Advances in Powder Metallurgy and Particulate Materials, Modeling, Design, and Computational Methods, 1993, 3:229-243
    [93] Kawakita K.J. Compression of powders[J].J. Japan Society of Powder Metallurgy., 1963,10:236
    [94] Wang Yubo,Matsugi Kazuhiro,Yanagisawa Osamu, General constitutiw equation for metal powder compaction and its application to closed die compaction and powder rolling[J]. Journal of the Japan Institute of Metals, 2003, 67(5):252-258
    [95] Ge Rong-de, A new powder compaction equation[J].The international journal of powder metallurgy, 27(3):211-216
    [96] Panelli R, Filho F.A. Compaction equation and its use to describe powder consolidation behavior[J].Powder Metallurgy, 1998, 41(2): 131-133
    [97] Li Shujie, Khosrovabadi P.B.,Kolster B.H. New compaction equation for powder materials[J].The international journal of powder metallurgy, 30(1):47-57
    [98] Liu J.X,Davies T.j. Packing state and compaction equation of menosize spherical powders[J].Powder Metallurgy, 1997, 40(1):51-54
    [99] David等著,温树德译,粉末压坯裂纹形成的原因分析[J].国外金属加工,1997,(3):25
    [100] 张兴全 李淼泉 吴诗,用有限元法预测粉末体镦粗过程中的裂纹缺陷[J].航空学报,1997,18(4):509-512
    [101] 汪俊 罗思东 李从心,金属粉末零件压制过程的有限元模拟[J].中国机械工程,
    [102] 汪俊 李从心,金属粉末体压制成型过程模型的研究[J].锻压机械,1996(3):41-43
    [103] Canta T, Frunza D. Friction-assisted pressing of PM components[J].Joumal of Materials Processing Technology, 2003, 143-144(1):645-650
    [104] J.Besson, A.GEvans, The effect of reinforcements on the densification of a metal powder[J].Acta metal. Mater., 1992, 40(9):2247-2255
    [105] 郭庚辰,液相烧结粉末冶金材料,化学工业出版社,北京,2003:10~20
    [106] Suleyman Saritas,Roger D.Doherty, Alan Lawley, Effect of porosity on the hardenability of P/M steels [J] . International journal of powder metallurgy, 2002, 38(1):31-40
    [107] 丁华东 李雅文等,铜石墨材料抗弯强度与孔隙的关系[J].中国有色金属学报,1996,(4):123-126
    [108] Sweeney Scan M.,Mayo Merrilea J. Relation of pore size to green density: the Kozeny equation[J].Journal of the American Ceramic Society, 1999, 82, (7,): 1931-1933
    [109] M.I. Aivazov, I.A. Domashnev, Influence of porosity on the conductivityof the hot pressed titanium nitride specimens[J].Poroshk. Mctall.(Soviet P/M Metal Ceram.) 1968 8 (9): 51-54.
    [110] 杨学明 徐文嘉 吴庆余,内燃机气门座材料的开发与应用[J]。武汉汽车工业大学学报,1998,20(3):61-65
    [111] 王琳 刘佐民,发动机排气门失效机理研究的国内外概况[J].武汉工业大学学报,2000,22(5):83-86
    [112] T.Noda, Application of cast gamma TiAl for automobiles[J].Intermetallics, 1998(6): 709-713
    [113] Lewis R.,Dwyer-Joyce R.S. Wear of diesel engine inlet valves and seat inserts Proceedings of the Institution of Mechanical Engineers, Part D: [J]. Journal of Automobile Engineering, 2002, 216(3):205-216
    [114] 陈岚 梁焕珍 李锐星等,计算机在点阵常数确定中的应用[刀.计算机与应用化学,2002,19(3):207-210
    [115] 吴冲浒 陈士仁 张守全,钨和钴点阵常数的精确测定[J].稀有金属与硬质合金,1999,139(6):30-60
    [116] Zawrah M.E Investigation of lattice constant, sintering and properties of nano Mg-Al spinels [J].Materials Science and Engineering A, 2004, 382, (1-2): 362-370
    [117] 邱利 胡玉和 编,X射线衍射技术及设备,北京:冶金工业出版社,1998:261-285
    [118] Ozaki K.,Urita T.,Matsuda Y. Austenitization and Carbide Dissolution of High Speed Tool Steel AISI-M2 in Short Time Heating[J].ASM Proceedings: Heat Treating, 2000, v 1:177-182
    [119] Parker J.D.,Parsons A.W.J. Tempering performance of low-alloy steel weldments[J].Internationai Journal of Pressure Vessels and Piping, 1994, 57(3): 345-352
    [120] Lim L.C.,Lai M.O., Ma, J. Tempering of AISI 403 stainless [J].Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, A171(1-2): 13-19
    [121] Shtansky D.V, lnden G, Phase transformation in Fe-Mo-C and Fe-W-C steels-Ⅱ. Eutectoid reaction of M23C6 carbide decomposition during austenitization[J].Acta Materialia, 1997, 45 (7): 2879-2895
    [122] Law N. C,Parsons S. A. Howell, P. R. et.al. Crystallography of Carbide Precipitation at Transformation Interfaces during Austenite Decomposition in a low-alloy Steel [J].Materials Science and Technology, 1987, 3(8):642-648
    [123] Sahay S.K, Bhadeshia, H.K.D.H, Honeycombe R.W.K Carbide precipitation and the nucleation of allotriomorphic ferrite in an Fe-W-C steel[J].Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, A157, (1):101-105
    [124] Shtansky D.V, Inden G. Phase transformation in Fe-Mo-C and Fe-W-C steels-I. The structural evolution during tempering at 700 ℃, 1997[J].Acta Materialia, 45(7): 2861-2878
    [125] Liu, Yong; Chen, Lifang; Tang, Huiping; et.al., S Mechanical properties of PM titanium composite material for application in automobile industry[J].JOM, 2004, 56,(11 ):271
    [126] Hagiwara Yoshitoshi, Ishida Masao,Oka, Tomoo et.al. Development of nickel-base superalloy for exhaust valves[J].SAE (Society of Automotive Engineers) Transactions, 1991, 100, (5):484-494
    [127] 马兴科,最小二乘法及其在化学中的应用[J].周口师专学报,2002,12(2):56
    [128] R.W.staehle, Hancox.P.Advances in Corrosion Science and Technology, New York:Plenum Press, 1974:211
    [129] 李铁藩 编著,金属高温氧化与热腐蚀[M].北京:化学工业出版社,2003:178-180
    [130] Cox M. G C.,McEnaney, B, Scott, V., D Chemical diffusion model for pattitioning of transition elements in oxide scales on alloys [J].Philosophical Magazine., 1972, 26(4): 839
    [131] Barinov S.M, Evdokimov V. Yu. Effect of powder metallurgy method on strength and fracture toughness of NiAl[J].Journal of Materials Science Letters, 1996, 15(15):332-1334
    [132] Hsu Wei-Chih,Chen S.C,Kuo P.C. et.al., Preparation of NiCuZn ferrite nanoparticles from chemical co-precipitation method and the magnetic properties after sintering[J].Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 111(2-3): 142-149
    [133] Hribernik B,Wurzwallner K. Fauland H.P. Investigation into the microstructure and mechanical properties of an advanced T15 type PM high speed steel[J].Advances in Powder Metallurgy: 1990,65-76
    [134] Popov Egor P, Petersson Hans, Cyclic metal plasticity: experiments and theory[J].ASCE J Eng Mech Div, 1978, 104, (6): 1371-1388
    [135] Leung Chun-Pok, McDowell Davil L. Inclusion of primary creep in the estimation of the Ct parameter[J].International Journal of Fracture, 1990, 46 (2): 81-104
    [136] Zhu Yuan-Zhi,Yin Zhi-Min,Jiang Feng et.al. Constitutive equation of annealed copper with high conductivity for deformation at high strain rates, [J] Transactions of Nonferrous Metals Society of China (English Edition), 2004, 14(4):775-778
    [137] 王礼立,冲击动力学进展,合肥:中国科技大学出版社,1992:58-61
    [138] Zerilli F.J, Armstrong R.W. Dislocatiosn-mechanics-based constitutive relations for dynamics calculation[J]. Appl. Phys., 1987, 61(5): 1516-1525
    [139] Abed F.H.,Voyiadjis G.Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures[J].Acta Mechanica, 2005, 175 (n 1-4): 1-18
    [140] Uenishi A, Teodosiu C. Constitutive modelling of the high strain rate behaviour of interstitial-free steel[J].International Journal of Plasticity2004, 20(4-5):915-936
    [141] 熊安文,不同热处理制度对GH80A板材硬度的影响[J].特钢技术,2001(1):56-57
    [142] 张立红,冯小龙,GH80A合金相的溶解析出规律及热处理制度研究[J].宝钢技术,2001(6):44-48
    [143] 杨觉先 编,金属塑性变形物理基础,北京:冶金工业出版社,1987:93-107
    [144] A.P. Wu J.,U Ren Z.S. Peng et.al. Numerical simulation for the residual stresses of Stellite hard-facing on carbon steel[J].Journal of Materials Processing Technology ,2000, 101:70-75
    [145] Comstock R.j.,Kaiping L Wagoner R.H. Simulation of axisymmetric sheet forming teas[J]. Journal of materials processing technology, 2001, 117(35): 153-168
    [146] 李志 曲敬信 周平安等,载荷对镍基合金涂层高温磨损特性的影响[J].金属热处理,2000(6):11-16
    [147] 熊党生,稀土化合物对粉末冶金镍基合金摩擦磨损性能的影响[J].粉末冶金技术,2002(2):67-70
    [148] 孟军虎 吕晋军 王静波等,两种镍基合金的高温摩擦学性能研[J].摩擦学学报,2002(3):184-188
    [149] 侯清宇.高甲生镍基合金等离子弧堆焊组织结构和显微硬度[J].有色金属,2004,56(1):13-16
    [150] Xibao Wang, Hua Liu, Metal powder thermal behaviour during the plasma transferred-arc surfacing process[J].Sufface & Coatings Technology, 1998, 106 (2-3): 156-161
    [151] 刘春芳 阎果 付保全等,热处理和添加元素对MgB_2晶畴尺寸和微观应变的影响[J].低温物理学报,2003(S1):422-424
    [152] 常云龙 陈德善,磁控等离子弧堆焊热源的研究[J].沈阳工业大学学报,1997(5):49-57
    [153] 石世宏 彭华明 傅戈雁,激光熔覆与堆焊层成分稀释度的对比研究[J].激光杂志
    [154] Anderko A, Sridhar N, Yang L.T et.al. Validation oflocalised corrosion model using real time corrosion monitoring in a chemical plant[J].Corrosion Engineering Science and Technology, 2005, 40(1):33-42
    [155] Mrowec S,Grzesik Z,Rajchel B. Oxidation of nickel and Ni-Cr and Ni-Na alloys at high temperatures[J].High Temperature Materials and Processes, 2004, 23(1): 59-72
    [156] Asami K, Kimura H.M, Hashimoto K.,et.al. High temperature oxidation behavior of amorphous Zr-Ni alloys in air, Materials Transactions[J].JIM, 1995, 36(7):988-994
    [157] Iuchi Tohru, Furukawa Tohru, Wada Shigenobu, Emissivity modeling of metals during the growth of oxide film and comparison of the model with experimental results,[J]Applied Optics, 2003, 42(13):2317-2326
    [158] Lowell Carl E,Barrett Charles A, Palmer Raymond W. COSP. A computer model of cyclic oxidation[J]. Oxidation of Metals, 1991, 36(1-2):81
    [159] 胡玉和 编,X射线衍射技术及设备,北京:冶金工业出版社,1998:96-100
    [160] Kawakita T, Nagasaka Y, Motoyoshi K. et.al. Sintered valve seat rings for aumobile engine using lead-free gasoline[J].Electronie Design, 1974(6): 71-85
    [161] Fujiki Akira, Oyanagi Mitsushi,Miyazawa Tomonori .et.al. Tougher valve seats use two hard particles but no cobalt[J].Metal Powder Report, 2005, 60(4):20-22
    [162] Gui Manchang, Kang Suk Bong, Lee Jung Moo, Influence of porosity on dry sliding wear behavior in spray deposited Al-6Cu-Mn/SiCp composite, [J].Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, v 293(1):146-156
    [163] Simchi A.,Danninger H. Effects of porosity on delamination wear behaviour of sintered plain iron[J].Powder Metallurgy, 2004, 47(1):73-80
    [164] Meng Qingwu, Geng Lin,Ni Dingrui, Laser cladding NiCoCrAlY coating on Ti-6Al-4V[J].Materials Letters, 2005, 59(22):2774-2777
    [165] Lee Jung-Moo,Kang Suk-Bong, Sato Tatsuo[J].Microstructures and mechanical properties of AI3Fe reinforced aluminum matrix composites fabricated by a plasma synthesis method[J]. Materials Transactions, 2002, 43(10): 2487-2493
    [166] M.M. Stack~*, M.T. Mathew, Mapping the micro-abrasion resistance of WCyCo based coatings in aqueous conditions[J].Surface and Coatings Technology, 2004,183:337-346
    [167] MM. Stack., M. Mathew, Micro-abrasion transitions of metallic materials[J]. Wear, 2003,255:14-22
    [168] A. Ben Cheikh Larbi., A. Cherif, M.A. Tarres, Improvement of the adhesive wear resistance of steel by nitriding quantified by the energy dissipated in friction[J].Wear, 2005,258:712-718
    [169] Lira S.C., The relevance of wear-mechanism maps to mild-oxidational wear[J].Tdbology International, 2002, 35(11):717-723
    [170] Milan J.C.G,Carvalho M.A., Xavier R.R. et.al. Effect of temperature, normal load and pre-oxidation on the sliding wear of multi-component ferrous alloys[J].Wear,2005, 259(1-6):412-423

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700