TBM氚系统的氚安全分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界对能源的需求正变得越来越大,作为能源主体的化石能源日益枯竭,而核裂变能存在着资源贮量有限、放射性废物危害较大等固有缺陷,其它能源尚不能承担世界庞大的能源需求,因此人们把目光投向了核聚变能源。核聚变能源以其安全、清洁、燃料资源丰富等优点而成为未来首选能源。由中国、欧盟、美国等七方参加的基于磁约束核聚变的ITER装置是第一个聚变堆级的实验装置,它不仅用来集成验证聚变能源的科学性和可行性,而且将部分验证聚变堆的工程技术问题。ITER用于氚增殖研究的实验包层模块(TBM)及其燃料循环系统(氚处理系统)等是ITER的核心技术之一。依据ITER中国专家组总体安排,将研制一套供氦冷固态氚增殖剂包层模块(HCCB TBM)使用的氚处理系统,包括氚提取系统(TES)、氦冷却气纯化系统(CPS)和氚测量系统(TMS)三个功能系统。
     TBM氚系统内氚的总量和氚的释放速率是氚安全所关注的重要问题。氚(T2、HT等)具有极强的迁移扩散能力,很容易通过系统向外泄漏或渗透,从而损伤材料并对工作人员和环境造成危害。正常运行的氚系统的氚释放量必须低于规定限值才被许可运行,在氚系统最终参试前,需向ITER IO提交安全分析报告以获得参试许可。因此在TBM氚系统研制过程中须进行预安全分析、质量保证措施及许可证申请等研究。
     对TBM氚系统进行安全分析与评估就是要采用适当的方法来分析氚系统的自身危险性,分析氚系统可能发生的故障/事故和应采用的安全措施,分析氚系统正常运行和事故工况下对工作人员、环境和公众等的放射性危害情况,也就是分析氚系统的设计是否满足安全需要。为实现上述目标,以确定论作为氚安全研究主要的指导思想,适当采用概率安全评价(PSA)的一些思想和方法作为补充,主要从以下几个方面在进行了TBM氚系统的安全研究:氚安全分析及安全控制策略研究、TBM氚系统材料的氚包容性能研究、TBM氚系统的危险性分析、TBM氚系统的故障模式、影响及危害性分析(FMECA)、正常工况下氚系统氚释放的分析和计算。这些研究将为氚系统的安全分析与评估提供支撑。
     首先研究了氚安全分析和安全控制的策略问题,以作为氚安全研究的指导思想。主要包括氚循环的安全战略,合理可行的氚安全分析流程和应采用的方法,多重包容的氚安全控制策略。根据确定论的研究思路给出了进行TBM氘系统安全分析的过程,从而确定了主要采用确定论来进行氚安全分析,最终提交安全报告以获得参试许可证。同时,进行TBM氚系统的功能分析与材料分析,以便为后面的预先危险性分析(PHA)和FMECA提供支撑;分析氚的走向并给出氚量衡算方程,从而指导下一步的氚释放计算。
     材料氚包容性能是氚系统安全研究需要关注的最重要的问题之一。以D2作为渗透介质(代替HT),采用超高真空-四极质谱法进行气相D2在HR-1材料渗透测试,并进行推导计算,获得D:在材料中的渗透率、扩散系数、溶解度等热力学参数,从而为氚安全分析中的氚释放量计算提供基础数据。
     对煤气事故、H2事故和三个典型裂变电厂核释放(泄漏)事故进行了调查与分析,从而得到了事故模式、事故原因、事故机理、事故后果和预防措施等,可作为TBM氚系统安全分析的借鉴。对氚系统进行危险、有害因素辨识,获得可能导致氚异常释放的部分始发事件。使用危险性预先分析法对TBM氚系统的三级包容系统的氚释放危险进行分析,结果表明,PHA可以为TBM氚系统初始的安全分析和进一步的安全设计奠定基础,而针对各种危险、有害因素提出的预防措施分析可以为氚系统的设计提供指导。另外,根据课题研究的要求,还探讨了氚提取系统的最大可信事故问题,分析了用于安全设计的设计基准事故和超设计基准事故。从环境释放限值和工作人员剂量限值的角度进行了氚释放速率限值的分析和计算,给出了导出限值等安全判断参数。
     与PHA方法类似,FMECA方法也适用于设计中的TBM氚系统的初步安全分析。首先分析和描述研究对象的任务要求和环境条件,即进行任务剖面分析,并进行风险定义。通过FMECA分析,找出了导致氚危险性释放的故障模式,即发生于材料壁、连接结构和冷却器等部位的几种故障模式及其风险优先数和危害度,并进而找出了可能导致氚过量释放的潜在故障模式,这些故障是进行风险预防的重点。确定了冷却器的管板连接和板壳连接处最易发生氚危险性释放故障。分析发现,可以通过改进设计、使用补偿方法来降低氚释放风险,提高系统安全水平。
     计算氚的外部释放量是氚安全的重要研究内容之一。TBM氚系统正常运行时内部会积存着一定数量的氚,氚的释放速率必须控制在规定限值内才能够获得参试许可证。由于TBM氚系统的工艺和组成比较复杂,而且目前的设计还未完全确定氚系统各部分的尺寸设计参数、氚数量和工艺条件等等,因此氚释放量只能采用估算法获得,计算时所采用的方法和参数应是保守偏安全的。氚的释放包括氚通过材料壁的原子扩散和氚通过材料壁或连接件极微漏孔通道的分子扩散和迁移。因此,氚释放计算的基础是传质方程、分子扩散计算方法(Fick定律)、气体的微通道流动与扩散等计算方法等。计算结果表明,氚系统正常运行时,氚通过氚系统材料壁向外部的渗透速率是非常低的,而氚的微泄漏速率则更低,基本可以忽略。由于氚正常释放的计算相当繁琐,选用和建立适宜的氚释放计算模型非常重要,在手套箱除氚净化模型的基础上建立了氚操作室除氚的数学模型。
Nowadays, there is a greater demand on energies in the world, with the increasing depletion of the fossil fuel, which is the main body of the energy resource. Meanwhile, the nuclear fission energy has the inherent defects as limited reserves, harmful and radioactive wastes, etc.; other resources can't meet the huge energy demand in the world. Therefore, people's attention has been drawn to nuclear fusion energy. The nuclear fusion energy will be the first choice for future energy, since it is safe, clean and with abundant nuclear fuel supply. ITER is the first experimental fusion reactor based on magnetic confinement fusion, with the cooperation of the seven countries including China, EU and US, etc. ITER is not only used to verify the scientific nature and feasibility of fusion energy, but also used to partly testify the engineering and techniques of fusion reactor. TBM and its tritium system are one of the key techniques in ITER. According to the whole arrangement of Chinese ITER experts, a tritium system which can be used for HCCB TBM will be developed. The tritium system can be divided into three subsystems with different functions, named Tritium Extraction System (TES), Coolant Purification System (CPS) and Tritium Measurement System (TMS).
     The total tritium amount and release rate from TBM tritium system are the important problems in tritium safety research. Tritium can easily migrate and diffuse out to the external environment from the tritium system, damaging the structural materials and doing harm to the staff. The normal tritium release rate must be limited within the limit value. Before the verification test of TBM tritium system in ITER device, a safety analysis report about TBM and its auxiliary tritium system should be submitted to ITER organizations to gain the experiment permission license. The preparation work, for example, the pre-safety analysis, quality control measures and license application of the tritium system should be carried out.
     The safety analysis and evaluation on the tritium system is to analyze, with appropriate methods, the danger, possible failure and radioactive harm to the staff, environment and neighborhood. In order to realize goals above, deterministic analysis is used as the main guiding ideology. As a beneficial supplement, some methods based on probabilistic safety assessment (PSA) are appropriately applied. The following aspects of tritium safety analysis will be discussed:the strategy research on tritium safety analysis and safety management, the research on containment performance of materials for tritium, the danger analysis on TBM tritium system, the FMECA research on TBM tritium system, the analysis and calculation of tritium release under normal operating conditions. In the aspect of tritium safety analysis and safety management, probably adoptable safety measure of the tritium system is analyzed. Besides, the research content of tritium safety analysis is made clear, and safety research on TBM tritium system is considered as a part of strategy research on tritium safety. In addition, the procedure of tritium safety analysis, as well as the technique in each procedure is put forward and discussed.
     At first, this paper focuses on the strategy of tritium safety analysis and safety control, which is the guiding ideology for tritium safety study, mainly including safety strategies of tritium circulation, reasonable procedure and methods of tritium safety analysis, safety control strategy based on multiple tritium containment. Meanwhile, the function and material of TBM tritium system is analyzed, in order to provide support for further PHA and FMECA. The tritium trend and the tritium balance equation were given to provide guidance for tritium release calculation.
     Tritium resistivity of tritium resistant materials is one of the most important problems in tritium safety research. Permeability, diffusion coefficient and solubility of D2replacing HT in HR-1austenitic stainless steel can be got by gas permeability test, which can provide the basic data for tritium release calculation in tritium safety analysis.
     H2accidents, toxic gas accidents and three typical nuclear leakage accidents that ever happened in history are investigated and analyzed, to find the general factors about accident mode, accident mechanism, accident consequence and preventive measures, which will provide references for safety analysis on the tritium system. Some initiating events causing abnormal tritium releasing were analyzed by identifying dangerous, harmful factors on tritium system, on the basis of which, PHA is carried out to analyze the triple tritium containment systems of tritium system. And the result shows that PHA can lay the foundation of preliminary tritium safety analysis and further safety design. Meanwhile, the analysis on prevention measures for various dangerous and harmful factors can provide guidance for design of TBM tritium system. In addition, according to the requirements of the subject research, the design basis accident and beyond design basis accident about TBM tritium system are also analyzed. Tritium limit was analyzed and calculated, and the derived limit and other safety parameters were got.
     Similar to PHA, FMECA is also applicable to the safety analysis on TBM tritium system in design. Firstly, the task requirements and environmental condition of the research objects are analyzed and described, that is the task profile analysis, then risk definition is given. Through FMECA, the failure modes leading to dangerous tritium release are found out, and their risk priority number and damage degree level are calculated. They often take place in materials wall, connection structure and cooler. Then the potential fault modes leading to the excessive tritium release are found out, which are the key to prevent tritium release risk. It is definite that excessive tritium release is most likely to take place in the connection of tube-plate or plate-shell. The analysis shows that tritium release risk can be reduced, and the safety level of the tritium system can be raised also, only through the design improvement and safety compensation measures. Besides, four potential fault modes which are likely to lead to excessive tritium release should be paid more attention to.
     Calculation on tritium release amount to the environment and tritium action simulation in component and materials are the important content on tritium safety research. A certain amount of tritium exists in TBM tritium system, and tritium release rate is the important problem for tritium safety. Besides, tritium release rate should be within the permission value. Actual operational situation of the tritium system often changes, and it is impossible to know clearly the design parameters of the components, tritium amount and technique condition. Therefore, the normal tritium release amount could only be estimated, and calculation methods and parameters should be safe and conservative. The calculation methods in this chapter are mass transfer equation, Fick law, fluid flow equation, etc. There are three routes of tritium release, which are atomic tritium diffusion through the material wall, tritium molecular migration through micro leakage channels and tritium waste transportation out from TBM tritium system. The calculation result shows that when the tritium system works normally, the permeation rate of tritium through the material wall is low, and the micro leakage rate is even lower, which can be neglected completely. Through analysis in this chapter, the calculation process of the normal tritium release is very tedious, so the selection or establishment of the appropriate calculation mode for tritium release is important. Finally, mathematical model of detritiation in the tritium operating room is established on the basis of detritiation mode in glove boxes.
引文
[1]邱励俭.聚变能及其应用[M].北京:科学出版社,2008.12.
    [2]Hongsuk Chunga, Myunghwa Shim, Hiroshi Yoshida, Haksu Jin, etal, Korea's progress on the ITER tritium systems, Fusion Engineering and Design,84(2009):599-603.
    [3]T. Yamanishi, T. Hayashi, W. Shu, Y. Kawamura, H. Nakamura, Y. Iwai, K. Kobayashi, K. Isobe, T. Arita, S. Hoshi, T. Suzuki, M. Yamada, Recent results of R&D activities on tritium technologies for ITER and fusion reactors at TPL of JAEA, Fusion Engineering and Design,83(2008):1359-1363.
    [4]T. Pinna, C. Rizzello, Safety assessment for ITER-FEAT tritium systems, Fusion Engineering and Design,63-64 (2002):181-186.
    [5]Y. Iwai, T. Hayashi, K. Kobayashi, M. Nishi, Simulation study of intentional tritium release experiments in the caisson assembly for tritium safety at the TPL/JAERI, Fusion Engineering and Design,54(2001): 523-535.
    [6]C.A. Chen, D.L. Luo, Y. Sun, Z.Y. Huang, Y.F. Xiong, Tritium safety consideration in the design of tritium systems for China HCSB and DFLL TBMs, Fusion Engineering and Design,83(2008): 1455-1460.
    [7]王佩璇,宋家树.材料中的氦及氚渗透[M].北京:国防工业出版社,2002.52-54.
    [8]栾恩杰.国防科技名词大典核能[M].北京:航空工业出版社,2002.35-36.
    [9]李德平,潘自强.辐射防护手册[K].北京:原子能出版社,1990.118-120.
    [10]丁厚本,王乃彦.中子源物理[M].北京:科学出版社,1984.543-544.
    [11]马忠乾译.氚的物理和化学[M].北京:中国环境科学出版社,1991.149-153.
    [12]祝霖.放射化学[M].北京:原子能出版社,1985.315.
    [13]Caskey G R Jr. DP-MS-85-89.1985.
    [14]Morgan M J, Tosten M H. SRTC-MTS-94-3036.1994.
    [15]Louthan M R Jr, Caskey G R. Hydrogen Effects in Aluminum Alloys:CONF-750998, Ⅳ.117
    [16]Mosleg W C. Effects of internal helium on tensile properties of austenitic steels and related alloys at 820 ℃.Conf-940945-1,(DE9401365).1994.
    [17]Morgan M. Feacture toughness properties of welded stainless steel ofr tritium service(U). Conf-9409181-6, (DE95000755).1995.
    [18]Morgan M J, Tosten M H. SRTC-MTS-94-3036.1994.
    [19]蒋国强,罗德礼,陆光达,等.氚和氚的工程技术[M].北京:国防工业出版社,2007:48.
    [20]Verghese G W. Zumwalt L R. Feng C P. and Elleman T S. J. Nucl. Mater.1979,85/86:1161.
    [21]Hollenberg G W. Simonen E P. Kalinin G. and Terlain A. Fusion Eng.& Des.1995,28:190.
    [22]Muhlratzer A. Zeilinger H. and Isser H G. Nucl. Techn.1984,66:570.
    [23]Forcey K S. Ross D K. and Wu C H.J. Nucl. Mater.1991,182:36.
    [24]Forcey K S. Ross D K. Simpson J C B.Evans D S. and Whitaker A G. J. Nucl. Mater.1989,161:108.
    [25]Causey R A. Wampler W R. Retelle J R. and Kaae J L. J. Nucl. Mater.1993,203:196.
    [26]Causey R A. and Wampler W R. J. Nucl. Mater.1995,220-222:823.
    [27]A. Aiello, G. Benamati, M. Chini, C. Fazio, E. Serra, Z. Yao, Hydrogen permeation through tritium permeation barrier in Pb-17Li, Fusion Engineering and Design,58-59(2001):737-742.
    [28]M. Nakamichi, H. Nakamura, K. Hayashi, I. Takagi, Impact of ceramic coating deposition on the tritium permeation in the Japanese ITER-TBM, Journal of Nuclear Materials,386-388(2009): 692-695.
    [29]Peixuan Wang, Jian Liu, Yu Wang, Baogui Shi, Investigation of SiC films deposited onto stainless steel and their retarding effects on tritium permeation, Surface and Coatings Technology,128-129(2000): 99-104.
    [30]Zhenyu Yao, Jiakun Hao, Changshan Zhou, Changqi Shan, Jinnan Yu, The permeation of tritium through 316L stainless steel with multiple coatings, Journal of Nuclear Materials,283-287(2000): 1287-1291.
    [31]Rion A. Causey, William R. Wampler, The use of silicon carbide as a tritium permeation barrie, Journal of Nuclear Materials,220-222(1995):823-826.
    [32]A. Perujo, K.S. Forcey, Tritium permeation barriers for fusion technolog, Fusion Engineering and Design,28(1995):252-257.
    [33]K.S. Forcey, A. Perujo, Tritium permeation barriers in contact with liquid lithium-lead eutectic (Pb-17Li), Journal of Nuclear Materials,218(1995):224-230.
    [34]Rion A. Causey, William R. Wampler, The use of silicon carbide as a tritium permeation barrier, Journal of Nuclear Materials,220-222(1995):823-826.
    [35]Zhenyu Yao, Jiakun Hao, Changshan Zhou, Changqi Shan, Jinnan Yu, The permeation of tritium through 316L stainless steel with multiple coatings, Journal of Nuclear Materials,283-287(2000): 1287-1291.
    [36]M. Nakamichi, T.V. Kulsartov, K. Hayashi, S.E. Afanasyev, etal, In-pile tritium permeation through F82H steel with and without a ceramic coating of Cr2O3-SiO2 including CrPO4, Fusion Engineering and Design,82(2007):2246-2251.
    [37]G. Benamati, C. Chabrol, A. Perujo, E. Rigal, H. Glasbrenner, Development of tritium permeation barriers on Al base in Europe. Journal of Nuclear Materials,271&272 (1999):391-395.
    [38]A. Aiello, I. Ricapito, G. Benamati, A. Ciampichetti, Qualification of tritium permeation barriers in liquid Pb-17Li, Fusion Engineering and Design,69(2003):245-252.
    [39]D.Levchuk, S.Levchuk, H.Maier, H.Bolt, A.Suzuki, Erbium oxide as a new promising tritium permeation barrier[J]. Journal of Nuclear Materials,367-370(2007):1033-1037.
    [40]Gilbert E R. et al. Fusion Technol.1992,21:739.
    [41]Perujo A. and Forcey K S. Fusion Engineering and Design.1995,28:252.
    [42]Forcey K S. Perujo A. Reiter F. and Lolli-Ceroni P L. J. Nucl. Mater.1993,200:417.
    [43]T.Asaokao.Hydrogen Trapping Behavior in Plain Carbon and Cr-Mo Alloy Steel. Hydrogen in Metals 1980.
    [44]P.H.Pumphrey. The Effect of Sulphide Inclusions on the Diffusion of Hydrogen in stells, Central Electricity Generating Board, Central Electricity Research Laboratiries.Leartherhead, England.
    [45]A. W. Thompson and J. M. Bernstein. Advance in Corrosion Science and Technology, vol.7, 53-175.1980.
    [46]A. Aiello, M. Utili, S. Scalia, G. Coccoluto, Experimental study of efficiency of natural oxide layers for reduction of tritium permeation through Eurofer 97, Fusion Engineering and Design, 84(2009):385-389.
    [47]Yu.N. Dolinsky, Yu.N. Zouev, I.A. Lyasota, I.V. Saprykin, V.V. Sagaradze, Permeation of deuterium and tritium through the martensitic steel F82H, Journal of Nuclear Materials, 307-311(2002):1484-1487
    [48]山常起,吕延晓.氚及防氚渗透材料[M].北京:原子能出版社,2005:249.
    [49]Latanision R M. and Kurkela M. Corrosion.1983,39:174.
    [50]Sun Xiukui, Xu Jian and Li Yiyi. Materials Science and Engineering.1989,73/74:179.
    [51]Devannathan M A V, Stanchurdki Z. Proc Royal Soc.1962, A270:90.
    [52]Moghissi A A, etal. Tritium[M]. Nevada,1973:267.
    [53]Henry P. Assessment of radioactive contamination in man[M]. IAIEA, Vienna,1972:6419.
    [54]杨怀元.氚的安全与防护[M].北京:原子能出版社,1997.230.
    [55]宋姗,李芳宇,许寿元,等.一起氚水泄漏事故跟踪观察.中国辐射卫生,1998:58.
    [56]宋宇,曾凤英.小剂量氚内照射13例临床医学观察.职业卫生与病伤,2004,3(19):170-172.
    [57]GB18871-2002电离辐射防护与辐射源安全基本标准[S].
    [58]Elahe Alizadeh. Environmental and Safety Aspects of Using Tritium in Fusion.Journal of Fusion Energy,1/2(25):47-55.
    [59]Satoru Tanaka, Shigeru O'hira, Yusuke Ichimasa. Overview of tritium safety studies in Japan. Fusion Engineering and Design,63-64 (2002):139-152.
    [60]H. Yoshida, D. Murdoch, M. Nishi, V. Tebus, S. Willms, ITER R&D:Auxiliary Systems:Tritium Systems, Fusion Engineering and Design,55(2001):313-323.
    [61]ITER EDA Documentation Series No.16, Technical Basis for the ITER Final Design Report, Cost Review and Safety Analysis (FDR), IAEA, Vienna,1999.
    [62]Final Safety Analysis Report of Tritium Systems Test Assembly at the Los Alamos National Laboratory,TSTA-SAR, Los Alamos National Laboratory,1996.
    [63]P. Schira, E. Hutter, G. Jourdan, R.-D. Penzhone, The Tritium Laboratory Karlsruhe; laboratory design and equipment, Fusion Eng. Des.,18(1991):19.
    [64]Y. Naruse, Y. Matsuda, K. Tanaka, Tritium Process Laboratory at the JAERI, Fusion Eng. Des.12 (1990):293.
    [65]Takumi Hayashi, Kazuhiro Kobayashi, Yasunori Iwai, etal. Tritium behavior in the Caisson, a simulated fusion reactor room, Fusion Engineering and Design,51-52(2000):543-548.
    [66]W. Farabolini, A. Ciampichetti, F. Dabbene, M.A. Futterer, etal, Tritium control modelling for a helium cooled lithium-lead blanket of a fusion power reactor, usion Engineering and Design,81(2006): 753-762.
    [67]Deng Baiquan, Huang Jinhua, Mean residence time method of tritium inventory calculation, Fusion Engineering and Design,55 (2001):359-364.
    [68]Tomoaki Hino, H. Yoshida, Y. Yamauchi, Y. Hirohata, etal, Tritium inventory of carbon dust in ITER, Fusion Engineering and Design,61/62(2002):605/609.
    [69]Kazuhisa Hashimoto, Masabumi Nishikawa, Noriaki Nakashima, Sergey Beloglazov, tritium inventory in Li2TiO3 blanket, Fusion Engineering and Design,61/62(2002):375/381.
    [70]Masabumi Nishikawa, Atsushi Baba, Satoshi Odoi, Yoshinori Kawamura, Tritium inventory estimation in solid blanket system, Fusion Engineering and Design,39-40(1998):615-625.
    [71]V. Violante, S. Tosti, C. Sibilia, F. Felli, S. Casadio, etal, Tritium inventory and permeation in the ITER breeding blanket, Fusion Engineering and Design,49-50(2000):697-701.
    [72]Satoshi Shimakawa, Hisashi Sagawa, Toshimasa Kuroda, Tatsushi Suzuki, etal, Estimation of the tritium production and inventory in beryllium, Fusion Engineering and Design,28(1995):215-219.
    [73]Daiju Yamaki, Shiro Jitsukawa, Model calculation of tritium release behavior from lithium titanate, Fusion Engineering and Design,81(2006):589-593.
    [74]N. Roux, j. Avon, A. Floreancig, J. Mougin, Low-temperature tritium releasing ceramics as potential materials for the ITER breeding blanket, Journal of Nuclear Materials,233-237(1996):1431-1435.
    [75]T. Kinjyo, M. Nishikawa, T. Tanifuji, M. Enoeda, Introduction of tritium transfer step at surface layer of breeder grain for modeling of tritium release behavior from solid breeder materials, Fusion Engineering and Design,81(2006):573-577.
    [76]T. Kinjyo, M. Nishikawa, M. Enoeda, Estimation of tritium release behavior from solid breeder materials under the condition of ITER test blanket module, Journal of Nuclear Materials, 367-370(2007):1361-1365.
    [77]K. Sakamoto, T. Higuchi, K. Hashizume, M. Sugisaki, Influence of coexisting hydrogen isotopes on diffusion of tritium in niobium, Journal of Nuclear Materials,258-263 (1998):1073-1076.
    [78]J. Masuda, K. Hashizume, T. Otsuka, T. Tanabe, etal, Diffusion and trapping of tritium in vanadium alloys, Journal of Nuclear Materials,363-365(2007):1256-1260.
    [79]Hiroyuki Sugai, Diffusion of tritium in intermetallic compound β-LiAl:Relation to the defect structure, Solid State Ionics 177, (2007):3507-3512.
    [80]Hirofumi Nakamura, Masataka Nishi. Experimental evaluation of tritium permeation through stainless steel tubes of heat exchanger from primary to secondary water in ITER, Journal of Nuclear Materials, 329-333(2004):183-187.
    [81]L.C. Cadwallader, Comparisons of facility-specific and generic component failure rates for tritium-bearing components used in fusion research, Fusion Engineering and Design 54(2001) 353-359.
    [82]Wen Guo, Alice Ying, Ming-Jiu Ni, Mohamed A. Abdou, Influence of 2D and 3D convection-diffusion flow on tritium permeation in helium cooled solid breeder blanket units, Fusion Engineering and Design,81(2006):1465-1470.
    [83]F. Gabriel, Y. Escuriol, F. Dabbene, O. Gastaldi, J.F. Salavy, L. Giancarli. A 2D finite element modelling of tritium permeation for the HCLL DEMO blanket module. Fusion Engineering and Design,82(2007):2204-2211.
    [84]S. Tosti, V. Violante, A. Natalizio. Analysis of tritium permeation in the steam generators of the SEAFP:SEAL fusion power reactor, Fusion Engineering and Design,43 (1998):29-35.
    [85]Yong Song, Qunying Huang, YongliangWang, Muyi Ni. Analysis on tritium controlling of the dual-cooled lithium lead blanket for fusion power reactor FDS-II. Fusion Engineering and Design 84(2009)1779-1783.
    [86]L. Berardinucci, Modelling of tritium permeation through beryllium as plasma facing material, Journal of Nuclear Materials,258-263(1998):777-781.
    [87]Yong Song, Qunying Huang, Muyi Ni, YongliangWang, Preliminary tritium safety analysis on China DFLL-TBM for ITER, Fusion Engineering and Design, xxx(2009):xxx-xxx.
    [88]M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, etal, The ITER tritium systems, Fusion Engineering and Design,82(2007):472-487.
    [89]I.R.Cristescu, T.Busigin, L.Doerr,D.Murdoch, ITERdynamic tritiuminventorymodeling code, Fusion Sci.Technol.,48(2005):343.
    [90]A. Kirschner, D. Borodin, S. Droste, V. Philipps, Modelling of tritium retention and target lifetime of the ITER divertor using the ERO code, Journal of Nuclear Materials,363-365(2007):91-95.
    [91]Y. Nagao, K. Nakamichi, M. Tsuchiya, E. Ishitsuka, H. Kawamura, Verification of tritium production evaluation procedure using Monte Carlo code MCNP for in-pile test of fusion blanket with JMTR, Fusion Engineering and Design,51-52(2000):829-835.
    [92]T. Hayashi, T. Suzuki, M. Yamada,W. Shu, T. Yamanishi, Safe handling experience of a tritium storage bed, Fusion Engineering and Design,83(2008):1429-1432.
    [93]Y.Naruse, Y.Matsuda, K. Tanaka, TritiumProcess Laboratory at the JAERI, Fusion Eng. Des.,12(1990): 293-317.
    [94]P. Schira, E.Hutter,G. Jourdan, R.-D. Penzhom, The tritiumlaboratoryKarlsruhe; laboratory design and equipment, Fusion Eng. Des.,18(1991):19-26.
    [95]J.L. Anderson, C. Gentile, M. Kalish, J. Kamperschroer, T. Kozub, P. LaMarche, H. Murray, A. Nagy, S. Raftopoulos, R. Rossmassler, R. Sissingh, J. Swanson, F. Tulipano,M. Viola, D. Voorheers, R.T.Walters, Operation of the tokamak fusion test reactor tritiumsystems during initial tritiumexperiments, Fusion Eng.Des.,28(1995):209-214.
    [96]T. Hayashi, T. Suzuki, M. Yamada, M. Nishi, Tritium accounting stability of ZrCo bed with "in-bed" gas flowing calorimetry, Fusion Sci. Technol.,48(2005):317-323.
    [97]Final Safety Analysis Report on Tritium Systems Test Assembly at the Loa Alamos National Laboratory, TSTA-SAR, Los Alamos National Laboratory, U.S.A.,1996.
    [98]P. Schira, E. Hutter, G. Jourdan, R. Penzhone, The Tritium Laboratory Karlsruhe:Laboratory design and equipment, Fusion Eng. Des.18(1991):19-26.
    [99]T. Hayashi, T. Suzuki, S. Konishi, T. Yamanishi, M. Nishi, K. Kurita, Development of ZrCo beds for ITER tritiumstorage and delivery, Fusion Sci. Technol.,41(2002):801-804.
    [100]R. Lasser, L. Dorr, M. Glugla, R.-D. Penzhorn, T. Hayashi, D.K. Murdoch, H. Yoshida, The storage and delivery system of the ITER tritium fuel processing plant, Fusion Sci. Technol.,41(2002): 854-858.
    [101]H. Chung,M. Shim, D.H. Ahn,M. Lee, C. Hong, H. Yoshida, K.M. Song, D.J. Kim, K.Jung, S. Cho, Korea's activities for the development of ITER tritium storage and delivery systems, Fusion Science and Technology,54(2008):18-21.
    [102]K.M. Song, S.H. Sohn,D.W. Kang, S.W. Paek,D.H. Ahn, Installation of liquid phase catalytic exchange columns for the Wolsong tritium removal facility, Fusion Engineering and Design, 82(2007):2264-2268.
    [103]C.J. Caldwell-Nichols, M. Glugla, S. Welte, D.K. Murdoch, Requirements and selection criteria for the mechanical pumps for the ITER tritium plant, Fusion Engineering and Design,75-79 (2005): 663-666.
    [104]S. Ohira, T. Hayashi, H. Nakamura, K. Kobayashi, T. Tadokoro, H. Nakamura, T.Itoh, T. Yamanishi, Y. Kawamura, Y. Iwai, T. Arita, T. Maruyama, T. Kakuta, S. Konishi, M. Enoeda, M. Yamada, T. Suzuki, M. Nishi, T. Nagashima, M. Ohta, Improvement of tritium accountancy technology for ITER fuel cycle safety enhancement, Nucl. Fusion,40(2000):519-525.
    [105]A. Aiello, A. Ciampichetti,Measurement of hydrogen transport parameters in lead lithiumalloy using LEDI and SOLE devices, ENEA Report LB-A-R-022,2004, p.11.
    [106]J. Masuda, K. Hashizume, T. Otsuka, T. Tanabe, Y. Hatano,Y. Nakamura, T. Nagasaka, T. Muroga, Diffusion and trapping of tritium in vanadium alloys, Journal of Nuclear Materials,363-365(2007): 1256-1260
    [107]K. Sakamoto, T. Higuchi, K. Hashizume, M. Sugisaki, Influence of coexisting hydrogen isotopes on diO usion of tritium in niobium, Journal of Nuclear Materials,258-263(1998):1073-1076
    [108]S. Fukada, R.A. Anderl, Y. Hatano, S.T. Schuetz, R.J. Pawelko,D.A. Petti, G.R. Smolik, T. Terai, M. Nishikawa, S. Tanaka,A. Sagara, Initial studies of tritium behavior in flibe and flibe-facing material, Fusion Engineering and Design,61/62(2002):783-788
    [109]S. Fukada, M. Nishikawa, A. Sagara, Calculation of recovery of tritium from a flibe blanket, Fusion. Technol.,39(2001):1073-1077.
    [110]I.A. Ionesyan, V.K. Kapychev, V.N. Tebus, V.N. Frolov, Initial tritium waste management criteria and assessment for ITER, Fusion Engineering and Design,42(1998):149-154.
    [111]J.P. Van Dorsselaere, D. Perrault, M. Barrachin, A. Bentaib, J.Bez, etal, R&D on support to ITER safety assessment, Fusion Engineering and Design,84(2009):1905-1911.
    [112]B.J. Merrill, R.L. Moore, S.T. Polkinghorne, D.A. Petti, Modifications to the MEL-COR code for application in fusion accident analyses, Fusion Engineering and Design,51-52(2000):555-563.
    [113]P. Sardain, C.Girard, J. Andersson,M.T. Porfiri, R. Kurihara,X.Masson, et al.,Mod-elling of two-phase flow under accidental conditions fusion codes benchmark, Fusion Engineering and Design,54(2001): 555-561.
    [114]M. Iseli, In-vessel hydrogen deflagration and detonation in ITER-FEAT, Fusion Engineering and Design,54 (2001):421-430.
    [115]S. Kudriakov, F. Dabbene, E. Studer, A. Beccantini, J.P.Magnaud, H. Paillere, et al., The TONUS CFD code for hydrogen risk analysis:physical models, numerical schemes and validation matrix, Nuclear Engineering and Design,238(2008):551-565.
    [116]P. Emmanuel, L. Pascal, N. Amandine, R. Vincent, V. Jacques, Experimental investigationinthe TOSQANfacility ofheat andmass transfers ina spray for con-tainment application, Nuclear Engineering and Design,237(2007):1862-1871.
    [117]R. Redlinger, W. Baumann, W. Breitung, S. Dorofeev, W. Gulden, M. Kuznetsov, et al.,3D-analysis of an ITER accident scenario, Fusion Engineering and Design,75-79(2005):1233-1236.
    [118]H. Yoshida, M. Glugla, T. Hayashi, R. Lasser, D. Murdoch, M. Nishi, et al., Design of the ITER tritium plant, confinement and detritiation facilities, Fusion Engineering and Design, (2002): 513-523.
    [119]David A. Petti, Hans-Werner Bartels, The ultimate safety margins of ITER:a demonstration of the safety potential of fusion, Fusion Engineering and Design,46(1999):237-242.
    [120]S. Zinkle, N. Ghoniem, Operating temperature windows for fusion reactor structural materials, Fusion Eng. Des.,51-52(2000):55-71.
    [121]C. Wong, S. Malang, M. Sawan, S. Smolentsev, S. Majumdar.B. Merrill, et al., Assessment of first wall and blanket options with the use of liquid breeder, Fusion Sci. Technol.,47(3)(2005):502-509.
    [122]B. Pint, P. Tortorelli, A. Jankowski, J. Hayes, T. Muroga, A. Suzuki, et al.,Recent progress in the development of electrically insulating coatings for a liquid lithiumblanket, J.Nucl.Mat.,119(2004): 329-333.
    [123]L. El-Guebaly, the ARIES Team, Potential Coatings for Li/V System:Nuclear Performance and Design Issues, Fusion Eng. Des.,81(2006):1327-1331.
    [124]W. Kuan,M. Abdou, A new approach for assessing the required tritiumbreeding ratio and startup inventory in future fusion reactors, Fusion Technol.,35(1999):309-353.
    [125]M. Sawan,M. Youssef, Three-Dimensional Neutronics Assessment of Dual Coolant Molten Salt Blankets with Comparison to One-Dimensional Results, Fusion Eng. Des.,81(2006):505-511.
    [126]L.A. El-Guebaly, the ARIES Team, Three-dimensional neutronics study for ARIES-ST power plant, Fusion Technol.34(1998):1084-1088.
    [127]L.A. El-Guebaly, the ARIES Team, Benefits of radial build minimization and requirements imposed on ARIES compact stellarator design, Fusion Sci. Technol.,47(3) (2005).
    [128]F. Najmabadi, the ARIES team, Overview of the ARIES-RS Reversed-shear tokamak power plant study, Fusion Eng. Des.,38(1997):3-25.
    [129]F. Najmabadi, the ARIES Team, Overview of the ARIES-AT advanced tokamak, advanced technology fusion power plant, Fusion Eng. Des.,80(2006):3-23.
    [130]M. Sawan, L. El-Guebaly, G. Moses, W. Vogelsang, Nuclear analysis of the heavy ion beam driven fusion reactor HIBALL, Nucl. Technol./Fusion,4(1983):79-92.
    [131]L. El-Guebaly, the ARIES Team, Nuclear performance assessment of ARIES-AT, Fusion Eng. Des., m press.
    [132]M. Sawan, S. Malang, C. Wong, M. Youssef, et al., Neutronics assessment of molten salt breeding blanket design options, Fusion Sci. Technol.,47(3) (2005):510-517.
    [133]M. Youssef, M. Abdou, Uncertainties in prediction of tritium breeding in candidate blanket designs due to present uncertainties in nuclear data base, Fusion Technol.,9(1986):286-306.
    [134]罗德礼,陈长安,黄志勇,等.中国ITER氦冷固态实验包层模块氚工艺系统设计[J].核聚变与等离子体物理,2006,26(3):217-221.
    [135]Wong K Y, Khan T A, Guglielmi F et al (1984):Canadian Tritium Experience. Canadian Fusion Fuel Technology Projet. pp91-94.
    [136]Bown, R. M. (1985):HT and HTO in the Environment at Chalk River, Fusion Technology Vol.8, pp2539-2543.
    [137]JAERI-M85-134保健物理-管理上研究-Np.27(1984),日本原子能研究所,p70.
    [138]Papadopoulos, D., Konig, L. A., Langguth, K. G, (1982):Tritium Contamination of Rain Water due to Tritium Release to the atmosphere, Annalesde l'Association Belge de Radioprotection, Vol.7, n3-4,pp29-144.
    [139]Inoue, Y., Iwakura, T. and Miyamoto, K, (1985):Environmental Aspects of Tritium Released into the Atmosphere in the Vicinity of Nuclear Facilities in Japan. NIRS-M-52(Edited by Matsudaira, H. et al). National Institute of Radiological Sciences, Chiba, pp 296-315.
    [140]ANSI N.14-15. American National Standard for Leak Tests on Packages for Shipment of Radioactive Materials (1977).
    [141]C. E. Murphy. Jr. Environmental Tritium Transport Model Application to the Dose Evaluation for Members of the Public, NIRS-M-52 Edited by Matsudaira, H. et al. National Institute of Radiological Sciences, Chiba. pp316-332,1985.
    [142]W. Raskob Modelling of Tritium Behaviour in the Environment Fusion Technol. Vol 21. pt2,1992, 636-644
    [143]J. STRAKA, H, GEISS and K. J. VOGT, "Diffusion of Waste Air Puffs and Plumes Under Changing Weather Conditions" Contr. Atm. Phys.54,207(1981).
    [144]Pinson E A, Langham W H. Physiology and toxicology of tritium in man[J] J Appl Physiol,1957,10: 108.
    [145]方军,董柳灿译.国际放射防护委员会第30号出版物:国际放射防护委员会建议书-工作人员的放射性核素摄入量限值[M].北京:原子能出版社,1984.
    [146]史文虎.氢气燃烧与爆炸原因浅析.华北电力技术,1991(7):54.
    [147]王晓东,巴德纯,张世伟,张以忱.真空技术[M].北京:冶金工业出版社,2006.265.
    [148]黄建彬.工业气体手册[M].北京:化学工业出版社,2002.
    [149]刘秀喜,林明喜,薛成山.高纯气体的性质、制造和应用.北京:电子工业出版社,1997,118.
    [150]大连理工大学编,化工原理(下)[M].北京:高等教育出版社,1992.
    [151]国家地震局科技监测司.地震地下水手册.北京:地震出版社,1995.
    [152]管国锋,赵汝溥,化工原理(第三版)[M].北京:化学工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700