Al-Cr合金薄膜与不锈钢接触反应行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氚在大多数金属材料中具有强的渗透性,为了减少乃至阻止氚的渗透,又不牺牲结构材料的整体性质,最合适的方法是在材料表面加上一薄层氚扩散系数低的物质,作为氚渗透阻挡层(TPB)。目前世界上开展核聚变研究的国家均认为比较可行的方案是在堆用金属结构材料表面形成阻氚涂层。
     通过富铝涂层氧化制备α-Al_2O_3膜,因其具有自修复性能,是众多研究机构的主要研究方向。但α-Al2O3一般需要950℃以上温度才能形成。因此,如何在750℃以下温度得到α-Al2O3膜成为关键。本文以Cr合金化降低Al2O3相转变温度为技术路线,探讨用Al-Cr急冷合金薄带在不锈钢表面制备富铝涂层的可能性。为此,首先对急冷Al-Cr合金薄带的组织结构进行研究,考察了热处理参数与Al-Cr急冷合金薄带组织转变之间的关系,研究粗糙度、温度、时间等对Al-Cr急冷合金薄带低温氧化行为的影响,最后,探讨Al-Cr急冷合金薄带与不锈钢基体的接触反应行为。得到了以下结论:
     在急冷合金带组织结构研究中,发现急冷合金薄带被分为两类,含或不含A145Cr7析出相。其中Cr含量为2wt%,6wt%,8wt%的急冷合金由单一固溶体组成;而Cr含量为10wt%,15wt%,18wt%的急冷由固溶体与析出相组成。
     在急冷合金薄带热处理研究中,发现:高于350℃温度时,低Cr含量合金可析出细小颗粒,随着热处理温度升高、时间延长,颗粒尺寸变大,但温度高于Al的熔点660℃以上时,会导致颗粒异常长大。此外,颗粒尺寸存在临界值,达到临界值后,延长热处理时间,析出相颗粒尺寸变化不大。与模铸合金相比,析出相颗粒尺寸细小,且均匀分布。
     在急冷合金带热氧化研究中,通过透射电镜衍射花样及EDS分析证明,Al-Cr急冷合金薄带在大气中,低于750℃下氧化可以得到α-Al2O3。通过热处理调节急冷合金的组织,并粗化表面,能够促进合金低温氧化时形成α-Al2O3。
     在Al-Cr急冷合金薄带直接在不锈钢表面制备富铝涂层的尝试中,发现Cr含量低于8wt%的Al-Cr急冷合金薄带能够与不锈钢发生接触反应,形成含Al、Cr合金的涂层;而10 wt%及以上Cr含量的急冷合金薄带因表面存在大量的A145Cr7析出相,与基体不发生接触反应。
Tritium has a strong permeability in mostly of metal materials; In order to reduce or prevent the penetration of tritium, and without sacrificing the structure of the materials, the most appropriate approach is to add a thin layer that is low tritium diffusion, as a tritium permeation barrier (TPB). Currently the research around the world shows that the more viable solution is forming a coating on the surface of metal structural material for TPB.
     Because of its self-healing properties,α-Al2O3 film could be prepared by Al-rich coating. However,α-Al2O3 generally is formed above 950℃. Therefore, it is critical how to get a-A12O3 film below 750℃. In this paper, the way to reduce Al2O3 phase transition temperature is Cr alloying, the feasibility of preparation of Al-rich coatings by rapid quenching Al-Cr alloy film with stainless steel surface. For this purpose, first, the organizational structure of quench Al-Cr alloy films, and the relationship between heat treatment parameters with the phase transformation of quench Al-Cr alloy film, that were studied, the influence of roughness, temperature and time on the oxidation behavior of Al-Cr quenching Alloy at low-temperature;
     Finally, the contact reaction of quenching Al-Cr alloy film and stainless steel substrate was studied. The following conclusions are reached:
     Quenching alloy film was divided into two categories, with or without A145Cr7 precipitates. In which the quenching alloys of Cr content 2wt%, 6wt%, 8wt% by a single solid solution composition; the quenching alloys of the Cr content of 10wt%, 15wt%, 18wt% are constituted by the solid solution and the precipitation of phase.
     Low-alloy Cr content can be precipitated small particles, above 350 'C, with higher temperature and more time, particle size is larger, but when the temperature is higher than Al melting point (660℃),it would result in abnormal particles grown up. In addition, there is threshold of particle size, when particle size reach the threshold, Compared with casting alloys, precipitated phase particle size small, and evenly distributed.
     The TEM diffraction pattern and EDS analysis showed that, quenching Al-Cr alloy film formα-Al2O3,below 750℃, in the atmosphere. Regulating organization and coarsening surface, can promote alloy formedα-Al2O3 at low-temperature.
     the quenching Al-Cr alloy film of less than 8wt% Cr content contacting react with stainless steel, formed alloys coating including Al, Cr; however, the quenching Al-Cr alloy film of 10 wt% and higher content of Cr, own a large number of Al45Cr7 precipitates on the surface, then the substrate contact reaction does not occur.
引文
[1]李建刚,潘传红,李建刚.我国参加国际热核聚变实验堆(ITER)计划[J].科学时报,20036.28.
    [2]Futterer M A,Bielak B,Deffain J P,et al..Design development and manufacturing sequence of the European water-cooled Pb217Li test blanket module.Fusion Engineering and Design[J],1998(39):851-858.
    [3]袁涛,冯开明,王晓宇等.ITER氦冷固体氚增殖剂实验包层模块结构设计[J].核聚变与等离子体物理,2006,26(3):195-200.
    [4]吴宜灿,汪卫华,刘松林等.ITER中国液态锂铅实验包层模块设计研究与实验策略[J].核工程与工程,2005,25(4):347-360.
    [5]吴宜灿,王红艳,柯严等.磁约束聚变堆及ITER实验包层模块设计研究进展[J],原子核物理评论2006.2a(2):89-95.
    [6]J.Konys,A.Aiello,G.Benamati,L.Giancarli.Status of Tritium Permeation Barrier Development in the EU[J].Fusion Science and Technology,2005,47(4):844-850.
    [7]李强 黄群英 郁金南等.CLAM钢、EUROFER97钢与钨在HT-7托卡马克中辐照后的表面分析[J].核科学与工程,2004,24(2)157-163.
    [8]黄群英,郁金南,万发荣等.聚变堆低活化马氏体钢的发展[J].核科学与工程,2004,24(1):56-64.
    [9]黄群英.李春京.李艳芬等.中国低活化马氏体钢CLAM研究进展[J].核科学与工程,2007,27(1):41-50.
    [10]G.W.Hollenberg,et al..Tritium/hydrogen barrier development[J],Fusion Engineering and design,1995,28:190-198.
    [11]李韦.可将氚渗透量减少到1/1000的陶瓷保护膜[J].核设备与核材料,25-28.
    [12]Oyama,ST;Lee,D;Hacarlioglu,P;Saraf,RF.Theory of hydrogen permeability in nonporous silica membranes[J].Journal of Membrane Science,2004,244:(1-2) 45-53.
    [13]T.V.Kulsartov,K.Hayashi,M.Nakamichi,et al..Investigation of hydrogen isotope permeation through F82H steel with and without a ceramic coating of Cr2O3-SiO2,Fusion Engineering and Design[J],2006,81(1-7):701-705.
    [14]Rokuro Nishimura,Hiroyuki Inoue,Kenji Okitsu,et al..Hydrogen permeation behavior in pure nickel implanted with phosphorus,sulphur and their mixture[J],Corrosion Science,2007,49(3):1478-1495.
    [15]Pint BA,More KL.Transformation of Al2O3 to LiAlO2 in Pb-17Li at 800℃[J].Journal of Nuclear Materials,2008,376(1):108-113.
    [16]B.Y.Man,L.Guzman,A.Mioteilo.Microstructure,oxidation and H2-permeation resistance of TiAlN films deposited by DC magnetron sputtering technique[J].Surface and Coatings Technology,2004,180-181:9-14.
    [17]Yao ZY.,Zhou CS.,Shan CQ.,Yu JN.,Hao JK..The permeation of tritium through 316L stainless steel with multiple coatings[J].Journal of Nuclear Materials,2000,283-287:1287-1291.
    [18]Byung Hyuck Lim,Hyun Seon Hong,Kyung Sub Lee.Measurements of hydrogen permeation and absorption in zirconium oxide scales[J].Journal of Nuclear Materials,2003,312(2-3):134-140.
    [19]Masaru Nakamichi,Hiroshi Kawamura.Characterization of Y2O3 coating under neutron irradiation[J].Journal of Nuclear Materials,1998,258-263(2):1873-1877.
    [20]A.Perujo,J.Reimann,H.Feuerstein,B.Mancinelli.The oxidation kinetics of Incoloy 800and its deuterium permeation behavior[J].Journal of Nuclear Materials,2000,283-287(2)1292-1296.
    [21]C.Fazio,K.Stein-Fechner,E.Serra.Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier[J].Journal of Nuclear Materials,1999,273(3):233-238.
    [22]R.Conrad,K.Bakker,C.Chabrol,In-pile tritium-permeation measurements on T91 tubes with double walls or a Fe-Al Al2O3 coating[J],Journal of Nuclear Materials,2000,283-287(2):1351-1355.
    [23]姚振宇,郝嘉琨,周长善,等.复合膜对316L不锈钢氚渗透性能的影响[J].原子能科学技术,2000,34(1):65-69.
    [24]刘红兵,陶杰,张平则等;防氚渗透层制备技术的研究进展[J],材料导报,2006,20(9):47-54.
    [25]G.Benamati,C.Chabrol,A.Perujo.Development of tritium permeation barriers on Al base in Europe[J].Journal of Nuclear Materials,1999,271-272:391-395.
    [26]D.Levchuk,F.Koch,H.Marer,H.Bolt,Deuterium permeation through Eurofer and α-alumina coated Eurofer[J].Journal of Nuclear Materials,2004,328:103-106.
    [27]沈嘉年,李凌峰,张玉娟等.不锈钢表面渗铝并热氧化处理对氢渗透的影响[J].腐蚀科学与防护技术,2005,17(1):15-19.
    [28]D.L.Smith,J.Konys,T.Muroga,V.Evitkhin,Development of coatings for fusion power applications[J].Journal of Nuclear Materials,2007,307-311:1314-1322.
    [29]李美栓,周延春.Al2O3形成合金过渡态氧化行为[J].腐蚀科学与防护技术,2005,17(6):409-412.
    [30]I.Levin,D.Drandon.Metastable alumina polymorphs:crystal structures and transition sequences.Journal of the American Ceramic Society[J],1998,81(8):1995-2012.
    [31]Rommerskirchen l.,Kolarik V..Oxidation of β-NiAl,undoped and doped with Ce,Y,Hf[J].Werkstoffe und Korrosion,1996,47(11):625-630.
    [32]Klumpes R.,Maree C H,M.Schramm E..The influence of chromium on the oxidation of β-NiAl at 1000℃[J],Materials and Corrosion,1996,47(1):619-624.
    [33]张学军,吴维.Ag对β-NiAl高温氧化膜Al2O3形貌的影响[J].金属学报,2005,41(4):369-374.
    [34]李猛进,孙晓峰,管恒荣,姜晓霞,胡壮麒.Pd-Ni-Al涂层的高温长期氧化行为[J].金属学报2003,39(7)。
    [35]Jedlinski J.Comments on the effect of yttrium on the early stages of oxidation of alumina formers[J].Oxidation of Metals,1993,39(1/2):55-60.
    [36]V.K.Tolpygo,H.J.Grabke.The Effect of Impurities on the Alumina Scale Growth:An Alternative View[J].Scripta Materialia,38(1) 1998:123-129.
    [37]I.A.Kvemes,The role of yttrium in high-temperature oxidation behavior of Ni-Cr-Al alloys [J].Oxidation of Metals,1973,6(1):45-64.
    [38]Doh-Hyung Riu,Young-Min Kong and Hyoun-Ee Kim.Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3[J].Journal of the European Ceramic Society,2000,20(10):1475-1481.
    [39]M.F.Gazulla,M.P.Go'mez,A.Barba and J.C.Jarque.Characterization of ceramic oxide refractories by XRF and XRD[J].X-RAY SPECTROMETRY,2004,33(6):421-430.
    [40]V.K.Tolpygo,H.J.Grabke.The Effect of Impurities on the Alumina Scale Growth An Alternative View[J].Scripta Materialia,1997,38(1):123-129.
    [41]Rung-Je Yang,Fu-Su Yen,Microstructure-controlled effects on temperature reduction of a-Al2O3[J].Journal of Crystal Growth,2007,299(2):429-435.
    [42]P.Jin,G.Xu,M.Tazawa,K.Yoshimura.Low temperature deposition of α-Al2O3 thin films by sputtering using a Cr2O3 template[J].Journal of Vacuum Science and Technology A,2002,20(6):2134-2136.
    [43]M.W.Brumm,H.J.Grabke,The oxidation behaviour of NiAl-I.Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys[J].Corrosion Science,1992,33(1):1677-1690.
    [44]P.Tomaszewicz,G.R.wallwork,Iron-aluminium alloys:a review of their oxidation behavior [J].High Temperature Materials,1978,4(1):75-105.
    [45]M.W.Brumm,H.J.Grabke,The oxidation behaviour of NiAl-I.Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys.Corrosion Science,1992,33(11):1677-1690.
    [46]O.Zywitzki,G.Hoetzsch,F.Fietzke,K.Goedicke,Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering[J].Surface and Coatings Technology.1996,82(1-2):169-175.
    [47]R.Brill,F.Koch,J.Mazurelle,et al..Crystal structure characterisation of filtered arc deposited alumina coatings:temperature and bias voltage[J].Surface and Coatings Technology, 2003,174-175(1):606-610.
    [48]J.Rosen,S.Mraz,U.Kreissig,et al..Effect of ion energy on structure and composition of cathodic arc deposited alumina thin films[J].Plasma Chemistry and Plasma Processing,2005,25(4):303-317.
    [49]Y.Y.Takamuru,F.Koch,H.Maier,H.Bolt,Characterization of α-phase aluminum oxide films deposited by filtered vacuum arc[J].Surface and Coatings Technology,2001,142-144:260-264.
    [50]J.M.Andersson,Zs.Czigany,P.Jin,et al..Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers[J].Journal of Vacuum Science and Technology A,2004,22(1):117-121.
    [51]T.Kohara,H.Tamagaki,Y.Lkari,H.Fujii,Deposition of α-Al2O3 Hard Coatings by Reactive Magnetron Sputtering[J].Surface and Coatings Technology,2004,185(1):166-171.
    [52]J.M Andersson,E.Wallin,U.Helmersson,et al.,Phase control of Al2O3 thin films grown at low temperatures[J].Thin Solid Films 2006,513(1):57-59.
    [53]A.Aryasomayajula,S.Canovic,D.Bhat,et al.,Transmission electron microscopy and X-ray diffraction analysis of alumina coating by alternate-current inverted magnetron-sputtering technique[J],.Thin Solid Films,2007,516(1):397-401.
    [54]H.Glasbrenner,K.Stein-fechner,J.Konys,J.Nucl.Mater..Scale structure of aluminised Manet steel after HIP treatment[J].Journal of Nuclear Materials,2000,283-287:1302-1304.
    [55]Takayuki Terai,Research and development on ceramic coatings for fusion reactor liquid blankets[J].Journal of Nuclear Materials,1997,248:153-158.
    [56]姚振宇,M.Chini,A.Aiello,G.Benamati.带热浸镀铝涂层MANETⅡ马氏体钢的氢渗透性能研究[J].核科学研究,2002,22(1:36-42.
    [57]Choy K L.Chemical vapour deposition of coatings[J].Progress in Materials Science,2003,48(2):57-170.
    [58]C.Chabrol,E.Rigal,F.Schuster,Report CEA No.73/97,CEA Grenoble 1997.
    [59]G.Benamati et al.,ERG FUS ISP MAT NET 67,November,1996.
    [60]D.Levchuk,S.Levchuk,H.Maier,H.Bolt,A.Suzuki,Erbium oxide as a new promising tritium permeation barrier[J].Journal of Nuclear Materials,2007,367-370:1033-1037.
    [61]H.Okamoto,Al-Cr(Aluminum-Cromium),JPEDAV,2008,29:112-113.
    [62]吴小山,张维,林涛.掠入射X射线散射方法与应用[J].常熟理工学院学报,2006 20(2):16-22.
    [63]F.Sanchette.Structure-properties relationship of metastable Al-Cr and Al-Ti alloys deposited by r.f.magnetron sputtering:role of nitrogen[J].Surface and Coatings Technology,1995,74/75(1-3):903-907.
    [64]L.Bendersky,R.J.Schaefer,F.S.Biancaniello.D.Shechtman,Rapidly solidified Al-Cr alloys:structure and decomposition behavior[J].Journal of Materials Science,1986,21(1):1889-1896.
    [65]V.T.Swamy,S.Ranganathan,K.Chattopadgyay.Rapidly solidified Al-Cr alloys Crystalline and quasicrystalline phases[J].Journal of Materials Research,1989,4:539-551.
    [66]米国发,曾松岩,蒋祖龄。李庆春.快速凝固Al-Cr合金的组织和性能[j].材料研究学报.1994,8:496-500.
    [67]米国发,曾松岩,蒋祖龄.李庆春.快速凝固二元Al-Cr合金的退火组织及显微硬度[J].金属学报,1994,30:25-28.
    [68]J.Chao,J.L.Gonzalez- Carrasco.The role of the surface roughness on the integrity of thermally generated oxide scales[J].Application to the Al2O3/MA956 system,Materials Science and Engineering A,1997,230(1-2)39-48.
    [69]A.M.Huntz,S.C.Tsai,J.Balmain,K.Messaoudi,B.Lesage,C.Dolin.Atomic transport in Cr2O3 and Al2O3 scales:Growth mechanism and effect of yttrium[J].Materials Science Forum,1997,251-254:313-324.
    [70]S.Uran,B.Veal,M.Grimsditch,J.Pearson,A.Berger.Effect of surface roughness on oxidation:Changes in scale thickness,composition,and residual stress[J].Oxidation of Metals,2000,54:73-85.
    [71]N.Czech,M.Juez-Lorenzo,V.Kolarik,W.Stature.Influence of the surface roughness on the oxide scale formation on MCrAlY coatings studied in situ by high temperature X-ray diffraction [J].Surface and Coatings Technology,1998,108-109:36-42.
    [72]M.P.Brady,B.Gleeson,I.G.Wright.Alloy design strategies for promoting protective oxide-scale formation[J].JOM Journal of the Minerals,Metals and Materials Society,2000,52(1):16-21.
    [73]E.Huttunen-Saarivirta,F.H.Stott,V.Rohr,M.Sch(u|¨)tze.Erosion-Oxidation Behavior of Chromized-Aluminized 9%Chromium Steel under Fluidized-Bed Conditions at Elevated Temperature[J].Oxidation of Metals,2007,68(3-4):113-132.
    [74]曹启宏.0Cr18Ni9不锈钢上铝铬热浸扩散涂层的抗高温氧化性能[J].腐蚀与防护,1991,12(5):223-225.
    [75]M.R.Ali,A.Nishikata,T.Tsuru.Electrodeposition of aluminum-chromium alloys from AlCl3-BPC melt and its corrosion and high temperature oxidation behaviors[J].Electrochimica Acta,1997,42(15):2347-2354.
    [76]林翠,杜楠,李晓刚.电子束蒸发沉积Al-Cr合金涂层研究[J].中国腐蚀与防护学报,2003,23(5):257-261.
    [77]Almeida,P.A.Carvalho and R.Vilar.Laser Developed Al-Cr Surface Alloys:Microstructure,Mechanical and Wear Behaviour[J].Materials Science Forum,2006,514-516(1):490-494.
    [78]俞伟元,陈学定,路文江,王燕红.快速凝固钎焊薄带[J].焊接技术,2006,35(3):2-4
    [79]#12
    [80]Serra E.,Glasbrenner H.,Perujo A.Hot-dip aluminium deposit as a permeation barrier for MANET steel[J].Fusion Engineering and Design,1998,41(1):149-155.
    [81]Li YJ.,Wang J.,Holly X.,X-ray diffraction and TEM analysis of Fe-Al alloy layer in coating of new hot dip aluminised steel[J].Materials Science and Technology,2003,19(5):657-660.
    [82]Y.Y.Chang,C.C.Tsaur,J.C.Rock.Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation[J].Surface and Coatings Technology,2006,200:6588-6593.
    [83]Gul Humeed Awan.Faiz ul Hasan.The morphology of coating/substrate interface in hot-dip aluminized steel[J].Materials Science and Engineering A,2008,472:157-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700