石墨炉原子吸收光谱法用于重金属离子的富集和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Enrichment and Analysis of Heavy Metal Ions by Graphite Furnace Atomic Absorption Spectrometry
  • 作者:Syed ; Mazhar ; Shah
  • 论文级别:博士
  • 学科专业名称:分析化学
  • 学位年度:2012
  • 导师:苏星光
  • 学科代码:070302
  • 学位授予单位:吉林大学
  • 论文提交日期:2012-04-01
摘要
本论文研究的主要内容是开发用于重金属萃取和富集的新方法的,并利用石墨炉原子吸收光谱法(GFAAS)对重金属离子进行了定量分析。利用浊点萃取和固相萃取作为样品预处理技术,成功的实现了对镍、镉和铅的萃取和预富集。
     我们设计了一个利用浊点萃取(CPE)技术对镍离子的分离和预富集,并利用石墨炉原子吸收光谱法检测的新方法。8-羟基喹啉作为螯合剂能和镍离子形成疏水性的化合物。曲拉通X-100可以将这个疏水化合物包覆在胶束中,胶束再由小体积的表面活性剂富集相萃取。最后通过在表面活性剂的浊点温度下加热胶束溶液实现相分离。此操作同时实现了对样品溶液中镍离子的萃取和预富集。我们研究并优化了影响浊点萃取和石墨炉原子吸收光谱法的实验条件,如酸度、螯合剂浓度、表面活性剂浓度、加热时间以及分解温度、原子化温度、离心速度和时间等等。我们也研究了不同无机盐的加入对浊点温度的影响。加入氯化钠可以降低浊点温度,从而提高实验操作的效率和方便性。通过对各种实验参数的优化有实现了对痕量镍离子的检测,其检出限达到12ng/L,富集因子为25。我们利用所建立的方法用于检测水样以及国家标准样品中的镍离子,回收率在95-103%之间,结果令人满意。
     在第二部分实验中,我们利用浊点萃取成功的分离和萃取了镉离子。首先,镉离子和2-巯基烟酸形成疏水化合物。然后该疏水化合物被吐温80萃取进入胶束相。以上操作在pH为5的条件下,萃取效率最高。研究并优化了对镉离子萃取和分析有影响的实验条件,例如酸度、螯合剂浓度、表面活性剂浓度、加热时间等。在本实验中,我们在胶束相中加入了氟化钠,从而使相分离在比较低的浊点温度下进行。本方法对检测镉离子具有检出限低(60ng/L)、精度高(R.S.D2.5%)的优点。利用本方法对国家标准样品和水样中镉离子的检测结果令人满意。
     最后我们合成了一种新型的铅离子印迹型的超顺磁的介孔二氧化硅吸附材料(SPMS),并利用各种技术手段对这一材料进行了表征,利用这一材料实现了对沉积物中的铅离子高选择性的吸附。巯基官能化的SPMS对铅具有快速动力学响应,在pH8.0的条件下,在20分钟内即可达到吸附平衡。通过对吸附等温线的测定研究,确定吸附模式为Langmuir吸附模式,最大吸附容量为377.36mgg-1。选择性研究表明印迹型吸附剂在铋离子共存条件下对铅离子的吸附比非印迹型吸附剂高3.05倍。我们利用这个印迹型吸附剂实现了对铅离子的固相萃取,并通过石墨炉原子吸收光谱法进行测定,并对各测定参数进行了研究和优化。铅离子的线性检测范围是50-900ngL-1,检出限为15ngL-1。通过利用印迹型吸附剂对两种国家标准样品中的铅离子进行了萃取和检测,结果令人满意。这说明铅离子印迹型的超顺磁的介孔二氧化硅吸附剂可以用作复杂基体中的铅离子的吸附剂。
     我们还合成并表征了一种新型的吸附剂用来固相萃取Cu(Ⅱ)和Co(Ⅱ)。通过通过氧化处理巯基修饰的磁性多孔二氧化硅(MMS)制备出磺酸修饰的MMS。我们将这种新合成的吸附剂应用于Cu(Ⅱ)和Co(Ⅱ)的固相萃取,然后进行GFAAS分析。这种新材料具有快速吸附动力学,并且吸附平衡很好的符合Langmuir,Freundlich以及Temkin等温吸附方程式。这种吸附剂对Cu(Ⅱ)和Co(Ⅱ)的最大吸附容量分别为132mg/g和99.1mg/g。对Cu(Ⅱ)和Co(Ⅱ)的工作线性范围分别为70-400ng/L和85-350ng/L,其相应的检测线分别为20ng/L and27ng/L。
This dissertation is focused on the development of new methods for heavymetals extraction and enrichment and their subsequent quantitative analysis via graphitefurnace atomic absorption spectrometry (GFAAS). Cloud point and solid phaseextraction were utilized as sample pretreatment techniques. Nickel, cadmium and leadwere extracted and preconcentrated using these strategies.
     A new method based on the cloud point extraction (CPE) for separationand preconcentration of nickel (Ⅱ) and its determination by GFAAS was designed.8-hydroxyquinoline was used as chelating agent to form a hydrophobic complexwith nickel(Ⅱ). The micelles of Triton X-100entrapped the resulting hydrophobiccomplex which was extracted into the small volume surfactant rich phase. The phaseseparation was achieved by heating the miceller solution above cloud point temperature(CPT) of the surfactant. This step simultaneously extracted and preconcentrated the traceamounts of nickel(Ⅱ) present in the sample solution. The factors which affect the cloudpoint extraction and GFAAS analysis i.e. pH, ligand concentration, surfactantconcentration, incubation time, pyrolysis and atomization temperature, centrifugation rateand time were thoroughly investigated and optimized. The effect of different inorganicsalts on the cloud point temperature was also explored. The addition of sodium chlorideresulted in the depreciation of cloud point temperature, rendering it to be advantageous interms of time and economy of the experiment. The optimized set of parameters facilitatedthe determination of trace amounts of nickel and the detection limit was calculated to be 12ng/L. The enrichment factor was found to be25. Besides analysis of differentwater samples, the proposed method was also successfully applied to determine nickel(Ⅱ)in certified reference material with satisfactory recoveries in the range of95-103%.
     In another experiment, Cd(Ⅱ) was successfully separated and enriched viacloud point extraction. The metal was allowed to make a hydrophobic complex with2-mercaptonicotinic acid which was later extracted into a miceller phase of Tween80.The pH was maintained at5to achieve high efficiency. The other parameters affectingthe extraction and analysis of Cd(Ⅱ) such as pH, ligand concentration,surfactant concentration, and the incubation time were also comprehensively studied andoptimized. In this experiment, the phase separation was achieved at rather lowertemperature due to the addition of NaF in miceller media. This method offered a very lowdetection limit (60ng/L) with a high precision (R.S. D2.5%) for cadmium. Theapplicability of this method was confirmed by analyzing certified reference material andwater samples with satisfactory results.
     For a highly selective removal of Pb(Ⅱ) from sediments, a new Pb(Ⅱ)-imprinted superparamagnetic mesoporous silica (SPMS) sorbent was synthesized andcharacterized by different techniques. The thiol functionalized SPMS offered a fastadsorption kinetics for Pb(Ⅱ) and equilibrium was achieved in just20min at pH8.0. Theadsorption isotherm data fits Langmuir model well with a maximum adsorption capacityof377.36mg g-1. The selectivity co-efficients of imprinted adsorbent for Pb(Ⅱ)/Bi(ⅡI)were3.05times higher than that of non-imprinted adsorbent. The imprinted adsorbentwas employed for the solid phase extraction of Pb(Ⅱ) and its detection by graphitefurnace atomic absorption spectrometry (GFAAS). The parameters affecting the determination of Pb(Ⅱ) were also well investigated and optimized. A linear relationshipbetween the Pb(Ⅱ) concentration and the absorbance was found in the range of50-900ng/L with a detection limit of15ng/L. The imprinted adsorbent was applied to thedetermination of Pb(Ⅱ) in two certified sediment samples with satisfactory results, whichindicates that Pb(Ⅱ)-imprinted superparamagnetic mesoporous silica adsorbent possesspromising features of a viable adsorbent for the preconcentration of Pb(Ⅱ) ions incomplex matrices.
     A new sorbent for solid phase extraction of Cu(Ⅱ) and Co(Ⅱ) was also synthesizedand characterized. Sulphonic acid functionalized magnetic mesoporous silica (MMS)was prepared by oxidation of thiol functionalized MMS. The newly synthesized sorbentwas applied for the solid phase extraction of Cu(Ⅱ) and Co(Ⅱ) prior to their analysis byGFAAS. The new material offered fast adsorption kinetics and the equilibrium data fittedwell to the Langmuir, Freundlich and Temkin adsorption isotherms. The experimentalmaximum adsorption capacity for Cu(Ⅱ) and Co(Ⅱ) was found to be132mg/g and99.1mg/g respectively. The linear working range for Cu(Ⅱ) and Co(Ⅱ) were found tobe70-400ng/L and85-350ng/L respectively with corresponding detection limits of20ng/L and27ng/L.
引文
1. Ferreira, S.L.C., W.N.L. dos Santos, and V.A. Lemos, On-line preconcentrationsystem for nickel determination in food samples by flame atomic absorptionspectrometry. Analytica Chimica Acta,2001.445(2): p.145-151.
    2. Gollhausen, R. and J. Ring, Allergy to coined money: nickel contact dermatitis incashiers. Journal of the American Academy of Dermatology,1991.25(2Pt2): p.365-9.
    3. Lu, L.K., E.M. Warshaw, and C.A. Dunnick, Prevention of Nickel Allergy: TheCase for Regulation? Dermatologic Clinics,2009.27(2): p.155-+.
    4. Ghaedi, M., F. Ahmadi, and A. Shokrollahi, Simultaneous preconcentration anddetermination of copper, nickel, cobalt and lead ions content by flame atomicabsorption spectrometry. Journal of Hazardous Materials,2007.142(1-2): p.272-
    278.
    5. Platteau, O. and M. Carrillo, Determination of metallic elements in crude oil-water emulsions by flame AAS. Fuel,1995.74(5): p.761-767.
    6. Tuzen, M. and M. Soylak, Multi-element coprecipitation for separation andenrichment of heavy metal ions for their flame atomic absorption spectrometricdeterminations. Journal of Hazardous Materials,2009.162(2-3): p.724-729.
    7. Mirza, M.A., M.Y. Khuhawar, and R. Arain, Determination of uranium, iron,copper, and nickel in rock and water samples by MEKC. Journal of SeparationScience,2008.31(16-17): p.3037-3044.
    8. Fabec, J.L. and M.L. Ruschak, Determination of nickel, vanadium, and sulfur incrudes and heavy crude fractions by inductively coupled argon plasma atomicemission spectrometry and flame atomic absorption spectrometry. AnalyticalChemistry,1985.57(9): p.1853-1863.
    9. Zhao, Z.M., P. Xiao, and G.Z. Cao, Detection of Trace Heavy Metals Ions byArrays of Titania Nanotubes Annealed in Nitrogen. Chemical Research inChinese Universities,2009.25(5): p.606-609.
    10. Al-Swaidan, H.M., The determination of lead, nickel and vanadium in SaudiArabian crude oil by sequential injection analysis/inductively-coupled plasmamass spectrometry. Talanta,1996.43(8): p.1313-9.
    11. Gil, R.A., et al., Cloud point extraction for cobalt preconcentration with on-linephase separation in a knotted reactor followed by ETAAS determination indrinking waters. Talanta,2008.76(3): p.669-673.
    12. Sun, Z., et al., Determination of trace nickel in water samples by cloud pointextraction preconcentration coupled with graphite furnace atomic absorptionspectrometry. Journal of Hazardous Materials,2006.137(2): p.943-946.
    13. Tanaka, T., N. Makino, and A. Mizuike, Microscale preconcentration by liquid-liquid extraction of cadmium in indium and nickel. Microchimica Acta,1992.106(3): p.253-259.
    14. Saracoglu, S., et al., A pre-concentration procedure using coprecipitation fordetennination of lead and iron in several samples using flame atomic absorptionspectrometry. Analytica Chimica Acta,2006.575(1): p.133-137.
    15. Chen, H., J. Jin, and Y. Wang, Flow injection on-line coprecipitation-preconcentration system using copper(II) diethyldithiocarbamate as carrier forflame atomic absorption spectrometric determination of cadmium, lead and nickelin environmental samples. Analytica Chimica Acta,1997.353(2–3): p.181-188.
    16. Takeda, K., C. Akamatsu, and Y. Inoue, Pre-concentration of traces of tin bycoprecipitation with yttrium hydroxide for electrothermal atomisation atomicabsorption spectrometry. Fresenius' Journal of Analytical Chemistry,1991.339(1): p.50-54.
    17. Duran, C., et al., A Novel Method for Speciation of Chromium: CoprecipitationWithout Carrier Element by Using a Triazole Derivative. Journal of AoacInternational,2009.92(1): p.257-262.
    18. Duran, C., et al., Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II)and Pb(II) ions from environmental samples by flame atomic absorptionspectrometry (FAAS). Journal of Hazardous Materials,2007.146(1-2): p.347-355.
    19. González García, M.M., et al., On-line ion-exchange preconcentration anddetermination of traces of platinum by electrothermal atomic absorptionspectrometry. Analytical and Bioanalytical Chemistry,2003.375(8): p.1229-1233.
    20. Godlewska-Zylkiewicz, B., et al., Ion-exchange preconcentration and separationof trace amounts of platinum and palladium. Analytical Letters,2000.33(13): p.2805-2820.
    21. Chakrapani, G., et al., Sorption of PAR–metal complexes on activated carbon as arapid preconcentration method for the determination of Cu, Co, Cd, Cr, Ni, Pband V in ground water. Journal of Geochemical Exploration,1998.63(2): p.145-
    152.
    22. Lopez-Garcia, I., et al., Ion-exchange preconcentration and determination ofvanadium in milk samples by electrothermal atomic absorption spectrometry.Talanta,2009.78(4-5): p.1458-1463.
    23. Lemos, V.A. and P.X. Baliza, Amberlite XAD-2functionalized with2-aminothiophenol as a new sorbent for on-line preconcentration of cadmium andcopper. Talanta,2005.67(3): p.564-570.
    24. Jiang, H.M., et al., Microcolumn packed with YPA(4) chelating resin on-lineseparation/preconcentration combined with graphite furnace atomic absorptionspectrometry using Pd as a permanent modifier for the determination of tracemercury in water samples. Talanta,2006.70(1): p.7-13.
    25. Maheswari, M.A. and M.S. Subramanian, A new chelating resin forpreconcentration and determination of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), andPb(II) by flame atomic absorption spectrometry. Journal of Aoac International,
    2003.86(6): p.1218-1224.
    26. Bidabadi, M.S., S. Dadfarnia, and A.M.H. Shabani, Solidified floating organicdrop microextraction (SFODME) for simultaneous separation/preconcentrationand determination of cobalt and nickel by graphite furnace atomic absorptionspectrometry (GFAAS). Journal of Hazardous Materials,2009.166(1): p.291-296.
    27. Manzoori, J.L. and A. Bavili-Tabrizi, Cloud point preconcentration and flameatomic absorption spectrometric determination of cobalt and nickel in watersamples. Microchimica Acta,2003.141(3-4): p.201-207.
    28. Paleologos, E.K., et al., Micelle-mediated methodology for speciation ofchromium by flame atomic absorption spectrometry. Journal of Analytical AtomicSpectrometry,2000.15(3): p.287-291.
    29. Gholivand, M.B., A. Babakhanian, and E. Rafiee, Determination of Sn(II) andSn(IV) after mixed micelle-mediated cloud point extraction using alpha-polyoxometalate as a complexing agent by flame atomic absorption spectrometry.Talanta,2008.76(3): p.503-508.
    30. Teo, K.C. and J.R. Chen, Determination of manganese in mater samples by flameatomic absorption spectrometry after cloud point extraction. Analyst,2001.126(4): p.534-537.
    31. Shariati, S., Y. Yamini, and M.K. Zanjani, Simultaneous preconcentration anddetermination of U(VI), Th(IV), Zr(IV) and Hf(IV) ions in aqueous samples usingmicelle-mediated extraction coupled to inductively coupled plasma-opticalemission spectrometry. Journal of Hazardous Materials,2008.156(1-3): p.583-
    590.
    32. Aranda, P.R., et al., Cloud point extraction for ultra-trace Cd determination inmicrowave-digested biological samples by ETAAS. Talanta,2008.77(2): p.663-
    666.
    33. Filik, H., Z. Yanaz, and R. Apak, Selective determination of total vanadium inwater samples by cloud point extraction of its ternary complex. AnalyticaChimica Acta,2008.620(1-2): p.27-33.
    34. Safavi, A., et al., Cloud point extraction, preconcentration and simultaneousspectrophotometric determination of nickel and cobalt in water samples.Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2004.60(12): p.2897-2901.
    35. Wu, P., et al., Selective determination of trace amounts of silver in complicatedmatrices by displacement-cloud point extraction coupled with thermospray flamefurnace atomic absorption spectrometry. Journal of Analytical AtomicSpectrometry,2008.23(5): p.752-757.
    36. Liang, P. and H.B. Sang, Speciation of chromium in water samples with cloudpoint extraction separation and preconcentration and determination by graphitefurnace atomic absorption spectrometry. Journal of Hazardous Materials,2008.154(1-3): p.1115-1119.
    37. Rosen, M.J., Surfactants and Interfacial Phenomena.2004, John Wiley&Sons,Inc., Hoboken, New Jersey.
    38. Silva, E.L., P.D. Roldan, and M.F. Gine, Simultaneous preconcentration ofcopper, zinc, cadmium, and nickel in water samples by cloud point extractionusing4-(2-pyridylazo)-resorcinol and their determination by inductively coupledplasma optic emission spectrometry. Journal of Hazardous Materials,2009.171(1-3): p.1133-1138.
    39. Cerutti, S., et al., On-line preconcentration of nickel on activated carbon prior toits determination by vapor generation associated to inductively coupled plasmaoptical emission spectrometry. Journal of Analytical Atomic Spectrometry,2005.20(6): p.559-561.
    40. Yunes, N., et al., On-line preconcentration and determination of nickel in naturalwater samples by flow injection-inductively coupled plasma optical emissionspectrometry (FI-ICP-OES). Talanta,2003.59(5): p.943-949.
    1. Jahromi, E.Z., et al., Dispersive liquid-liquid microextraction combined withgraphite furnace atomic absorption spectrometry-Ultra trace determination ofcadmium in water samples. Analytica Chimica Acta,2007.585(2): p.305-311.
    2. Silva, E.L. and P.d.S. Roldan, Simultaneous flow injection preconcentration oflead and cadmium using cloud point extraction and determination by atomicabsorption spectrometry. Journal of Hazardous Materials,2009.161(1): p.142-
    147.
    3. Cotton, F.A., Advanced inorganic chemistry.1999: Wiley.
    4. Jin, T., J. Lu, and M. Nordberg, Toxicokinetics and biochemistry of cadmium withspecial emphasis on the role of metallothionein. Neurotoxicology,1998.19(4-5):p.529-35.
    5. Beveridge, R., et al., Lung cancer risk associated with occupational exposure tonickel, chromium VI, and cadmium in two population-based case-control studiesin Montreal. Am J Ind Med,2010.53(5): p.476-85.
    6. Manzoori, J.L., H. Abdolmohammad-Zadeh, and M. Amjadi, Ultratracedetermination of cadmium by cold vapor atomic absorption spectrometry afterpreconcentration with a simplified cloud point extraction methodology. Talanta,
    2007.71(2): p.582-587.
    7. Molnár, A., et al., Atmospheric budget of different elements in aerosol particlesover Hungary. Atmospheric Environment,1995.29(15): p.1821-1828.
    8. Afkhami, A., T. Madrakian, and H. Siampour, Flame atomic absorptionspectrometric determination of trace quantities of cadmium in water samples aftercloud point extraction in Triton X-114without added chelating agents. Journal ofHazardous Materials,2006.138(2): p.269-272.
    9. Chen, J.R. and K.C. Teo, Determination of cadmium, copper, lead and zinc inwater samples by flame atomic absorption spectrometry after cloud pointextraction. Analytica Chimica Acta,2001.450(1-2): p.215-222.
    10. Zhu, X., B. Hu, and Z. Jiang, Cloud point extraction combined with graphitefurnace atomic absorption spectrometry for the determination of chromiumspecies and their distribution in cigarette and cigarette ash. International JournalJilin University Ph.D Thesis2012of Environmental Analytical Chemistry,2004.84(12): p.927-934.
    11. Ferreira, H.S., et al., Pre-concentration procedure for determination of copperand zinc in food samples by sequential multi-element flame atomic absorptionspectrometry. Talanta,2008.77(1): p.73-76.
    12. Liu, J.-F., J.-B. Chao, and G.-B. Jiang, Continuous flow liquid membraneextraction: a novel automatic trace-enrichment technique based on continuousflow liquid–liquid extraction combined with supported liquid membrane.Analytica Chimica Acta,2002.455(1): p.93-101.
    13. Kogi, O., H.-B. Kim, and N. Kitamura, Microinjection-microspectroscopy ofsingle oil droplets in water: an application to liquid/liquid extraction undersolution-flow conditions. Analytica Chimica Acta,2000.418(2): p.129-135.
    14. Parham, H., N. Pourreza, and N. Rahbar, Solid phase extraction of lead andcadmium using solid sulfur as a new metal extractor prior to determination byflame atomic absorption spectrometry. Journal of Hazardous Materials,2009.163(2-3): p.588-592.
    15. Lemos, V.A., M.A. Bezerra, and F.A.C. Amorim, On-line preconcentration usinga resin functionalized with3,4-dihydroxybenzoic acid for the determination oftrace elements in biological samples by thermospray flame furnace atomicabsorption spectrometry. Journal of Hazardous Materials,2008.157(2-3): p.613-
    619.
    16. Citak, D., M. Tuzen, and M. Soylak, Simultaneous coprecipitation of lead, cobalt,copper, cadmium, iron and nickel in food samples with zirconium(IV) hydroxideprior to their flame atomic absorption spectrometric determination. Food andChemical Toxicology,2009.47(9): p.2302-2307.
    17. Fan, Z.F. and W. Zhou, Dithizone-chloroform single drop microextraction systemcombined with electrothermal atomic absorption spectrometry using Ir aspermanent modifier for the determination of Cd in water and biological samples.Spectrochimica Acta Part B-Atomic Spectroscopy,2006.61(7): p.870-874.
    18. Talio, M.C., et al., Determination of cadmium at ultra-trace levels by CPE–molecular fluorescence combined methodology. Journal of Hazardous Materials,
    2009.170(1): p.272-277.
    19. Kara, D., Preconcentration and determination of trace metals by flow injectionmicelle-mediated extraction using flame atomic absorption spectrometry. Talanta,
    2009.79(2): p.429-435.
    20. Bezerra, M.A., R.E. Bruns, and S.L.C. Ferreira, Statistical design-principalcomponent analysis optimization of a multiple response procedure using cloudpoint extraction and simultaneous determination of metals by ICPOES. AnalyticaChimica Acta,2006.580(2): p.251-257.
    21. Candir, S., I. Narin, and M. Soylak, Ligandless cloud point extraction of Cr(III),Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions in environmental samples withTween80and flame atomic absorption spectrometric determination. Talanta,
    2008.77(1): p.289-293.
    22. Wu, P., et al., Cloud point extraction-thermospray spectrometry for determinationof flame quartz furnace atomic absorption ultratrace cadmium in water and urine.Spectrochimica Acta Part B-Atomic Spectroscopy,2006.61(12): p.1310-1314.
    23. Bezerra, M.A., et al., Internal standardization for the determination of cadmium,cobalt, chromium and manganese in saline produced water from petroleumindustry by inductively coupled plasma optical emission spectrometry after cloudpoint extraction. Spectrochimica Acta Part B-Atomic Spectroscopy,2007.62(9):p.985-991.
    24. Davis, A.C., C.P. Calloway, and B.T. Jones, Chelation of urinary cadmium withammonium pyrrolidine dithio-carbamate prior to determination by tungsten-coilinductively coupled plasma atomic emission spectrometry. MicrochemicalJournal,2006.84(1-2): p.31-37.
    25. Kilinc, E., et al., Synthesis of bis(amino alcohol)oxalamides and their usage forthe preconcentration of trace metals by cloud point extraction. AnalyticalSciences,2008.24(6): p.763-768.
    26. Maranhao, T.D., et al., Cloud point extraction for the determination of lead andcadmium in urine by graphite furnace atomic absorption spectrometry withmultivariate optimization using Box-Behnken design. Spectrochimica Acta Part B-Atomic Spectroscopy,2007.62(9): p.1019-1027.
    27. Constantine D, S., Micelle-mediated extraction as a tool for separation andJilin University Ph.D Thesis2012preconcentration in metal analysis. TrAC Trends in Analytical Chemistry,2002.21(5): p.343-355.
    28. Tang, A.-N., D.-Q. Jiang, and X.-P. Yan, Cloud point extraction preconcentrationfor capillary electrophoresis of metal ions. Analytica Chimica Acta,2004.507(2):p.199-204.
    29. Schott, H., A.E. Royce, and S.K. Han, Effect of inorganic additives on solutions ofnonionic surfactants: VII. Cloud point shift values of individual ions. Journal ofColloid and Interface Science,1984.98(1): p.196-201.
    30. Florin, E., R. Kjellander, and J.C. Eriksson, Salt effects on the cloud point of thepoly(ethylene oxide)+water system. Journal of the Chemical Society, FaradayTransactions1: Physical Chemistry in Condensed Phases,1984.80(11): p.2889-
    2910.
    1. Huang, C.Z. and B. Hu, Silica-coated magnetic nanoparticles modified withgamma-mercaptopropyltrimethoxysilane for fast and selective solid phaseextraction of trace amounts of Cd, CuHg, and Pb in environmental and biologicalsamples prior to their determination by inductively coupled plasma massspectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy,2008.63(3): p.437-444.
    2. Cui, Y., et al., Solid-phase extraction of lead(II) ions using multiwalled carbonnanotubes grafted with tris(2-aminoethyl)amine. Microchimica Acta,2011.174(1-2): p.107-113.
    3. Citak, D., M. Tuzen, and M. Soylak, Simultaneous coprecipitation of lead, cobalt,copper, cadmium, iron and nickel in food samples with zirconium(IV) hydroxideprior to their flame atomic absorption spectrometric determination. Food andChemical Toxicology,2009.47(9): p.2302-2307.
    4. Mortaheb, H.R., et al., Study on removal of cadmium from wastewater byemulsion liquid membrane. Journal of Hazardous Materials,2009.165(1-3): p.630-636.
    5. Saracoglu, S., et al., A pre-concentration procedure using coprecipitation fordetermination of lead and iron in several samples using flame atomic absorptionspectrometry. Analytica Chimica Acta,2006.575(1): p.133-137.
    6. López-García, I., et al., Ion-exchange preconcentration and determination ofvanadium in milk samples by electrothermal atomic absorption spectrometry.Talanta,2009.78(4-5): p.1458-1463.
    7. Wei, G.-T., Z. Yang, and C.-J. Chen, Room temperature ionic liquid as a novelmedium for liquid/liquid extraction of metal ions. Analytica Chimica Acta,2003.488(2): p.183-192.
    8. Liu, Y., et al., Selective adsorption behavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based on surface molecularly imprintingtechnique. Journal of Hazardous Materials,2011.186(1): p.197-205.
    9. Benhamou, A., et al., Aqueous heavy metals removal on amine-functionalized Si-MCM-41and Si-MCM-48. Journal of Hazardous Materials,2009.171(1-3): p.1001-1008.
    10. Tian, G., et al., Sorption of uranium(VI) using oxime-grafted ordered mesoporouscarbon CMK-5. Journal of Hazardous Materials,2011.190(1-3): p.442-450.
    11. Mureseanu, M., et al., Mesoporous silica functionalized with1-furoyl thioureaurea for Hg(II) adsorption from aqueous media. Journal of Hazardous Materials,
    2010.182(1-3): p.197-203.
    12. Ma, Z.J., et al., Engineering and optimization of nano-and mesoporous silicafibers using sol-gel and electrospinning techniques for sorption of heavy metalions. Journal of Colloid and Interface Science,2011.358(2): p.547-553.
    13. Sepehrian, H., et al., Modified Mesoporous Silicate MCM-41for Zinc IonAdsorption: Synthesis, Characterization and Its Adsorption Behavior. ChineseJournal of Chemistry,2009.27(11): p.2171-2174.
    14. Yu, H.-M., H. Song, and M.-L. Chen, Dithizone immobilized silica gel on-linepreconcentration of trace copper with detection by flame atomic absorptionspectrometry. Talanta,2011.85(1): p.625-30.
    15. Su, B.L., et al., SBA-15mesoporous silica coated with macrocyclic calix4arenederivatives: Solid extraction phases for heavy transition metal ions. Journal ofColloid and Interface Science,2011.360(1): p.86-92.
    16. Chouyyok, W., et al., Selective Removal of Copper(II) from Natural Waters byNanoporous Sorbents Functionalized with Chelating Diamines. EnvironmentalScience&Technology,2010.44(16): p.6390-6395.
    17. Yantasee, W., et al., Functionalized Nanoporous Silica for the Removal of HeavyMetals from Biological Systems: Adsorption and Application. Acs AppliedMaterials&Interfaces,2010.2(10): p.2749-2758.
    18. Kim, M.L. and M.B. Tudino, Evaluation of performance of three different hybridmesoporous solids based on silica for preconcentration purposes in analyticalchemistry: From the study of sorption features to the determination of elements ofgroup IB. Talanta,2010.82(3): p.923-930.
    19. Rutledge, R.D., et al., Thiol-Ene Induced Diphosphonic Acid Functionalization ofSuperparamagnetic Iron Oxide Nanoparticles. Langmuir,2010.26(14): p.12285-12292.
    20. Jin, G.Y., et al., Imprinted functionalized silica sol-gel for solid-phase extractionof triazolamin. Talanta,2011.84(3): p.644-650.
    21. Markowitz, M.A., et al., Catalytic Silica Particles via Template-DirectedMolecular Imprinting. Langmuir,1999.16(4): p.1759-1765.
    22. Liu, J., et al., Preparation of a new type of affinity materials combining metalcoordination with molecular imprinting. Chemical Communications,2011.47(13): p.3969-3971.
    23. Fang, G.-Z., J. Tan, and X.-P. Yan, An Ion-Imprinted Functionalized Silica GelSorbent Prepared by a Surface Imprinting Technique Combined with a Sol GelProcess for Selective Solid-Phase Extraction of Cadmium(II). AnalyticalChemistry,2005.77(6): p.1734-1739.
    24. Deng, Y., et al., Superparamagnetic High-Magnetization Microspheres with anFe3O4@SiO2Core and Perpendicularly Aligned Mesoporous SiO2Shell forRemoval of Microcystins. Journal of the American Chemical Society,2007.130(1): p.28-29.
    25. Prasanna Kumar, Y., P. King, and V.S.R.K. Prasad, Adsorption of zinc fromaqueous solution using marine green algae—Ulva fasciata sp. ChemicalEngineering Journal,2007.129(1-3): p.161-166.
    26. Ren, Y.M., X.Z. Wei, and M.L. Zhang, Adsorption character for removal Cu(II)by magnetic Cu(II) ion imprinted composite adsorbent. Journal of HazardousMaterials,2008.158(1): p.14-22.114
    1. Ghaedi, M., F. Ahmadi, and M. Soylak, Preconcentration and separation ofnickel, copper and cobalt using solid phase extraction and their determination insome real samples. Journal of Hazardous Materials,2007.147(1–2): p.226-231.
    2. Makishima, A. and E. Nakamura, New preconcentration technique of Zr, Nb, Mo,Hf, Ta and W employing coprecipitation with Ti compounds: Its application toLu-Hf system and sequential Pb-Sr-Nd-Sm separation. Geochemical Journal,
    2008.42(2): p.199-206.
    3. Tanaka, T., N. Makino, and A. Mizuike, Microscale preconcentration by liquid-liquid extraction of cadmium in indium and nickel. Microchimica Acta,1992.106(3): p.253-259.
    4. Mashhadizadeh, M.H. and Z. Karami, Solid phase extraction of trace amounts ofAg, Cd, Cu, and Zn in environmental samples using magnetic nanoparticlescoated by3-(trimethoxysilyl)-1-propantiol and modified with2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES. Journal ofHazardous Materials,2011.190(1–3): p.1023-1029.
    5. Silva, E.L. and P.d.S. Roldan, Simultaneous flow injection preconcentration oflead and cadmium using cloud point extraction and determination by atomicabsorption spectrometry. Journal of Hazardous Materials,2009.161(1): p.142-
    147.
    6. Sang, H., P. Liang, and D. Du, Determination of trace aluminum in biological andwater samples by cloud point extraction preconcentration and graphite furnaceatomic absorption spectrometry detection. Journal of Hazardous Materials,2008.154(1–3): p.1127-1132.
    7. Mureseanu, M., et al., Solid Phase Extraction of Copper Ions using a ChemicallyModified SBA-15Mesoporous Silica. Revista De Chimie,2010.61(10): p.915-919.
    8. Kala, R., J. Mary Gladis, and T. Prasada Rao, Preconcentrative separation oferbium from Y, Dy, Ho, Tb and Tm by using ion imprinted polymer particles viasolid phase extraction. Analytica Chimica Acta,2004.518(1–2): p.143-150.
    9. Zejli, H., et al., Electrochemically Aided Solid Phase Micro‐extraction ofMercury(II) at a Poly(3‐Methylthiophene) Modified Gold Electrode. AnalyticalLetters,2004.37(8): p.1737-1754.
    10. Duran, C., et al., A Novel Method for Speciation of Chromium: CoprecipitationWithout Carrier Element by Using a Triazole Derivative. Journal of AoacInternational,2009.92(1): p.257-262.
    11. Ghaedi, M., E. Asadpour, and A. Vafaie, Simultaneous Preconcentration andDetermination of Copper, Nickel, Cobalt, Lead, and Iron Content Using aSurfactant-Coated Alumina. Bulletin of the Chemical Society of Japan,2006.79(3): p.432-436.
    12. Tuzen, M. and M. Soylak, Column system using diaion HP-2MG fordetermination of some metal ions by flame atomic absorption spectrometry.Analytica Chimica Acta,2004.504(2): p.325-334.
    13. Monser, L. and N. Adhoum, Modified activated carbon for the removal of copper,zinc, chromium and cyanide from wastewater. Separation and PurificationTechnology,2002.26(2–3): p.137-146.
    14. Saha, B., S. Chakraborty, and G. Das, A comparative metal ion adsorption studyby trimesic acid coated alumina: a potent adsorbent. J Colloid Interface Sci,2008.323(1): p.26-32.
    15. Wingenfelder, U., et al., Removal of Heavy Metals from Mine Waters by NaturalZeolites. Environmental Science&Technology,2005.39(12): p.4606-4613.
    16. Vaughan, T., C.W. Seo, and W.E. Marshall, Removal of selected metal ions fromaqueous solution using modified corncobs. Bioresour Technol,2001.78(2): p.133-9.
    17. Liu, P., Q. Pu, and Z. Su, Synthesis of silica gel immobilized thiourea and itsapplication to the on-line preconcentration and separation of silver, gold andpalladium. Analyst,2000.125(1): p.147-150.
    18. Pereira, A.S., et al., Preconcentration and determination of Cu(II) in a fresh watersample using modified silica gel as a solid-phase extraction adsorbent. Journal ofHazardous Materials,2010.175(1-3): p.399-403.
    19. Liu, J.-f., Z.-s. Zhao, and G.-b. Jiang, Coating Fe3O4Magnetic Nanoparticleswith Humic Acid for High Efficient Removal of Heavy Metals in Water.Environmental Science&Technology,2008.42(18): p.6949-6954.
    20. Cao, C.-Y., et al., Low-Cost Synthesis of Flowerlike α-Fe2O3Nanostructures forHeavy Metal Ion Removal: Adsorption Property and Mechanism. Langmuir,2012.28(9): p.4573-4579.
    21. Sayari, A., S. Hamoudi, and Y. Yang, Applications of Pore-ExpandedMesoporous Silica.1. Removal of Heavy Metal Cations and Organic Pollutantsfrom Wastewater. Chemistry of Materials,2004.17(1): p.212-216.
    22. Etienne, M., et al., Organically-modified mesoporous silica spheres with MCM-41architecture as sorbents for heavy metals, in Studies in Surface Science andCatalysis, A. Sayari and M. Jaroniec, Editors.2002, Elsevier. p.615-622.
    23. Mercier, L. and T.J. Pinnavaia, Heavy Metal Ion Adsorbents Formed by theGrafting of a Thiol Functionality to Mesoporous Silica Molecular Sieves:Factors Affecting Hg(II) Uptake. Environmental Science&Technology,1998.32(18): p.2749-2754.
    24. Chouyyok, W., et al., Selective Removal of Copper(II) from Natural Waters byNanoporous Sorbents Functionalized with Chelating Diamines. EnvironmentalScience&Technology,2010.44(16): p.6390-6395.
    25. Fryxell, G.E., et al., Design and Synthesis of Selective Mesoporous Anion Traps.Chemistry of Materials,1999.11(8): p.2148-2154.
    26. Liu, X., et al., Magnetic Chitosan Nanocomposites: A Useful Recyclable Tool forHeavy Metal Ion Removal. Langmuir,2008.25(1): p.3-8.
    27. Warner, C.L., et al., Manganese Doping of Magnetic Iron Oxide Nanoparticles:Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent. Langmuir,2012.28(8): p.3931-3937.
    28. Prasanna Kumar, Y., P. King, and V.S.R.K. Prasad, Adsorption of zinc fromaqueous solution using marine green algae—Ulva fasciata sp. ChemicalEngineering Journal,2007.129(1-3): p.161-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700