万伤合剂对小鼠胫骨缺损模型愈合影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨万伤合剂促进小鼠胫骨缺损愈合的体外、体内机制。
     方法:
     体外实验:万伤合剂浓缩液对IL-1β-luciferase(白介素1-β-荧光素酶)转基因小鼠腹腔巨噬细胞IL-1β表达的影响;大鼠含药血清对原代培养成骨细胞活性及上清的碱性磷酸酶表达的影响。体内实验:建立胫骨缺损模型,以micro CT(显微CT)动态研究胫骨缺损模型自然愈合过程;胫骨缺损模型小鼠分别给予万伤合剂、OPG(成骨生长肽)、万伤合剂加OGP、水,给药后检测血清碱性磷酸酶、离子钙、无机磷等生化指标;检测造模第10天,第20天血清必须氨基酸含量;应用免疫组化法与免疫印迹法检测胫骨缺损修复处VEGF(内血管内皮生长因子)的表达。同时检测了万伤合剂浓缩液内碱性磷酸酶、钙、磷及氨基酸浓度。
     结果:
     体外实验:万伤合剂组巨噬细胞的荧光值表达显著高于LPS(脂多糖)组(p<0.05)。大鼠含药血清对培养的成骨细胞的细胞活性无提高作用,而10%浓度单日连续给药的大鼠含药血清的碱性磷酸酶浓度显著大于对照组(p<0.05)。体内实验:在胫骨缺损的自然修复过程中,micro CT检查发现其骨矿物质含量、骨密度、三维校准骨小梁厚度均随时间逐渐增高趋势,三维校准骨小梁分离度随时间逐渐降低,骨小梁数目术后一直低于术前,且术后各时间点之间无明显差异,骨体积分数逐渐增高,骨表面积与体积比值于术后先升高后降低。对胫骨缺损小鼠模型研究发现给药组小鼠碱性磷酸酶表达水平显著低于对照组(分别为p<0.05;p<0.01;p<0.001)。而血清钙离子测定:万伤合剂组、OGP组的血钙水平较为稳定显著低于对照组,万伤合剂加OGP组术后血清钙离子浓度显著高于对照组,呈先升高后降低趋势。血清无机磷测定发现用药组血清无机磷显著低于对照组。血清氨基酸测定:用药组小鼠第20天血清精氨酸、亮氨酸、赖氨酸、脯氨酸含量均显著高于对照组,而第10天,上述指标无此变化。免疫组化及免疫印迹发现骨组织在用药后VEGF表达显著上调。
     结论:
     体外实验发现:万伤合剂可以通过上调IL—1β的表达起到促成骨、促矿化的作用;未发现大鼠含药血清对成骨细胞增殖有明显影响,但单日连续给药的大鼠血清可以有效促进成骨细胞上清碱性磷酸酶表达。体内实验发现:micro CT可以反映胫骨骨缺损模型的动态修复过程。万伤合剂能抑制骨折修复过程的溶骨反应,促进成骨反应,加快骨修复;可以提高促骨损伤修复所需的氨基酸含量,从而达到加快骨折愈合的效果。万伤合剂促进骨修复的过程与促进VEGF表达密切相关,可能通过增加骨缺损修复区域内的血管增生来实现。本研究为万伤合剂促进骨折修复提供了直接而客观的证据。
Objective:investigate the enhancement of mouse tibia injury healing in vitro and in vivo by Wanshangheji compound.
     Material and Method:in vitro, Macrophages from L-1β-luciferase transgenic mice were challenged with Wangshangheji compound (WSHJ). Mouse primary osteoblastic cells were incubated with different type of medicated rat serum prepared with WSHJ. In vivo:A mouse tibia injury model was established. Micro CT was used for follow-up of healing in treatment-naive tibia injury mice. Serum alkaline phosphatase, ionized calcium (Ca2+) and inorganic phosphorus (IP) were measured at day20after different drugs administered. The essential amino acids in mouse serum at day10and day20were quantitated by HPLC. The alkaline phosphatase (Alp), ionized calcium, inorganic phosphorus and essential amino acids in WSHJ were measured as control. The expression of VEGF in the tibia tissue was detected by immunohistochemistry and western blot.
     Result:WSHJ stimulated the expression of luciferase significantly (p<0.05) higher than LPS in the macrophages from L-1β-luciferase transgenic mice. There was no proliferation effect in medicated rat serum treated mouse primary osteoblasts. But the medium alkaline phosphatase level in10%rat medicated serum was significantly (p<0.05) higher than the control group. in vivo:Micro CT analysis showed an increasing trend in BMC,BMD and Calib.Tb.Th. after tibia injury while Calib.Tb.Sp. decreasing. Tb.N was low after tibia injury. But there was no any trend in different time points. BV/TV was increasing after the injury. BS/BV increased at first and decreased subsequently. All the administered groups showed a lower alkaline phosphatase level than the control group (p<0.05, p<0.01, p<0.001, respectively). Ca2+in the group of WSHJ and OGP groups were stable and significantly lower than the control. But the group of combination of WSHJ&OGP showed a higher level of Ca2+than the control. All the administered groups showed a lower IP level than the control. Serum essential amino acids test showed arginine, leucine, leucine and proline were significantly higher than in the control group at day20. But there were no apparent changes at day10. IH and WB showed an elevated VEGF expression of WSHJ administered group as compared to control.
     Conclusion:
     WSHJ up-regulated the expression of IL-1β to improves bone formation and mineral accretion. There was no evidence of proliferative effect in mouse primary osteoblasts incubated with rat WSHJ medicated serum. But Alp increased in the medium of osteoblasts incubated with10%WSHJ medicated (q.h×4) serum. Micro CT showed dynamic changes during the healing of tibia healing in vivo. WSHJ showed some inhibitory effect on the bone dissolving process. It promoted osteogenesis and accelerated healing progress. WSHJ increased the level of bone related amino acids. The accelerated healing effect of WSHJ was involved with the up-regulated expression of VEGF and increasing angiogenic activity at the bone injury site. This pilot study provided some direct and objective evidence of acceleration fracture healing effect of WSHJ.
引文
[1]Einhorn TA. The Cell and Molecular Biology of Fracture Healing. Clinical Orthopaedics and Related Research[J].1998,355:S7-S21.
    [2]Fazzalari N. Bone fracture and bone fracture repair. Osteoporosis International,22 (6):2003-06.
    [3]Doll B, Aleef M, Hollinger JO, Pietrzak WS. Overview of Fracture Repair Musculoskeletal Tissue Regeneration. In:An YH, Daniels AU editors:Humana Press; 2008,p 39-61.
    [4]柳申鹏,宋敏.微血管系统在骨折愈合过程中的重建作用和影响因素[J].中国中医骨伤科杂志,2005,13(3):57-60.
    [5]张会生,贾卫斗.骨折愈合机理的研究进展[J].中国骨伤,2001,14(4):225—26.
    [6]Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-Intensity Pulsed Ultrasound Accelerates Rat Femoral Fracture Healing by Acting on the Various Cellular Reactions in the Fracture Callus. Journal of Bone and Mineral Research[J].2001,16 (4):671-80.
    [7]Phillips AM. Overview of the fracture healing cascade. Injury [J].2005,36 (3):S5-S7.
    [8]Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular Mechanisms Controlling Bone Formation during Fracture Healing and Distraction Osteogenesis. Journal of Dental Research [J]. 2008,87(2):107-18.
    [9]Ammann P, Laib A, Bonjour JP, Meyer JM, Ruegsegger P, Rizzoli R. Dietary Essential Amino Acid Supplements Increase Bone Strength by Influencing Bone Mass and Bone Microarchitecture in Ovariectomized Adult Rats Fed an Isocaloric Low-Protein Diet. Journal of Bone and Mineral Research [J].2002,17 (7):1264-72.
    [10]Hughes MS, Kazmier P, Burd TA, Anglen J, Stoker AM, Kuroki K, et al. Enhanced fracture and soft-tissue healing by means of anabolic dietary supplementation. J Bone Joint Surg Am[J].2006,88 (11):2386-94.
    [11]Fabian E, Gerstorfer I, Thaler HW, Stundner H, Biswas P, Elmadfa I. Nutritional supplementation affects postoperative oxidative stress and duration of hospitalization in patients with hip fracture. Wiener Klinische Wochenschrift; 123 (3):88-93.
    [12]Wittnam CA. The Measure of the Man. Annals of Internal Medicine 2008,149 (6):431-32.
    [13]Colburn NT, Zaal KJM, Wang F, Tuan RS. A role for γ/δ T cells in a mouse model of fracture healing. Arthritis& Rheumatism [J].2009,60 (6):1694-703.
    [14]Mognetti B, Marino S, Barbcris A, Bravo Martin A-S, Bala Y, Di Carlo F, et al. Experimental Stimulation of Bone Healing with Teriparatide:Histomorphometric and Microhardness Analysis in a Mouse Model of Closed Fracture. Calcified Tissue International; 89 (2):163-71
    [15]张曦,王尔.朱龙骧老中医治伤经验探讨[J].河南中医,2007,27(12):19.
    [16]Li L, Fei Z, Ren J, Sun R, Liu Z, Sheng Z, et al. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice. BMC Immunology [J]. 2008,9 (1):49.
    [17]Rhee JW, Lee KW, Kim D, Lee Y, Jeon OH, Kwon HJ, et al. NF-kappaB-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. J Biochem Mol Biol [J].2007,40 (1):88-94.
    [18]Noman AS, Koide N, Hassan F, I IE-K, Dagvadorj J, Tumurkhuu G, et al. Thalidomide inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production via down-regulation of MyD88 expression. Innate Immun [J].2009,15(1):33-41.
    [19]Bastian O, Pillay J, Alblas J, Leenen L, Koenderman L, Blokhuis T. Systemic inflammation and fracture healing. Journal of Leukocyte Biology; 89 (5):669-73.
    [20]Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, et al. Multiple roles for CCR2 during fracture healing. Dis Model Mech; 3 (7-8):451-8.
    [21]Lange J, Sapozhnikova A, Lu C, Hu D, Li X, Miclau T, et al. Action of IL-1β during fracture healing. Journal of Orthopaedic Research[J].2009,28 (6):778-84.
    [22]Pan C, Kumar C, Bohl S, Klingmueller U, Mann M. Comparative Proteomic Phenotyping of Cell Lines and Primary Cells to Assess Preservation of Cell Type-specific Functions. Molecular& Cellular Proteomics [J].2009,8 (3):443-50.
    [23]马涛,崔燎.老年大鼠含淫羊蕾血清对成骨细胞的增殖与分化的影响[J].中国骨质疏松杂志,2002,8(1):55-57.
    [24]王威,何永志,史红,等.不同性别人鼠中药含药血清对成骨细胞增殖的影响[J].天津中医药,2009,2(2):9—11
    [25]Rubin C, Turner AS, Muller R, Mittra B, McLeod K, Lin W, et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res[J].2002,17 (2):349-57.
    [26]Manabe T, Mori S, Mashiba T, Kaji Y, Iwata K, Komatsubara S, ct al. Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone [J].2007,40 (6):1475-82.
    [27]Naik AA, Xie C, Zuscik MJ, Kingsley P, Schwarz EM, Awad H, et al. Reduced COX-2 Expression in Aged Mice Is Associated With Impaired Fracture Healing. Journal of Bone and Mineral Research [J]. 2009,24 (2):251-64.
    [28]Wang X, Zauel RR, Rao DS, Fyhrie DP. Cancellous bone lamellae strongly affect microcrack propagation and apparent mechanical properties:separation of patients with osteoporotic fracture from normal controls using a 2D nonlinear finite element method (biomechanical stereology). Bone[J]. 2008,42(6):1184-92.
    [29]Bargman R, Posham R, Boskey A, DiCarlo E, Raggio C, Pleshko N. Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporosis International; 23 (3):1141-50.
    [30]Nagashima M, Sakai A, Uchida S, Tanaka S, Tanaka M, Nakamura T. Bisphosphonate (YM529) delays the repair of cortical bone defect after drill-hole injury by reducing terminal differentiation of osteoblasts in the mouse femur. Bone [J].2005,36 (3):502-11.
    [31]Meunier PJ. Anabolic agents for treating postmenopausal osteoporosis. Joint Bone Spine [J].2001,68 (6):576-81.
    [32]Asamura S, Mochizuki Y, Yamamoto M, Tabata Y, Isogai N. Bone Regeneration Using a Bone Morphogenetic Protein-2 Saturated Slow-Release Gelatin Hydrogel Sheet:Evaluation in a Canine Orbital Floor Fracture Model. Annals of Plastic Surgery; 64 (4):496-502 10.1097/SAP.0b013e31819b6c52.
    [33]Lai C-H, Chuang C-C, Kuan-Jung Li J, Chen S-C, Hong-Shong Chang W. Effects of Ultrasound on Osteotomy Healing in a Rabbit Fracture Model. Ultrasound in medicine & biology; 37 (10):1635-43.
    [34]Manabe T, Mori S, Mashiba T, Kaji Y, Iwata K, Komatsubara S, et al. Effect of Dosing Interval Duration of Intermittent Ibandronate Treatment on the Healing Process of Femoral Osteotomy in a Rat Fracture Model. Calcified Tissue International; 90 (3):193-201.
    [35]Histing T, Garcia P, Matthys R, Leidinger M, Holstein JH, Kristen A, et al. An internal locking plate to study intramembranous bone healing in a mouse femur fracture model. Journal of Orthopaedic Researc; 28 (3):397-402.
    [36]Hiltunen A, Vuorio E, Aro HT. A standardized experimental fracture in the mouse tibia. Journal of Orthopaedic Research[J].1993,11 (2):305-12.
    [37]Coleman C, Scheremeta B, Boyce A, Mauck R, Tuan R. Delayed Fracture Healing in Growth Differentiation Factor 5-deficient Mice:A Pilot Study. Clinical Orthopaedics and Related Research. (?); 469 (10):2915-24.
    [38]Willie B, Adkins K, Zheng X, Simon U, Claes L. Mechanical characterization of external fixator stiffness for a rat femoral fracture model. Journal of Orthopaedic Research [J].2009,27 (5):687-93.
    [39]Ricci WM, Rudzki JR, Borrelli J, Jr. Treatment of Complex Proximal Tibia Fractures With the Less Invasive Skeletal Stabilization System. Journal of Orthopaedic Trauma [J].2004,18 (8):521-27.
    [40]Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA. Altered fracture repair in the absence of MMP9. Development [J].2003,130 (17):4123-33.
    [41]Spreafico A, Frediani B, Capperucci C, Leonini A, Gambera D, Ferrata P, et al. Osteogenic growth peptide effects on primary human osteoblast cultures:Potential relevance for the treatment of glucocorticoid-induced osteoporosis. Journal of Cellular Biochemistry[J].2006,98 (4):1007-20.
    [42]Gabet Y, Miller R, Regev E, Sela J, Shteyer A, Salisbury K, et al. Osteogenic growth peptide modulates fracture callus structural and mechanical properties. Bone[J].2004,35 (1):65-73.
    [43]Brager MA, Patterson MJ, Connolly JF, Nevo Z. Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats. Journal of Orthopaedic Research [J].2000,18 (1):133-39.
    [44]Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development[J].1997,124 (13):2659-70.
    [45]Arnold M, Barbul A. Nutrition and Wound Healing. Plastic and Reconstructive Surgery [J].2006,117 (7S):42S-58S 10.1097/01.prs.0000225432.17501.6c.
    [46]Seifter E, Rettura G, Barbul A, Levenson SM. Arginine:an essential amino acid for injured rats. Surger[J]. y 1978,84 (2):224-30.
    [47]Barbul A, Fishel RS, Shimazu S, Wasserkrug HL, Yoshimura NN, Tao RC, et al. Intravenous hyperalimentation with high arginine levels improves wound healing and immune function. Journal of Surgical Research [J].1985,38 (4):328-34.
    [48]Barbul A, Lazarou SA, Efron DT, Wasserkrug HL, Efron G. Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery 1990,108 (2):331-6; discussion 36-7.
    [49]Zielke HR, Ozand PT, Tilclon JT. Sevdalian DA, Cornblath M. Growth of human diploid fibroblasls in the absence of glucose utilization. Proc Natl Acad Sci U S A[J].1976,73 (11):4110-4.
    [50]Monis B. Variations of Aminopeptidase Activity in Granulation Tissue and in Serum of Rats During Wound Healing:A Correlated Histochemical and Quantitative Study. Am J Pathol [J].1963,42 (3): 301-13.
    [51]Zieske JD, Gipson IK. Protein synthesis during corneal epithelial wound healing. Investigative Ophthalmology & Visual Science[J].1986,27 (1):1-7.
    [52]Matsui N, Sarkar G, Shuto T, Marrs J, Bronk JT, Mizuno K, et al. Identification of a Dual Leucine Zipper Kinase Involved in Rat Fracture.Repair. Biochemical and Biophysical Research Communications [J].1996,229 (2):571-76.
    [53]Richard Mendelsohn, Eleftherios P. Paschalis, Pamela J. Sherman, Boskey AL. IR Microscopic Imaging of Pathological States and Fracture Healing of Bone. Applied Spectroscopy[J].2000; 54 (8): 1183-91.
    [54]Maquart F-X, Pickart L, Laurent M, Gillery P, Monboisse J-C, Borel J-P. Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. FEBS Letters[J].1988,238 (2):343-46.
    [55]Haggar R, Kinney TD, Kaufman N. Bone healing in lysine-deficient rats. J Nutr [J].1955,57 (3): 305-17.
    [56]Patel GK. The Role of Nutrition in the Management of Lower Extremity Wounds. The International Journal of Lower Extremity Wounds[J].2005,4 (1):12-22.
    [57]Reed AAC, Joyner CJ, Brownlow HC, Simpson AHRW. Human atrophic fracture non-unions are not avascular. Journal of Orthopaedic Research [J].2002,20 (3):593-99.
    [58]Li C, Li R, McKee MD, Schemitsch EH.13. EFFECT OF THE HVEGF TRANSFER ON ENDOGENOUS VEGF MRNA EXPRESSION IN A RAT OSTEOBLAST OR FIBROBLAST CULTURE MODEL. Journal of Bone & Joint Surgery[J]., British Volume; 93-B (SUPP III):246.
    [59]Glowacki J. Angiogenesis in Fracture Repair. Clinical Orthopaedics and Related Research [J].1998, 355:S82-S89.
    [60]Street J, Lenehan B, Fisher CG, Dvorak M.14. VASCULAR ENDOTHELIAL GROWTH FACTOR REGULATES OSTEOBLAST CELL DEATH IN OSTEOPOROTIC VERTEBRAL FRACTURE. Journal of Bone & Joint Surgery[J]. British Volume; 93-B (SUPP III):246.
    [61]Beamer B, Hettrich C, Lane J. Vascular Endothelial Growth Factor:An Essential Component of Angiogenesis and Fracture Healing.. Hss J 2009.
    [62]Lienau J, Schmidt-Bleek K, Peters A, Haschke F, Duda GN, Perka C, et al. Differential regulation of blood vessel formation between standard and delayed bone healing. Journal of Orthopaedic Research [J].2009,27 (9):1133-40.
    [63]高飞,王明喜,曹贻训.《中医方剂大辞典》接骨方用药特点[J].山东中医杂志,1998,17(3):100—101.
    [64]高振强,唐英,刘珠.复方芪铜胶囊的制备及临床疗效观察[J].中国药业,1999,8(9):49.
    [65]赵奎君,钟萌,杨恩米,等.当归的炮制对当归补血汤中活性成分的影响[J].中草药,2006,37(12):1813—1816.
    [66]石清照,罗劲松,夏利平,等.当归注射液影响辐射损伤小鼠骨髓基质细胞血管内皮生长因子及其受体flt—1的表达[J].中国组织工程研究与临床康复,2007,11(11):2100-2103
    [67]王琳琳,丁安.赤芍总苷对大鼠血瘀证模型的影响[J].南京中医药大学学报,2011,27(6):552-554
    [68]万军力,王吕留,崔胜忠.川芎嗪对大鼠浸水应激性胃溃疡的影响[J].中草药,2000,31(2)
    [69]刘进,张雪华.氟化钠、自然铜、维生素C成骨效果的实验研究[J].临床口腔医学杂志,199713(4):224.
    [70]赵利平,房少新.自然铜对家兔骨痂中微量元素的影响[J].中兽医医药杂志,2003,(3):39.
    [71]毛碧峰中药自然铜低频超声透入给药促进骨折愈合的实验研究.辽宁中医药大学2009届中西医结合临床博十学位论文.
    [72]陈金凤,杨成,张勇.中药土鳖虫中Ca、Mg、Zn利Mn4种微量元素的含量测定[J].光谱实验室,2010,5(27):2010-2011.
    [73]蔡雪梅,张勇.中药十鳖虫中4种微量元素的形态分析研究[J].光谱实验室,2010,5(27):1200—1201.
    [74]周春凤,莱萌,王秀华,等.土鳖虫对大白鼠血液流变学的影响[J].中草药,1994,25(1):29.
    [75]周春凤,莱萌,王秀华,等.土鳖虫抗凝血作用研究.长春中医学院学报,1999,15(4):47.
    [76]李树强,于涛,齐振熙.士鳖虫对激素诱导骨髓间充质干细胞成骨分化的影响[J].中国骨伤,201023(12):921—924
    [77]沈敬华,杨丽敏,吕炳申,等.五种中药提取物对正常小鼠细胞免疫的影响[J].中国实验方剂学杂志,2006,12(2):57-59
    [78]李岩,孙思予,周卓,白术对小鼠胃推空及小肠推进功能影响的实验研究[J].辽宁医学杂志 1996,10(4):186.
    [79]孙文平,李发胜,侯殿东,等.当归、白术、制白附子多糖对小鼠免疫调节作用影响[J].中国中医药信息杂志,2008,15(7):37—38.
    [80]刘月盈,汪循东,陈慧芝,等.复方木香注射液的药理作用研究中成药研究[J].1983,5(6):27.
    [81]王小英.木香对大鼠实验性急性胃粘膜损伤的影响[J].中医研究,2004,17(2):21—22.
    [82]中村理惠.甘草抗溃疡的作用机理研究[J].重庆中草药研究,2004,1:49—52.
    [83]杨静,苏宗泽,李华萍.黄芪甘草汤治疗胃、十二指肠溃疡[J].四川中医,2003,21(12):35—36.
    [84]黄伟晖,宋纯清.当归化学成分研究[J].药学学报,2003,38(9):680-683.
    [85]周彦钢,任玉翠.地鳖虫的营养成分分析[J].食品研究与开发,1998,19(2):51—53.
    [86]张勤.酶法制取土鳖虫氨基酸口服液的研究[J].广州食品工业科技,1998,14(3):20-22.
    [87]叶福媛,毛泉明,张蕾.不同品种黄芪中的氨基酸和微量元素含量的比较[J].时珍国医国药,2005,16(9):851—852
    [88]胡晓倩,胡长玉,张慧冲.野生祁白术与云南白术的氨基酸含量分析[J].中药材,2006,29(7):679—680.
    [89]范朝阳,裘维焰,魏克民.复方复合氨基酸治疗骨折的病理学研究[J].浙江中医学院学报,2004,28(4):62-63.
    [90萧劲大,朱海,李昂,等.益气补肾法防治原发性骨质疏松症[J].中国中医骨伤科杂志,2002,10(2):1.
    [91]李芳芳,李恩,宋十军,等.补肾方剂及不同分离组份对成骨细胞增殖分化的影响[J].中国骨质疏松杂志,1998,4(3):7
    [92]冯伟,傅文或,朱亚萍,等.接骨中药对培养成骨细胞增殖、分化和矿化功能的影响[J].浙江中医学院学报,2004;28(2):65—67.
    [93]王拥军,宋莉君,孙爱贞,等.黄芪多糖的提取及对体外培养成骨细胞能力的影响[J].中国中医骨伤科杂志,1999,7(6):1-4
    [94]McDonnell DP. No rris J D. Analysis of t he molecular p har2macology of est rogen receptor agonist s and antagonist sp rovides insight s into t he mechanism of action of est rogenin bo ne. Osteoporosis [J].1997, (Suppl. Ⅱ):29
    [95]马强,陈刚,张继芬,等.川芎嗪调控血管内皮生长因子与抗大鼠佐剂性关节炎的相关性研窟 [J].中国中药杂志,2009,34(21):2799-2802.
    [96]朱海琴,范卫新,张卉.甘草提取物对人毛乳头细胞增殖和分泌血管内皮生长因子的影响[J].临床皮肤科杂志,2007,36(4):201—203
    [97]张三强,潘苗,任明芬.黄芪注射液对稳定型心绞痛患者血浆血管内皮生长因子水平的影响[J].中西医结合心脑血管病杂志2010;8(4):393-394.
    [98]朱平先,周洪,李博.黄芪多糖对冠心病及血管内皮的药理作用与研究进展[J].实用心脑肺血管病杂志,2010,(18)8:1191—1193.
    [99]罗佩强.土鳖虫促进骨折愈合的实验研究[J].中国骨伤,1992,5(6):6.
    [100]张俐,叶俊材.活血化瘀汤对骨折早期血管内皮细胞因子活性的影响[J].中国临床康复,2004,8(24):4798-4799.
    [101]熊辉,左亚杰,丁志高,等.桃红四物汤干预骨痂微血管新生及VEGF表达的实验研究[J].中国医师杂志,2004,6(2):195—197.
    [1]周辉,范希玲,韩根勇,等.和胃接骨胶囊对实验性大鼠骨折愈合过程中BMP-2表达的影响[J]中医正骨头,2007,19(4):243—245.
    [2]侯晓峰,李朝旭,刘景生鹿茸对实验型骨折愈合中BMP2表达的影响[J].辽宁中医杂志,2005,32(4):374-376
    [3]张柳,刘锋,梁春雨,等.等鹿香乌龙对卵巢切除大鼠股骨折愈合的实验研究[J].中国骨质疏松杂志,2007,13(1):33—34.
    [4]程杰,余渊,彭锐,等生骨注射液对大鼠成骨细胞BMP-2mRNA表达影响的实验研究[J].中国 中医骨伤科杂志,2005,13(2):33—36.
    [5]Ji-Cheon Jeong, Jae-Wook Lee, Cheol-Ho Yoon. et al. Drynariae Rhizoma promotes osteoblast differentiation and mineralization in MC3T3-E1 cells through regulation of bone morphogenetic protein-2. alkaline phosphatase, type I collagen and collagenase-1 [J]. Toxicology in Vitro.2004,18(6):829-834.
    [6]杨丽,张荣华,朱晓峰,等.淫羊藿苷对大鼠间充质干细胞骨向分化过程中转化生长因子β1、骨形态发生蛋白2表达的影响[J].中国组织工程研究与临床康复,2010,14(19):3518—3522.
    [7]汤耿民,沈霖,徐意辉.补肾活血方对成骨细胞生长因子TGF-β1mRNA表达的影响[J].中国中医骨伤科杂志,1999,7(5):5
    [8]王华松,许中明.骨碎补对骨折愈合中TGF-β1表达的影响[J].中国中医骨伤科杂志,2001,9(4):10
    [9]符诗聪,史炜镔,杜宁,等.丹参有效部位对骨折愈合中胶原基因表达的影响[J].中国中西医结合杂志:2000,,20(4)::269
    [10]张俐,杨宗宇,李楠,等.活血化瘀汤对大鼠骨折愈合中转化生长因子β1mRNA与蛋白表达及软骨内成骨的作用[J].中国临床康复,2006,10(31):40-42.
    [11]郑悦亮,周辉,赵万军,等.和胃接骨胶囊对家兔骨折愈合中转化生长因子—β表达的影响[J].中国中西医结合急救杂志,2006,13(4):231—233.
    [12]史达,许潇.生骨紫金丹在骨折愈合过程对TGF-β1和bFGF影响的实验研究[J].中医药学刊,2006,24(10):1877-1875
    [13]梁文,陈丽纯,陈灿儿,等.接骨宝对骨折愈合过程中转化生长因子-β1表达的影响[J].国际医药卫生导报,2008,14(23):6-7.
    [14]高云,董福慧,郑军.海螵峭对骨愈合相关基因表达的影响[J].中医正骨,2004,16(7):1-3
    [15]熊辉,左亚杰,丁志高,等.桃红四物汤干预骨痂微血管新生及VEGF表达的实验研究[J].中国医师杂志,2004,6(2):195—197
    [16]初同伟,王正国,朱佩芳,等.血管内皮生长因子在骨折愈合中的作用[J].中国修复重建外科杂志,2002,16(2):75
    [17]刘英杰,翁凤泉.活血驳骨丸对骨折后内源性bFGF分泌及早期骨痂质量的影响[J].中国中医骨伤科杂志,2004,12(6):11
    [18]彭锐,程杰,邹阳生骨注射液对大鼠骨折愈合过程中bFGF表达的影响[J].湖北中医杂志,2007,29(7):5-6.
    [19]史达,许潇,李振宇,等.生骨头紫金丹在骨折愈合过程中对TGF-β1和bFGF景程的实验研究[J].中 医药学刊,2006,24(10):1875—1876.
    [20]汤耿民,沈霖,夏志道,等.补肾活血方对实验性骨折愈合过程中IGF-Ⅰ的影响(J).中国中医骨伤科杂志,2000,8(3):1
    [21]史风雷,于海彬.中药调控骨重建偶连中IGF-Ⅰ的表达[J].中医正骨,2008,20(10):11—12.
    [22]林一峰,刘庆思.骨康含药血清对成骨细胞PDGF-AA表达影响的实验研究[J].中国骨质疏松杂志,2006,12(5):459-461.
    [23]刘傲霜,陈洪波.中药熏洗1号方熏洗对大鼠失神经支配骨骼肌NGF与bFGF影响的实验研究[J].湖北中医学院学报:2008:10(3):20—22.
    [1]Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161(2):851-858.
    [2]Shifren JL, Doldi N, Ferrara N, et al. In the human fetus, vascular endothelial growth factor is expressed in epithelial cells and myocytes, but not vascular endothelium: implications for mode of action. J Clin Endocrinol Metab.1994;79(1):316-322.
    [3]Kaspar D, Neidlinger-Wikle C, Hoibein, et al. Mitogens are increased in the systemic circulation during bone callus. J Orthop Res.2003;21(2):320-325.
    [4]Spector JA, Mehrara BJ, Greenwald JA, et al. Osteoblast expression of vascular endothelial growth factor is modulated by the extracellular microenvironment. Am J Physiol Cell Physiol.2001;280(1):C72-80.
    [5]Zhan QX, Magovern CJ, Mack CA, et al. Vascular endothelial growth factor angiogenesis. Surg Res.1997;67(1):147-154.
    [6]Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res.2002;17:513-520.
    [7]Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop. 1998;355S:7-21.
    [8]Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology.2002;43:1545-1553
    [9]Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg [Am].2002;84-A(6):1032-1044.
    [10]Gerstenfeld LC, Cullinane DM, Barnes GL, et al. Fracture healing as a post-natal developmental process:molecular, spatial, and temporal aspects of its regulation. J Cell Biochem.2003;88:873-84.
    [11]Probst A, Spiegel HU. Cellular mechanisms of bone repair. J Invest Surg. 1997;10(3):77-86.
    [12]Vortkamp A, Pathi S, Peretti GM, et al. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998;71(1-2):65-76.
    [13]Le AX, Miclau T, Hu D, et al. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res.2001;19(1):78-84.
    [14]Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest. 1989;84(5):1470-1478.
    [15]Gerstenfeld LC, Cullinance DM, Bar nes GL, et al. Fracture healing as a post-natal developmental process:molecular spatial and temporal aspects of its regulation. J Cell Biochem,2003; 88(5):873-884.
    [16]Hayami T, Funaki H, Yaoeda K, et al. Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J Rheumatol.2003;30(10):2207-2217.
    [17]Brown AP, Courtney CL, King LM, et al. Cartilage dysplasia and tissue mineralization in the rat following administration of a FGF receptor tyrosine kinase inhibitor. Toxicol Pathol. 2005;33(4):449-455.
    [18]Petersen W, Pufe T, Zantop T, et al. Expression of VEGFR-1 and VEGFR-2 in degenerative Achilles tendons. J orthop Res.2004;420(3):286-291.
    [19]Street JT, Wang JH, Wu QD, et al. The angiogenic response to skeletal injury is preserved in the elderly. J Orthop Res.2001; 19(6):1057-1066.
    [20]Peng H, Wright V, Usas A, et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest. 2002;110:751-759.
    [21]Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am.2004;86-A(7):1541-1558.
    [22]Lattemmnn C, Bahzer AW, Zelle B A, et al. Feasibility of percutaneous gene transfer to an atrophic nonunion in a rabbit. Clin Orthop Relat Res.2004;(425):237-243.
    [23]Pacicca DM, Patel N, Lee C, et al. Expression of angiogenic factors during distraction osteogenesis. Bone.2003;33(6):889-898.
    [24]Ai-Aql ZS, Alagl AS, Graves DT, et al. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107-118.
    [25]Kayal RA, Tsatsas D, Bauer MA, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res.2007 Apr;22(4):560-8.
    [26]Axelrad TW, Kakar S, Einhorn TA. New technologies for the enhancement of skeletal repair. Injury.2007;38 Suppl l:S49-62.
    [27]Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells:implications for fracture healing. Plast Reconstr Surg.2002;109(7):2384-2397.
    [28]Bouletreau PJ, Warren SM, Spector JA, et al. Factors in the fracture microenvironment induce primary osteoblast angiogenic cytokine production. Plast Reconstr Surg. 2002;110(1):139-148.
    [29]Fang TD, Nacamuli RP, Song HM, et al. Creation and characterization of a mouse model of mandibular distraction osteogenesis. Bone.2004;34(6):1004-1012.
    [30]Wan C, Gilbert SR, Wang Y, et al. Activation of the hypoxia-inducible factor-1 alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A. 2008;105(2):686-691.
    [31]Wang Y, Wan C, Gilbert SR, et al. Oxygen sensing and osteogenesis. Ann N Y Acad Sci. 2007;1117:1-11.
    [32]Li R, Stewart DJ, von Schroeder HP, et al. Effect of cell-based VEGF gene therapy on healing of a segmental bone defect. J Orthop Res.2009;27(1):8-14.
    [33]Hu Z, Peel SA, Ho SK, et al. Role of bovine bone morphogenetic proteins in bone matrix protein and osteoblast-related gene expression during rat bone marrow stromal cell differentiation. J Craniofac Surg.2005;16(6):1006-1014.
    [34]Street J, Bao M, Guzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA.2002; 99(15):9656-9661.
    [35]Mayer H, Bertram H, Lindenmaier W, et al. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells:autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem.2005;95(4):827-839.
    [36]Fang TD, Salim A, Xia W, et al. Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res.2005;20(7):1114-1124.
    [37]Maes C, Coenegrachts L, Stockmans I, et al. Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J Clin Invest.2006;116(5):1230-1242.
    [38]Colnot C, de la Fuente L, Huang S, et al. Indian hedgehog synchronizes skeletal angiogenesis and perichondrial maturation with cartilage development. Development. 2005;132(5):1057-1067.
    [39]Zeng Q, Li X, Beck G, et al. Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Bone.2007;40(2):374-381.
    [40]Komatsu DE, Hadjiargyrou M. Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair. Bone.2004;34(4):680-688.
    [41]Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis:the potential for engineering bone. Eur Cell Mater.2008; 15:100-114.
    [42]Zelzer E, Olsen BR. Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol.2005;65:169-187.
    [43]Kofron MD, Laurencin CT. Bone tissue engineering by gene delivery. Adv Drug Deliv Rev.2006;58(4):555-576.
    [44]Geris L, Gerisch A, Sloten JV, et al. Angiogenesis in bone fracture healing:a bioregulatory model. J Theor Biol.2008;251(1):137-158.
    [45]Horiuchi N, Maeda T. Statins and bone metabolism. Oral Dis.2006;12(2):85-101.
    [46]Santos MI, Reis RL. Vascularization in bone tissue engineering:physiology, current strategies, major hurdles and future challenges. Macromol Biosci.2010; 10(1):12-27.
    [47]Schmidmaier G, Herrmann S, Green J, et al. Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone.2006;39(5):1156-1163.
    [48]Kasper G, Dankert N, Tuischer J, et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells.2007;25(4):903-910.
    [49]Lehmann W, Edgar CM, Wang K, et al. Tumor necrosis factor alpha (TNF-alpha) coordinately regulates the expression of specific matrix metalloproteinases (MMPS) and angiogenic factors during fracture healing. Bone.2005;36(2):300-310.
    [50]Pufe T, Wildemann B, Petersen W, et al. Quantitative measurement of the splice variants 120 and 164 of the angiogenic peptide vascular endothelial growth factor in the time flow of fracture healing:a study in the rat. Cell Tissue Res.2002;309(3):387-392.
    [51]Radke S, Battmann A, Jatzke S, et al. Expression of the angiomatrix and angiogenic proteins CYR61, CTGF, and VEGF in osteonecrosis of the femoral head. J Orthop Res. 2006;24(5):945-952.
    [52]Chen YJ, Wurtz T, Wang CJ, et al. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res.2004;22(3):526-534.
    [53]Li X, Jin L, Cui Q, Wang GJ, et al. Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporos Int.2005;16(1):101-108.
    [54]Leung KS, Cheung WH, Zhang C, et al. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res. 2004;(418):253-259.
    [55]Wang FS, Kuo YR, Wang CJ, et al. Nitric oxide mediates ultrasound-induced hypoxia-inducible factor-1 alpha activation and vascular endothelial growth factor-A expression in human osteoblasts. Bone.2004;35(1):114-123.
    [56]Kumta SM, Huang L, Cheng YY, et al. Expression of VEGF and MMP-9 in giant cell tumor of bone and other osteolytic lesions. Life Sci.2003;73(11):1427-1436.
    [57]Yen ML, Su JL, Chien CL, et al. Diosgenin induces hypoxia-inducible factor-1 activation and angiogenesis through estrogen receptor-related phosphatidylinositol 3-kinase/Akt and p38 mitogen-activated protein kinase pathways in osteoblasts. Mol Pharmacol. 2005;68(4):1061-1073.
    [58]Park SH,O'Connor KM,Mckellop Ha.Interction between active motion and exogenous transforming growth factor Beta during tibial fracture reoair[J].J Orthop Trauma,2003,17(1):2-10.
    [59]Kohno S,Kaku H,Tsut sui K,et al.Expression of vascular endothelial growth factor and the effects on bone remodeling during experimental tooth movement[J].Dent Res,2003,82 (3):177-182.
    [60]曾中华,余黎,龚玲玲.骨折愈合过程中BMP—2和VEGF的表达[J].武汉大学学报(医学版),2005,26(4):468—471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700