氟对破骨细胞增殖的影响及可能的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章慢性氟中毒对大鼠骨相损伤的影响
     目的:通过慢性染氟,观察氟对大鼠骨相(牙和骨骼)损伤的影响,探讨破骨细胞与氟中毒导致骨相变化的可能关系。
     方法:本实验采用Wistar大鼠染氟干预(剂量分别是0mg/L、25mg/L、50mg/L、100mg/L、150mg/L)的方法,染氟6个月,分别通过体视显微镜、病理学、X线以及染氟大鼠的氟的负荷量等几个方面检测氟中毒大鼠的特征性指标。
     结果:①大鼠一般状况的变化,随着染毒时间的延长,染氟第2个月时,100mg/L组和150mg/L组大鼠表现出精神萎靡,食欲减弱;染氟第5个月,50mg/L组大鼠出现上述表现,随着染氟时间的延长,其表现更加明显;实验末期大鼠体重与实验前相比,25mg/L组与空白组比较,大鼠体重值要比空白组低,但统计学显示,差异不具有显著性,(P>0.05);50mg/L组和100mg/L组与对照组相比较体重增长曲线基本一致,而150mg/L组从第八周开始,体重增长趋势逐渐减弱,与空白组比较,差异具有显著性,(P<0.05)。②大鼠牙齿的变化,大鼠切齿4颗,上齿短,下齿长而尖。对照组大鼠切齿呈均匀的淡黄色,表面光滑有光泽。实验组大鼠个体差异较大,100mg/L、150mg/L组大鼠有的在3个月左右就可出现氟斑牙,轻者牙表面黄、白相间,白垩条纹清晰,尚有一定光泽。随时间的延长,氟斑牙症状逐渐加重,牙齿表面呈无光泽粉笔样白色斑(白垩状)。有的大鼠牙齿表面出现小沟、裂纹、或部分脱落,牙齿呈锯齿状严重缺损。说明染氟剂量对氟斑牙的形成程度有一定的影响,表现出剂量和时间依赖性。③X线征象变化:100mg/L、150mg/L组骨盆的骶髂关节改变最多见。X线征象检查显示骨盆改变出现最早,2个月时少数几例见骨纹模糊,3个月后骨纹模糊、紊乱明显增加骨密度增高,染氟6个月时,染氟150mg/L组部分髓腔密度降低,说明高剂量染氟导致大鼠骨小梁的骨吸收增强,表现出骨质疏松。不同剂量氟干预导致结果不同,主要表现为骨硬化,高剂量表现出骨质疏松。④大鼠股骨组织形态计量参数分析:150mg/L组股骨干骺端平均骨小梁密度(MTPD)及平均骨小梁厚度(MTPT)明显减小,差异有显著性(P<0.05),说明高剂量可以造成骨质疏松的表现。⑤组织病理学改变:150mg/L组:骨板弯曲变形,排列不规则;骨陷窝与骨基质之间的裂隙较多,骨细胞数量减少,胞核皱缩或消失,骨小管细小甚至消失;骨小梁排列紊乱,数量减少,间距变大,宽度变窄,连接呈网状;成骨细胞成层排列,数量增多,破骨细胞数量较其他剂量组明显增多,胞体肥大,细胞核为多个。⑥氟负荷量的变化:染氟6个月后尿液中氟离子随着染氟浓度的升高而呈上升趋势,与对照组比较,差异具有显著性(P<0.05);血液中氟离子在6个月时,染氟组与对照组比较,氟离子浓度值轻微上升,但统计学比较差异不具有显著性(P>0.05);大鼠股骨中氟离子浓度值与对照组比较,25mg/L组有轻微上升,但没有统计学意义,而50mg/L、100mg/L、150mg/L三组氟离子上升比较明显,差异具有显著性(P<0.05);大鼠下切牙的氟离子浓度值与对照组比较,各染氟组都明显升高,差异具有显著性(P<0.05)。
     结论:染氟后大鼠体内氟负荷量随着时间和剂量基本呈递增趋势;高剂量长时间染氟导致骨质疏松,与破骨细胞的功能活跃有一定的关系。
     第二章氟对离体培养破骨细胞增殖的影响
     目的:探讨sRANKL对小鼠RAW264.7细胞的诱导分化及氟对RAW264.7细胞增殖的影响。
     方法:本实验采用体外培养破骨细胞,以sRANKL诱导RAW264.7细胞进行鉴定,以氟化钠0到160mg/L范围内给出13个剂量组进行染氟,采用噻唑蓝(MTT)法,观察存活细胞数量,并绘制增殖曲线,筛选出与破骨细胞增殖相关的4个剂量组,分别是0、2、10、50mg/L组,用HE染色、甲苯胺蓝染色、TRAP染色以及扫描电镜和透射电镜对破骨细胞的诱导分化及增殖作用进行了形态学和功能方面的鉴定。
     结果:①诱导前RAW264.7细胞呈星形、圆形或不规则形,细胞核1-2个。诱导后外形仍然呈不规则形,但圆形细胞基本消失,细胞核为多个。TRAP染色阳性细胞为细胞质鲜红色或者淡红色,细胞核2-3个多见,形态呈多突起不规则形。②诱导后倒置显微镜观察与HE染色、甲苯胺蓝染色表明与牛骨磨片共培养发现经过诱导分化后的RAW264.7细胞吸收陷窝明显增多,组间比较差异具有显著性(P<0.05)。③诱导后电镜结果显示,RAW264.7细胞边缘呈指状、刺状或不规则的突起,外形不规则,细胞密度较低的是已分化成熟的破骨细胞,能够形成吸收陷窝。④染氟后通过光镜、电镜及MTT法检测,说明当氟化钠浓度低于2mg/L时,对RAW264.7细胞生长无明显影响;当氟化钠浓度介于2mg/L与10mg/L时,RAW264.7细胞增殖数量明显增加;而当氟化钠浓度高于50mg/L时,RAW264.7细胞增殖受到明显抑制;组间比较差异具有显著性(P<0.05)。
     结论:明确TRAP染色可以作为破骨细胞一种形态学鉴定方法;低剂量的氟可以促进体外培养小鼠破骨细胞增殖,随剂量增加其促进作用减弱;高剂量氟对破骨细胞增殖有抑制作用。
     第三章氟对破骨细胞作用的可能分子机制
     目的:探讨氟对MCM3基因表达和分布的影响以及MCM3对破骨细胞增殖活力的影响。
     方法:本实验采用体外培养破骨细胞,用免疫荧光技术、Western blot以及半定量RT-PCR的方法,检测不同剂量0、2、10、50mg/L的氟对MCM3mRNA以及蛋白的影响;以及染氟6个月大鼠,用ELISA法检测MCM3在染氟大鼠血清中的变化;通过MTT法检测MCM3对破骨细胞增殖活力的影响。
     结果:①通过RT-PCR检测比较各组之间MCM3mRNA的表达量,2mg/L组与空白组之间表达量略高,但无统计学意义(P>0.05);10mg/L组与空白组相比,MCM3mRNA的表达量明显升高(P<0.05);50mg/L组与空白组相比较MCM3mRNA的表达量明显下降(P<0.05);各组间比较发现50mg/L组与其他各组具有显著性差异(P<0.05)。②Western-blot结果显示2mg/L、l0mg/L组与空白组相比较,MCM3蛋白表达量略高于空白组(P>0.05),50mg/L组与空白组相比较,MCM3蛋白表达量略低于空白组(P>0.05),2mg/L组与10mg/L组相比较,2mg/L组蛋白表达量略高,但无统计学意义(P>0.05)。③免疫荧光结果显示MCM3蛋白表达0、2、10mg/L各组主要表达在细胞核,有微量在细胞质,表达量依次增强;50mg/L组主要表达在细胞质,细胞核有少量表达,表达强度较弱。④ELISA结果显示高剂量染氟150mg/L组,在染氟6个月时,MCM3的表达量与其他各组比较差异均有统计学意义,P<0.05。⑤体外破骨细胞培养48h内,染氟组在24h~36h,与空白组比较,破骨细胞增殖活力明显提高,有统计学意义,P<0.05;MCM3抗原组在培养24h,增殖活力提高,与空白组比较有统计学意义,P<0.05;当氟与MCM3抗原共同作用时,在破骨细胞培养12h~36h,增殖活力最明显,与空白组比较都有统计学意义,P<0.05;当MCM3抗体作用于破骨细胞,在培养24h~48h时,细胞增殖活力具有下降趋势,与氟+抗原组比较,差异具有统计学意义,P<0.05。说明MCM3抗原相对于抗体在早期就具有刺激破骨细胞增殖的趋势,随着作用时间的延长,MCM3抗原加强了破骨细胞的增殖作用,在染氟晚期,破骨细胞增殖能力也与MCM3有一定的关系。
     结论:不同剂量的氟对体外培养破骨细胞MCM3的表达量不同,基本表现出2mg/L、10mg/L染氟组促进MCM3的表达,50mg/L染氟组明显抑制了MCM3的表达,从10mg/L氟剂量开始出现抑制作用,随剂量增加促进作用逐渐减弱,50mg/L基本达到毒性反应;高剂量150mg/L氟对在体MCM3表达具有明显增强作用,说明促进破骨细胞增殖,其机制有待进一步研究;MCM3在一定时间内对体外破骨细胞增殖有促进作用,但具体机制需要进一步研究。
The chapter I:The effect of chronic fluorosis on bone injury in rats
     Objective:To explore possible relationship between osteoclasts and fluorosis bone phase change, based on the observation of fluoride with rat bone (dental and skeletal) damage.
     Methods:we use in rats exposed to fluoride intervention (dose is respectively Omg/L,25mg/L,50mg/L,100mg/L,150mg/L) method for6months, respectively, at2months,4months and6months for bone density examination, using pathological, radiological and male rats exposed to fluoride fluorine load from several aspects such as the detection of fluorosis rats in effect.
     Results:①General situation changes of rat, along with the exposure time, in the second months,1OOmg/L and150mg/L rats showed dispirited, appetite diminished; with the extension of time, its performance more obvious. In the fifth months,50mg/L rats appear above the performance of fluorosis. In experimental stage the25mg/L group rat weight compared with blank group, was not significant,(P>0.05).50mg/L group and100mg/L group compared with the control group weight growth curve showed basically the same, while the150mg/L group from the beginning of the eighth week, weight growth trend gradually weakened compared with normal group, the difference was significant (P<0.05)②Rat teeth change, rat teeth were4, upper teeth were short, lower teeth were long sharp. Control rats cutting teeth were uniformly pale yellow, the surface was smooth and shiny. Rat individual differences were large.100mg/L and150mg/L group rats can appear dental fluorosis at about3months, dental surface were light yellow, white, chalky clear stripes and certain gloss. With the extension of time, dental fluorosis symptoms gradually worsened, the tooth surface was dull chalk-like white spot (chalky). Some rat tooth surface was groove, crack, or partially detached, teeth serrated serious defect. fluoride dose on dental fluorosis formation degree have a certain impact, exhibited a dose and time-dependent.③Radiographic changes:100mg/L,150mg/L group pelvis sacroiliac joint changes are common. Radiographic examination revealed pelvic changes appear the earliest, there are a few cases bone pattern fuzzy at2months, after3months bone pattern fuzzy, bone mineral density disorders significantly increased at6months. The part of the medullary cavity density decreased in150mg/L group. It indicated high doses of fluoride in rats trabecular bone absorption enhancement, showed osteoporosis. Different doses of fluoride intervention led to different results, mainly for the bone sclerosis, higher doses showed osteoporosis.④Rat bone histomorphometric parameters analysis:150mg/L femoral metaphysis of mean trabecular bone density (MTPD) and the mean trabecular thickness (MTPT) decreased, there was a significant difference (P<0.05). It indicated high doses can cause osteoporosis performance.⑤Histopathological changes:150mg/L:bone plate bending deformation, the irregular arrangement. The bone lacunae and bone matrix showed the fractured bone, decreased in the number of cells, cell nucleus shrinkage or disappeared, bone tubular became fine and even disappear. Bone trabecular derangement, reduced in number, spacing increased, the width were narrow, connected mesh. Osteoblast arranged many layers, increased in the number. The number of osteoclasts increased significantly than other dose group, the cell body became big, nucleus were multiple.⑥Fluorine load changes:The urine fluoride ions showed increases with the rise in fluoride concentration after6months, compared with the control group, the difference was significant (P<0.05). Blood fluoride ion increased slightly in6months, compared with the control group,but statistically not significant difference (P>0.05). Fluoride ion concentration of rat femur the25mg/L group has increased slightly, but not statistically significant, and the50mg/L,100mg/L,150mg/L three groups of fluoride ion rise apparently, difference significant (P<0.05) compared with the control group. Rat lower incisor fluoride ion concentration were significantly increased in the fluoride exposed group, the difference was significant (P<0.05) compared with the control group.
     Conclusion:Fluoride load in rats show increased trend with long time and high dose. Fluoride can lead to osteoporosis at a long time and high dose, there is a certain relationship between fluoride and active osteoclast function.
     The chapter Ⅱ:Affect of fluoride on cultured osteoclasts proliferation in vitro
     Objective:Explore mouse RAW264.7cells induced differentiation by sRANKL and affect of fluoride on RAW264.7cell proliferation.
     Methods:we use cultured osteoclasts in vitro induced by sRANKL, RAW264.7cells were identified, using sodium fluoride from0to160mg/L range which were given13dose groups. By the thiazole blue (MTT) method, we observed survival cell number, and the mapping of growth curve, screened and osteoclast proliferation associated4dose groups, respectively was Omg/L,2mg/L, lOmg/L,50mg/L group. HE staining, toluidine blue staining, TRAP staining and scanning electron microscopy and transmission electron microscopy on osteoclast differentiation and proliferation were studied by morphological and functional aspects of the identification.
     Results:①RAW264.7cells with a star-shaped, rounded or irregularly shaped, nuclei were1-2before induction. The shape remained irregular, but round cells disappeared, the nucleus was more after the induction. TRAP positive staining cytoplasm was bright red or reddish, nuclei was2-3and more, cell shape was irregular.②Resorption lacunae increased significantly difference between two groups was significant after the induction of differentiation of RAW264.7cells (P<0.05)by inverted microscope and HE staining, toluidine blue staining.③Electron microscope results showed RAW264.7cell edge were finger-shaped, spiny or irregular protrusions, irregular shape, low cell density are differentiated mature osteoclasts, capable of forming Howship's lacunae after the induction④When sodium fluoride concentration is below2mg/L, RAW264.7had no significant effect on cell growth; when the sodium fluoride concentration between2mg/L and10mg/L, RAW264.7cell proliferation in a marked increase in the number; and when the sodium fluoride concentration higher than50mg/L, RAW264.7cell proliferation was inhibited significantly; the difference between groups was significant (P<0.05).
     Conclusion:We think that TRAP staining can be used for osteoclast a morphological identification method. low fluoride can promote cultured murine osteoclast proliferation, with dose increasing its proliferation effect weakened. high fluoride made osteoclasts proliferation inhibited.
     The chapter Ⅲ:Possible molecular mechanism of fluoride on osteoclasts
     Objective:Explore affect of Fluoride on osteoclast MCM3expression and distribution and MCM3on osteoblast proliferation
     Methods:We use cultured osteoclasts in vitro, immunofluorescence technique, Western blot and semi quantitative RT-PCR detection method, observed MCM3mRNA and protein by different doses of0mg/L,2mg/L,10mg/L,50mg/L fluoride. We detected MCM3in fluoride changes in rat serum when rats ingested fluoride for6months by using ELISA assay. We detected MCM3protein on osteoclast proliferation through the MTT method.
     Results:①We compared MCM3mRNA expression by the RT-PCR testing.2mg/L group expression was slightly, but not statistically significant (P>0.05) and compared with the control group.10mg/L group MCM3mRNA expression level was significantly elevated (P<0.05) as compared with the blank group.50mg/L group expression of MCM3mRNA decreased (P<0.05) and compared with blank group, each group comparison showed50mg/L group had significant difference (P<0.05)as compared with the other groups.②Western-blot results showed that the2mg/L,10mg/L group expression of MCM3protein was higher than that of the blank group,however (P>0.05).50mg/L group expression of MCM3protein was lower than the blank group,however (P>0.05).2mg/L protein expression was slightly higher, but without statistical significance (P>0.05) between2mg/L and10mg/L group comparison.③Immunofluorescence showed the expression of MCM3protein:0,2,10mg/L were mainly expressed in the nuclei, a trace in the cytoplasm,50mg/L group is mainly expressed in the cytoplasm, nucleus small expression.④ELISA results showed that high doses of fluoride in150mg/L group the expression of MCM3have statistical significance of P<0.05as compared with other groups in the fluoride exposed for6months.⑤There were statistically significant, P<0.05in comparison with blank group in the24h-36h as osteoclast cultured for48hs in vitro. Osteoclast proliferation activity increased significantly. MCM3antigen groups made proliferation activity increase in cultured24hs and it was statistically significant at P<0.05as compared with normal group. Proliferation activity is most obvious in osteoclasts cultured on12h-36h when the fluorine and MCM3antigen acting together, and they were all statistically significant, P<0.05as compared with the blank group. role of, Osteoclasts proliferation activity has decreased when the MCM3antibody group acted for24hs-48hs. it was statistical significance, P<0.05as compared with fluorine+antigen groups. MCM3antigen has the stimulation of osteoclast proliferation trends than antibody in early. along with the prolongation of time, the MCM3antigen strengthen osteoclast proliferation effect of fluoride, osteoclast proliferation and MCM3also have a certain relationship in late.
     Conclusion:Different doses of sodium fluoride on osteoclastic cells in MCM3expression level is different, basically show2mg/L,10mg/L promotes MCM3expression,50mg/L were significantly inhibited the expression of MCM3, from the lOmg/L dose began inhibition increased with increasing dose, promote gradually decreased,50mg/L reached toxicity reaction. High dose of150mg/L fluoride on MCM3expression has obvious reinforcing effect, that promote osteoclast proliferation, its mechanism needs further research. MCM3at a certain time on osteoclast proliferation activity in vitro, but the exact mechanism needs further study.
引文
[1]李永富.基于新型交联剂的改性壳聚糖制备及除氟性能研究[D].青岛:中国海洋大学,2011.
    [2]李广生.地方性氟中毒发病机制[M].北京:科技出版社,2004,155.
    [3]王成海,张秀丽.地方性氟中毒病区与非病区氟斑牙表现及意义[J].中国地方病学杂志,2005,24(1):64-66.
    [4]张维东,氟诱发甲状腺肿的分子病理学研究[D].兰州:甘肃农业大学,2008.
    [5]孙殿军,郝阳,陈志,等.中国地氟病防治研究的50年回顾.中华医学会全国第四次地方病学术会议论文集[J].中国地方病学杂志,1999,18:247-251.
    [6]中华人民共和国地方病与环境图集编撰委员会.中华人民共和国地方病与环境图集.北京:科学出版社,1989,156-157.
    [7]陈贤义.在全国防治地方性氟中毒(砷中毒)改水工作经验交流会闭幕式上的讲话[J].中国地方病学杂志,2001,20(4):244-248.
    [8]李广生,井玲,徐辉.地方性氟中毒发病机制的研究进展[J].中华病理学杂志,2005,34(10):632-634.
    [9]Battaglino R, Kim D, Fu J,et al. C-myc is required for osteoclast differentiation [J]. J Bone Miner Res,2002,5:763-773.
    [10]钟苑芳,氟对大鼠成骨细胞Nrf2-ARE信号转导通路的作用研究[D].广州:广东药学院,2008.
    [11]李广生,井玲,徐辉.地方性氟中毒发病机制的研究进展[J].中华病理学杂志,2005,34(10):632-634.
    [12]钟近洁,刘开泰,许永华,等.氟对小鼠成骨细胞增殖的影响[J].中国地方病学杂志,2007,26(4):390-393.
    [13]华坤,杨少娟,张文岚,等.过量氟对大鼠破骨细胞活性的影响[J].吉林大学学报(医学版),2004,30(3):345-347.
    [14]高晨光,张爱君.氟对运动系统的毒性作用[J].中国地方病防治杂志,2007,22(3):195-196.
    [15]Fallon HD, Schwamm HA. Metabolic and other nontumorous disorder of bone[A]. Kissna JM. Anderson's pathology[M]. (9th ed). St. Louis:Mosby, 1990:1944.
    [16]张敏等,郭雄.氟、锶与骨质疏松症[J].国外医学医学地理分册,2005,26(2): 53-55.
    [17]莫志鑫,徐艳,袁瑛.地方性氟中毒骨代谢生化指标的研究[J].中国地方病防治杂志,2006,21(6):347-349.
    [18]孙海飚,刘强.废用性骨质疏松症发病机制研究进展[J].国外医学骨科学分册,2005,26(5):300-301.
    [19]黄芳.高氟暴露对人群血清BSP表达水平影响的研究[D].沈阳:中国医科大学,2010.
    [20]钟近洁,刘开泰.MCM3与细胞增殖[J].新疆医科大学学报,2008,31(5):623-625
    [21]腾淑静,宋旭日,唐圣松.Mcm7-多功能的MCM蛋白[J].岳阳职业技术学院学报,2006,21(3):48-50.
    [22]Noseda M, Karsan A.Notch and minichromosome maintenance (MCM) proteins: integration of two ancestral pathways in cell cycle control[JJ.Cell Cycle. 2006,5(23):2704-2709.
    [23]钟近洁,许永华,姚华,等.氟对成骨细胞中微小染色体维系蛋白3表达的影响[J].中国地方病学杂志,2007,26(2):125-129
    [24]Bely M. The inhibited enchondral ossification in experimental osteofluorosis in rats [J]. Fluoride,1991,24 (1):17-22.
    [25]李雨民,李玉坤,张宇光,等.氟化钠对大鼠破骨细胞样细胞及其凋亡的影响[J].中国骨质疏松杂志,2001,7(4):289-292.
    [26]白生宾,钟近洁,陈红香等.RAW264.7细胞诱导分化和鉴定[J].科技导报,2010,28(1):44-47
    [27]吴起清,钟近洁,白生宾,等.饮水型大鼠氟中毒动物模型的建立[J].中国高等医学教育,2009,23(3):120-121
    [28]Gibson S I, Surosky RT, Tye BK. The phenotype of the mini-chromosome maintenance mutant mcm3 is characteristic of mutants defective in DNA replication[J]. Mol Cell Biol,1990,10(11):5707-5720.
    [29]Takei Y, Swietlik M, Tanoue A, et al.MCM3AP, a novel acetyltransferase that acetylates replication protein MCM3[J]. EMBO Rep,2001,2(2):119-123.
    [30]Shukla A, Navadgi VM, Mallikarjuna K, et al. Interaction of h Rad51 and h Rad52 with MCM complex:a cross-talk between recombination and replication proteins[J]. Biochem Biophys Res Commun,2005,329(4):1240-1245.
    [31]Liku ME, Nguyen VQ, Rosales AW, et al. CDK phosphorylation of a novel NLS-NES module distributed between two subunits of the Mcm2-7 complex prevents chromosomal rereplication[J]. Mol Biol Cell,2005,16(10):5026-5039.
    [32]CostaA, Pape T, vanHeelM, et al. Structural studies of the archaeal MCM complex in different functional states[J]. J StructBiol,2006,156(1):210-219.
    [33]Leite GA, Sawan RM, Teofilo JM, et al.. Exposure to lead exacerbates dental fluorosis [J].Arch Oral Biol.2011,56(7):695-702.
    [34]李亨祥,边建朝,李晓军,等.大鼠钼靶软X线摄影及对氟中毒大鼠的应用[J].中国地方病学杂志,1999,18(1):13-15.
    [35]王云钊.氟骨症X线诊断学图析[M].北京:中国环境科学出版社,1990:258.
    [36]白生宾,范淑玲,钟近洁,等.氟离子代谢趋势对氟斑牙形成的影响[J].中国公共卫生,2011,27(8):1000-1001.
    [37]Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation[J]. Endocr Rev 1992,13:66-80.
    [38]刘忠厚,主编.骨质疏松学[M].北京:科学出版社,1998,83.
    [39]马雷,林兆全,刘开泰.氟对兔体外破骨细胞性骨吸收影响的研究[J].新疆医科大学学报,2004,27(4):334-336.
    [40]于燕妮,刘家骝,王守立,等.慢性氟中毒大鼠骨骼自由基含量及病理形态学研究[J].中国地方病学杂志,2000,19(5):337-339.
    [41]钟近洁.氟对成骨细胞增殖及其MCM3基因表达的影响[学位论文].2006,新疆医科大学.
    [42]华坤,卜丽莎,李广生.氟化钠对体外培养大鼠破骨细胞的影响[J].吉林大学学报(医学版),2002,28(2):115-117.
    [43]井玲,李广生.氟对破骨细胞的作用[J].中国地方病学杂志,2000,15(2):95-97.
    [44]Khalil AM, Dadara AA. The genotoxic and cytoxic activities of inorganic fluoride in cultured rat bone marrow cell[J]. Arch Environ Contain Toxicol, 1994,26(1):60-63.
    [45]贺凌飞,王阅春,黄闽,等.硒对氟诱导的大鼠口腔粘膜细胞和肝细胞DNA损伤的作用[J].武汉大学学报(医学版),2004,25(6):675-677.
    [46]吴同浩,葛恒明,张振宇,等.东海县伏庄村降氟改水控制地方性氟中毒效果分析[J].中国校医.2006,20(6):605-606.
    [47]孙殿军,高彦辉.从骨转换角度探讨氟骨症发生的分子机制[J].中国地方病学杂志,2008,27(3):239-341.
    [48]韩大庆,张其清.破骨细胞在骨组织工程中的意义及其研究策略[J].国际生物医学工程杂志,2006,29(3):174-177
    [49]徐辉,井玲,张承巍,等.染氟成骨细胞的双向电泳和质谱鉴定[J].中国地方病学杂志,2006,25(1):35-38
    [50]Xu H,Wang CH,Zhao ZT,et al.Role of oxidative tress in osteoblasts exposed to sodium fluoride[J].Biol Trace Elem Res,2008,123(1-3):109-115.
    [51]陈璐璐,童安莉,金达来,等.氟化钠对乳鼠成骨细胞c-fos、c-jun基因表达及细胞增殖的影响[J].中华预防医学杂志,2000,34(6):327-329.
    [52]张文岚,崔亚男,高申,等.过量摄入氟后激活的成骨细胞系中原癌基因的表达[J].中华预防医学杂志,2003,37(4):246-250.
    [53]李雨民,李玉坤,张宇光,等.氟化钠对大鼠破骨样细胞及其凋亡的影响[J].中国骨质疏松杂志,2001,7(4):289-292
    [54]孙波,华坤,李彤,等.氟对大鼠破骨细胞基质金属蛋白酶-9的影响[J].中国地方病杂志,2003,22(3):193-194
    [55]张睿,M-CSF RANKL1,25-(OH)2D3对破骨细胞形成分化影响的比较研究[D].石家庄:河北医科大学,2011
    [56]Cuetara BL, Crorti TN, O'Donoghue AJ, et al. Cloning and characterization of osteoclast precureors from the RAW264.7 cell line[J].In Vitro Cell Dev Biol Anim.2006,42(7):182-188
    [57]Nakagawa N, Kinosaki M, Yamaguchi K, et al.RANK is the essential signaling in osteoclastogenesis[J].Biochem Biophys Res Commun,1998,253(2):395-400.
    [58]Wong BR, Rho J, Arron J, et al.TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-jun N-terminal kinase in T cells [J]. J Biol Chem,1997,272,25190-25194.
    [59]Anderson DM, Maraskovsky E, Billingsley WL, et al.A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function[J]. Nature,1997,390,175-179.
    [60]Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis[J]. Nature,1999,397,315-323.
    [61]Hsu H, Lacey D L, Dunstan C R, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteopreotegrein ligand[J]. Proc Natl Acad Sci USA,1999,96:3540-3545.
    [62]高彦辉,付松波,孙辉,等.氟骨症骨转换过程中转化生长因子-β超家族成员的表达[J].中国地方病学杂志,2006,25(4):374-378
    [63]井玲,李广生.氟对破骨细胞的作用[J].中国地方病防治杂 志,2000,15(2):95-97
    [64]M. Mousny, S. Omelon, L. Wise, et al. Fluoride Effects on Bone Formation and Mineralization are Influenced by Genetics[J]. Bone.2008,43(6):1067-1074.
    [65]D. Bonadia,L. Maria,F. Alcantara, et al. Fluorosis in Rats Exposed to Oscillating Chronic Fluoride Doses[J].Braz Dent J.2010,21(1):32-37.
    [66]Yuki ARAKAWA, Ujjal K. B, Takeharu Ikoma, et al. Low concentration fluoride stimulates cell motility of epithelial cells in vitro [J]. Biomedical Research. 2009,30(5):271-277.
    [67]M.Mousny,X.Banse,L.Wise,et al. The genetic influence on bone susceptibility to fluoride[J]. Bone.2006,39(8):1283-1289.
    [68]Bely M. The inhibited enchondral ossification in expreimental osteofluorosis in rats[J]. Fluoride.1991,24(1):17.
    [69]Zhao K, Huang Z, Lu H, et al. Induction of inducible nitric oxide synthase increases the production of reactive oxygen species in RAW264.7 macrophages[J].Biosci Rep.2010,30 (4):233-241.
    [70]Xu J, Li X, Lian JB, et al. Sustained and localized in vitro release of BMP-2/7, RANKL, and tetracycline from FlexBone, an elastomeric osteoconductive bone substitute[J].J Orthop Res.2009,27(10):1306-1311.
    [71]Shi CY, Wang R, Liu CX, et al. Simvastatin inhibits acidic extracellular pH-activated, outward rectifying chloride currents in RAW264.7 monocytic-macrophage and human peripheral monocytes[J].Int Immunopharmacol.2009,9(2):247-252.
    [72]Yang XY, Cai SX, Zhang WJ, et al. Semi-vioxanthin isolated from marine-derived fungus regulates tumor necrosis factor-alpha, cluster of differentiation (CD) 80, CD86, and major histocompatibility complex class Ⅱ expression in RAW264.7 cells via nuclear factor-kappaB and mitogen-activated protein kinase signaling pathways[J].Biol Pharm Bull. 2008,31(12):2228-2233.
    [73]Penttinen P, Pelkonen J, Huttunen K, et al. Interactions between Streptomyces californicus and Stachybotrys chartarum can induce apoptosis and cell cycle arrest in mouse RAW264.7 macrophages[J].Toxicol Appl Pharmacol. 2005,202(3):278-288.
    [74]Kato K, Toki T, Shimizu M, et al. Expression of replication-licensing factors MCM2 and MCM3 in normal, hyperplastic, and carcinomatous endometrium: correlation with expression of Ki-67 and estrogen and progesterone receptors[J].Int J Gynecol Pathol.2003,22(4):334-340.
    [75]Noseda M, Karsan A.Notch and minichromosome maintenance (MCM) proteins: integration of two ancestral pathways in cell cycle control[J].Cell Cycle. 2006,5(23):2704-2709.
    [76]钟近洁,许永华,姚华,等.氟对成骨细胞中微小染色体维系蛋白3表达的影响[J].中国地方病学杂志,2007,26(2):125-129.
    [77]Huang Y, Gu B, Wu R, et al.Development of a rabbit monoclonal antibody group against Smads and immunocytochemical study of human and mouse embryonic stem cells[J]. Hybridoma (Larchmt).2007,26:387-391.
    [78]Vestergaard P, Jorgensen NR, Schwarz P, et al. Effects of treatment with fluoride on bone mineral density and fracture risk-a meta-analysis[J].Osteoporos Int. 2008,19:257-268.
    [79]Bethany L. V. Cuetara, Tania N. Crotti, Anthony J. O'Donoghue, et al. Cloning and characterization of osteoclast precureors from the RAW264.7 cell line[J]. In Vitro Cell Dev Biol Anim.2006,42:182-188.
    [80]Marylynn Snyder, Xin-Yun Huang,Jillian Zhang. The Minichromosome Maintenance Proteins 2-7 (MCM2-7) Are Necessary for RNA Polymerase Ⅱ(PolⅡ)-mediated Transcription[J].J Biol Chem.2009,284:13466-13472.
    [81]Abe E, Kuwahara K, Yoshida M et al. Structure, expression, and chromosomal localization of the human gene encoding a germinal center-associated nuclear protein(GANP) that associates with MCM3 involved in the initiation of DNA replication[J]. Gene.2000,255:219-227.
    [82]Musahl C, Holthoff HP, Lesch R et al. Stability of the replicative MCM3 protein in proliferating and differentiating human cells[J]. Exp Cell Res. 1998,241:260-264.
    [83]Young MR, Tye BK. Mcm2 and Mcm3 are constitutive nuclear proteins that exhibit distinct isoforms and bind chromatin during specific cell cycle stages of Saccharomyces cerevisiae[J]. Mol Biol Cell.1997,8:1587-1601.
    [84]Basler T, Geffers R, Weiss S, et al. Mycobacterium avium subspecies induce differential expression of pro-inflammatory mediators in a murine macrophage model:evidence for enhanced pathogenicity of Mycobacterium avium subspecies paratuberculosis[J].Immunobiology.2008,213(9-10):879-888.
    [85]Ishimi Y, Okayasu I, Kato C, et al.Enhanced expression of Mcm proteins in cancer cells derived from uterine cervix [J]. Eur J Biochem.2003, 270(6):1089-1101.
    [86]Birner P, Ritzi M, Musahl C, et al. Immunohistochemical detection of cell growth fraction in formalin-fixed and paraffin-embedded murine tissue.Am J Pathol[J].2001,158(6):1991-1996.
    [87]Going JJ, Keith WN, Neilson L, et al. Aberrant expression of minichromosome maintenance proteins 2 and 5, and Ki-67 in dysplastic squamous oesophageal epithelium and Barrett's mucosa. [J].Gut,2002,50:373-377.
    [88]Kato K, Toki T, Shimizu M, et al. Expression of replication-licensing factors MCM2 and MCM3 in normal, hyperplastic, and carcinomatous endometrium: correlation with expression of Ki-67 and estrogen and progesterone receptors[J]. Int J Gynecol Pathol,2003,22(4):334-340.
    [89]Burgener D, Bonjour JP, Caverzasio J. Fluoride increases tyrosine kinase activity in osteoblast-like cells:regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane[J].J Bone Miner Res,1995,10(1):164-171.
    [90]Caverzasio J, Palmer G, Suzuki A, et al.Mechanism of the mitogenic effet of fluoride on osteoblast-like cells:evidences for a G-Protein-dependent tyrosine phosphorylation proeess[J].J Bone Miner Res.1997,12(12):1975-1983.
    [91]Susa M. Heterotrimetric G proteins as fluoride targets in bone(review) [J]. Int J Mol Med,1999,3(2):115-126.
    [92]Kleerekoper M, Mendlovic DB. Sodium fluoride therapy of postmenopausal osteoporosis [J]. Endocr Rev.1993,14:312-323.
    [93]Haze A, Taylor AL, Haegewald S, et al. Regeneration of bone and periodontal ligament induced by recombinant amelogenin after periodontitis[J] J Cell Mol Med.2009,13:1110-1124.
    [94]Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG):a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro[J]. Endocrinology.1998,139:1329-1337.
    [95]Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand[J]. Proc Natl Acad Sci U S A.1999,96:3540-3545.
    [96]Duplomb L, Baud'huin M, Charrier C, et al. Interleukin-6 inhibits receptor activator of nuclear factor kappaB ligand-induced osteoclastogenesis by diverting cells into the macrophage lineage:key role of Serine727 phosphorylation of signal transducer and activator of transcription 3. [J].Endocrinology.2008,149(7):3688-3697.
    [97]Arkaitz Ibarra, Etinence Schwob, Juan Mendez. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication[J]. PNAS.2008,105:8956-8961.
    [98]He X, Andersson G, Lindgren U, et al.Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW264.7 cells through inhibition of ROS production[J].Biochem Biophys Res Commun. 2010,401(3):356-362.
    [99]Olivier Barbier, Laura Arreola-Mendoza, Luz Mzria Del Razo. Molecular mechanisms of fluoride toxicity[J]. Chem. Biol. Interact 2010,188(2):319-333.
    [100]Mendoza-Schulz A, Solano-Agama C, Arreola-Mendoza L, et al. The effects of fluoride on cell migration, cell proliferation, and cell metabolism in GH4C1 pituitary tumour cells[J]. Toxicol Lett.2009,190:179-186.
    [1]Zaidi M, Alam AS, Shankar VS, et al. Cellular biology of bone resorption. Biol Rev Camb Philos Soc,1993,68(2):197-264
    [2]Lee TH, Fevold KL, Muguruma Y, et al. Relative roles of osteoclast colony-stimulating factor and macrophage colony-stimulating factor in the course of osteoclast development. Exp Hematol.1994,22(1):66-73.
    [3]Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem,1994,56(3):357-366.
    [4]Salo J, Lehenkari P, Mulari M, et al. Removal of osteoclast bone resorption products by transcytosis.Science.1997,276(5310):270-273.
    [5]Cho K, Demissie S, Dupuis J, et al. Polymorphisms in the endothelial nitric oxide synthase gene and bone density/ultrasound and geometry in humans.Bone. 2008,42(1):53-60.
    [6]Leitao RF, Ribeiro RA, Chaves HV, et al. Nitric oxide synthase inhibition prevents alveolar bone resorption in experimental periodontitis in rats.J Periodontol. 2005,76(6):956-63.
    [7]Zaidi M, Pazianas M, Shankar VS, et al. Osteoclast function and its control. Exp Physiol.1993,78(6):721-739.
    [8]Nicolin V, Ponti C, Narducci P. Different levels of the neuronal nitric oxide synthase isoform modulate the rate of osteoclastic differentiation of TIB-71 and CRL-2278 RAW 264.7 murine cell clones. Anat Rec A Discov Mol Cell Evol Biol. 2005,286(2):945-954.
    [9]Lee SK, Huang H, Lee SW, et al. Involvement of iNOS-dependent NO production in the stimulation of osteoclast survival by TNF-alpha. Exp Cell Res. 2004,298(2):359-368
    [10]Salo J, Metsikko K, Palokangas H, et al. Bone-resorbing osteoclasts reveal a dynamic division of basal plasma membrane into two different domains.J Cell Sci.1996,109 (Pt2):301-307.
    [11]Testa NG, Allen TD, Lajtha LG, et al. Generation of osteoclasts in vitro. J Cell Sci. 1981,47:127-137.
    [12]Yamada S, Heymann D, Bouler JM, et al. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios.Biomaterials.1997,18(15):1037-41.
    [13]Gauthier O, Boudigues S, Pilet P, et al. Scanning electron microscopic description of cellular activity and mineral changes in feline odontoclastic resorptive lesions.J Vet Dent.2001,18(4):171-6.
    [14]Chambers TJ, Magnus CJ. Calcitonin alters behaviour of isolated osteoclasts. J Pathol.1982,136(1):27-39.
    [15]史风芹,于世凤.体外破骨细胞分离培养方法的建立[J].中华骨科杂志,1994,14(1):43-46.
    [16]Kakudo S, Mano H, Shiokawa M, et al. Concanavalin A directly stimulates bone-resorbing activity of osteoclasts and their gene expression of cathepsin K/OC-2.Biochem Biophys Res Commun.1997,234(3):600-604.
    [17]井玲,李广生.氟对破骨细胞的作用[J].中国地方病防治杂志,2000,15(2):95-97
    [18]李雨民,李玉坤,张宇光,等.氟化钠对大鼠破骨样细胞及其调亡的影响[J].中国骨质疏松杂志2001,7(4):289-292.
    [19]华坤,卜丽莎,李广生.氟化钠对体外培养大鼠破骨细胞的影响[J].吉林大学学报,2002,2(28):115-116.
    [20]李广生,任立群,孙波.中长周期慢性氟中毒对大鼠骨转换的影响及机理研究[J].中国地方病学杂志,1998,17(2):75-78.
    [21]Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation.Endocr Rev.1992 Feb;13(1):66-80.
    [22]Kaji H, Sugimoto T, Kanatani M, et al. Insulin-like growth factor-I mediates osteoclast-like cell formation stimulated by parathyroid hormone.J Cell Physiol. 1997,172(1):55-62.
    [23]Takami M, Woo JT, Nagai K. Osteoblastic cells induce fusion and activation of osteoclasts through a mechanism independent of macrophage-colony-stimulating factor production.Cell Tissue Res.1999,298(2):327-334.
    [24]Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo.J Immunol.2008,181(2):1232-1244.
    [25]Sanchez-Fernandez MA, Gallois A, Riedl T, et al. Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling.PLoS One.2008,3(10): e3537.
    [26]Li YJ, Kim TH, Kwak HB, et al. Chloroform extract of deer antler inhibits osteoclast differentiation and bone resorption.J Ethnopharmacol.2007,113(2): 191-198.
    [27]李广生,任立群.不同钙含量饲养条件下氟中毒对大鼠骨转换的影响[J].中华病理学杂志,1997,26(5):277-280.
    [28]Fallon MD, Sehwamm HA.Metabolic and other nontumorous disorder of bone.In:Kissana JM, ed. Anderson's Pathologygy 9th ed.st.Mosby,1990,1994.
    [29]Bely M.The inhibited enchondral ossification in experimental osteofluorosis in rats, Fouride,1991,24(1):17.
    [30]李雨民,李玉坤,张宇光,等.氟化钠对大鼠破骨样细胞及其调亡的影响[J].中国 骨质疏松杂志,2001,7(4):259-292.
    [31]Bely M, Ferencz G, Itai K,et al.Experimental osteofiuorosis and arthrofluorsis in rats.Fluoride,1997,30(2):113-114.
    [32]王家伦,严淑娟,任宏道.氟化钠致氟中毒大鼠骨、软骨及脏器的组织学超微结构观察[J].中国地方病学杂志,1987,2(2):79-81.
    [33]Srivastava RN, Gill DS, Moudgil A, et al. Normal ionized calcium, parathyroid hypersecretion, and elevated osteocalcin in a family with fluorosis.Metabolism. 1989,38(2):120-124.
    [34]Alam, ASMT. Bax, CMR. Shankar, et al. Further studies on the mode of action of calcitonin on isolated rat osteoclasts:pharmacological evidence for a second site mediating intracellular Ca+ mobilization and cell retraction.Journal of Endocrinology.1993,136(1):7-15
    [35]Zaidi M, Datta HK, Moonga BS, et al. Evidence that the action of calcitonin on rat osteoclasts is mediated by two G proteins acting via separate post-receptor pathways.J Endocrinol.1990,126(3):473-481.
    [36]薛琰,樊继援,齐建成,等.地方性氟骨症病人血中甲状旁腺激素和降钙素测定[J].中国地方病学杂志,1990,9(6):326-329.
    [37]Anderson RE, Woodbury DM, Jee WS. Humoral and ionic regulation of osteoclast acidity.Calcif Tissue Int.1986,39(4):252-258.
    [38]Busse B, Jobke B, Werner M, et al. [Fluorosis--a forgotten entity. Case report of a woman with coxarthrosis and newly diagnosed fluorosis.Pathologe. 2006,27(1):73-79
    [39]Huffer WE. Morphology and biochemistry of bone remodeling:possible control by vitamin D, parathyroid hormone, and other substances.Lab Invest. 1988,59(4):418-442.
    [40]Mundy GR. Regulation of bone formation by bone morphogenetic proteins and other growth factors.Clin Orthop Relat Res.1996,(324):24-28.
    [41]Pivonka P, Zimak J, Smith DW, et al. Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling.J Theor Biol. 2010,262(2):306-316.
    [42]Xu H, Liu QY, Zhang JM, et al. Elevation of PTH and PTHrp induced by excessive fluoride in rats on a calcium-deficient diet.Biol Trace Elem Res. 2010,137(1):79-87.
    [43]Pettifor JM, Schnitzler CM, Ross FP, et al. Endemic skeletal fluorosis in children: hypocalcemia and the presence of renal resistance to parathyroid hormone.Bone Miner.1989,7(3):275-288.
    [44]Conradie MM, Cato AC, Ferris WF, et al. MKP-1 knockout does not prevent glucocorticoid-induced bone disease in mice.Calcif Tissue Int. 2011,89(3):221-227.
    [45]Alesci S, De Martino MU, Ilias I, et al. Glucocorticoid-induced osteoporosis: from basic mechanisms to clinical aspects.Neuroimmunomodulation.2005, 12(1):1-19.
    [46]Sivagurunathan S, Muir MM, Brennan TC, et al. Influence of glucocorticoids on human osteoclast generation and activity.J Bone Miner Res.2005, 20(3):390-398..
    [47]O'Brien CA, Jia D, Plotkin LI, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength.Endocrinology.2004,145(4):1835-1841..
    [48]Frank O, Heim M, Jakob M, et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem.2002,85(4):737-746.
    [49]Eastell R, Reid DM, Compston J, et al. A UK Consensus Group on management of glucocorticoid-induced osteoporosis:an update.J Intern Med.1998, 244(4):271-292.
    [50]Tenenbaum HC, Kamalia N, Sukhu B, et al. Probing glucocorticoid-dependent osteogenesis in rat and chick cells in vitro by specific blockade of osteoblastic differentiation with progesterone and RU38486.Anat Rec.1995,242(2):200-210.
    [51]Canalis E. Mechanisms of glucocorticoid-induced osteoporosis.Curr Opin Rheumatol.2003,15(4):454-457.
    [52]Oursler MJ, Landers JP, Riggs BL, et al. Oestrogen effects on osteoblasts and osteoclasts.Ann Med.1993,25(4):361-371.
    [53]Gruber HE, Puzanov IJ, Bennett M, et al. Alterations in osteoclast morphology following long-term 17beta-estradiol administration in the mouse.BMC Cell Biol. 2001,2(l):3.
    [54]Lee YH, Song GG. Efficacy and safety of monthly 150 mg oral ibandronate in women with postmenopausal osteoporosis:a systematic review and meta-analysis of randomized controlled trials.Korean J Intern Med. 2011,26(3):340-347.
    [55]Erlacher L, Teufelsbauer H, Bernecker P, et al. Comparison of serum fluoride levels after administration of monofluorophosphate-calcium carbonate or sodium fluoride:differences in peak serum concentrations.Clin Investig.1994, 72(12):1082-1085.
    [56]Chavassieux P, Meunier PJ. Benefits and risks of fluoride supplements. Arch Pediatr.1995,2(6):568-572.
    [57]Lussi A, Hellwig E. Risk assessment and preventive measures.Monogr Oral Sci. 2006,20:190-199.
    [58]Vestergaard P, Jorgensen NR, Schwarz P, et al. Effects of treatment with fluoride on bone mineral density and fracture risk-a meta-analysis.Osteoporos Int. 2008,19(3):257-268.
    [59]Nakamura I, Jimi E. Regulation of osteoclast differentiation and function by interleukin-1.Vitam Horm.2006,74:357-370.
    [60]El Hajj Dib I, Gallet M, Mentaverri R, et al. Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity.Eur J Pharmacol.2006,551(1-3):27-33.
    [61]Tanabe N, Ito-Kato E, Suzuki N, et al. IL-1 alpha affects mineralized nodule formation by rat osteoblasts.Life Sci.2004,75(19):2317-2327.
    [62]Jimi E, Nakamura I, Amano H, et al. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology.1996,137(8):2187-2190.
    [63]Jimi E, Shuto T, Koga T. Macrophage colony-stimulating factor and interleukin-1 alpha maintain the survival of osteoclast-like cells. Endocrinology. 1995,136(2):808-811.
    [64]Yang S, Takahashi N, Yamashita T, et al. Muramyl dipeptide enhances osteoclast formation induced by lipopolysaccharide, IL-1 alpha, and TNF-alpha through nucleotide-binding oligomerization domain 2-mediated signaling in osteoblasts.J Immunol.2005,175(3):1956-1964.
    [65]Dimai HP, Pietschmann P, Resch H,et al. Austrian guidance for the pharmacological treatment of osteoporosis in postmenopausal women--update 2009.Wien Med Wochenschr Suppl.2009,(122):1-34.
    [66]Kayamori K, Sakamoto K, Nakashima T, et al. Roles of interleukin-6 and parathyroid hormone-related peptide in osteoclast formation associated with oral cancers:significance of interleukin-6 synthesized by stromal cells in response to cancer cells.Am J Pathol.2010,176(2):968-980.
    [67]De Benedetti F. The impact of chronic inflammation on the growing skeleton: lessons from interleukin-6 transgenic mice.Horm Res.2009, Suppl 1:26-29.
    [68]Roodman GD. Regulation of osteoclast differentiation.Ann N Y Acad Sci. 2006,1068:100-109.
    [69]Jilka RL, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss:mediation by interleukin-6.Science.1992,257(5066):88-91
    [70]Gao Y, Morita I, Maruo N, et al. Expression of IL-6 receptor and GP130 in mouse bone marrow cells during osteoclast differentiation.Bone.1998, 22(5):487-493.
    [71]Franchimont N, Canalis E. Platelet-derived growth factor stimulates the synthesis of interleukin-6 in cells of the osteoblast lineage. Endocrinology. 1995,136(12):5469-5475.
    [72]Palmqvist P, Lundberg P, Lundgren I, et al. IL-lbeta and TNF-alpha regulate IL-6-type cytokines in gingival fibroblasts.J Dent Res.2008,87(6):558-563.
    [73]Axmann R, Bohm C, Kronke G, et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 2009,60(9):2747-2756.
    [74]Lloyd SA, Yuan YY, Simske SJ, et al. Administration of high-dose macrophage colony-stimulating factor increases bone turnover and trabecular volume fraction.J Bone Miner Metab.2009,27(5):546-554.
    [75]Bradley EW, Ruan MM, Oursler MJ. PAK1 is a novel MEK-independent raf target controlling expression of the IAP survivin in M-CSF-mediated osteoclast survival.J Cell Physiol.2008,217(3):752-758.
    [76]Sarahrudi K, Mousavi M, Grossschmidt K, et al. The impact of colony-stimulating factor-1 on fracture healing:an experimental study.J Orthop Res. 2009,27(l):36-41.
    [77]Tjoa ST, de Vries TJ, Schoenmaker T, et al. Formation of osteoclast-like cells from peripheral blood of periodontitis patients occurs without supplementation of macrophage colony-stimulating factor.J Clin Periodontol.2008,35(7):568-575.
    [78]Kreja L, Liedert A, Schmidt C, et al. Influence of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL), macrophage-colony stimulating factor (M-CSF) and fetal calf serum on human osteoclast formation and activity.J Mol Histol.2007,38(4):341-345.
    [79]Chen KM, Ge BF, Liu XY, et al. Icariin inhibits the osteoclast formation induced by RANKL and macrophage-colony stimulating factor in mouse bone marrow culture.Pharmazie.2007,62(5):388-391.
    [80]Day CJ, Kim MS, Stephens SR, et al. Gene array identification of osteoclast genes:differential inhibition of osteoclastogenesis by cyclosporin A and granulocyte macrophage colony stimulating factor.J Cell Biochem. 2004,91(2):303-315.
    [81]Symons AL, Weerakoon A, Marks SC Jr. Growth hormone receptor and insulin-like growth factor-I immunoreactivity in osteoclast-like cells during tooth eruption in the toothless (osteopetrotic) rat following treatment with colony-stimulating factor-1. Crit Rev Eukaryot Gene Expr.2003,13 (2-4):195-204.
    [82]Takahashi N. Bone and bone related biochemical examinations. Bone and collagen related metabolites. Regulatory mechanisms of osteoclast differentiation and function. Clin Calcium.2006,16(6):940-947.
    [83]Hotokezaka H, Sakai E, Ohara N,et al. Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-alpha, lipopolysaccharide, or peptidoglycan.J Cell Biochem.2007,101 (1):122-34.
    [84]Fujita K, Janz S. Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF.Mol Cancer.2007,30(6):71.
    [85]Huber DM, Bendixen AC, Pathrose P, et al. Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor.Endocrinology.2001,142(9):3800-3808.
    [86]Srivastava S, Toraldo G, Weitzmann MN, et al. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation.J Biol Chem.2001,276(12):8836-8840.
    [87]Takeyama S, Yoshimura Y, Shirai Y, et al. Low calcium environment effects osteoprotegerin ligand/osteoclast differentiation factor.Biochem Biophys Res Commun.2000,276(2):524-529.
    [88]Fan X, Fan D, Gewant H, et al. Increasing membrane-bound MCSF does not enhance OPGL-driven osteoclastogenesis from marrow cells.Am J Physiol Endocrinol Metab.2001,280(1):E103-111.
    [89]Su X, Liao EY, Peng J, et al. Effects of parathyroid hormone on osteoprotegerin expression and osteoprotegerin ligand and their related cytokines in human osteoblasts.Zhong Nan Da Xue Xue Bao Yi Xue Ban.2004,29(5):562-565.
    [90]Cho ES, Yu JH, Kim MS, et al. Rolipram, a phosphodiesterase 4 inhibitor, stimulates osteoclast formation by inducing TRANCE expression in mouse calvarial cells.Arch Pharm Res.2004,27(12):1258-1262.
    [91]Lean JM, Matsuo K, Fox SW, et al. Osteoclast lineage commitment of bone marrow precursors through expression of membrane-bound TRANCE.Bone. 2000,27(1):29-40.
    [92]Udagawa N, Takahashi N, Jimi E, et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor:receptor activator of NF-kappa B ligand.Bone.1999,25(5):517-523.
    [93]Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/ RANKL-RANK interaction.J Exp Med.2000,191 (2):275-286.
    [94]Yamashita T, Takahashi N, Yang S, et al. Bone destruction caused by osteoclasts.Clin Calcium.2006,16(2):234-240.
    [95]Quinn JM, Saleh H. Modulation of osteoclast function in bone by the immune system.Mol Cell Endocrinol.2009,310(1-2):40-51.
    [96]Kostenuik PJ, Nguyen HQ, McCabe J, et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J Bone Miner Res. 2009,24(2):182-195.
    [97]Poblenz AT, Jacoby JJ, Singh S, et al. Inhibition of RANKL-mediated osteoclast differentiation by selective TRAF6 decoy peptides.Biochem Biophys Res Commun.2007,359(3):510-5.
    [98]井玲,李广生.氟对破骨细胞的作用[J].中国地方病学杂志,2000,15(2):76-78.
    [99]Rimondi E, Zweyer M, Ricci E,et al. Receptor activator of nuclear factor kappa B ligand (RANKL) modulates the expression of genes involved in apoptosis and cell cycle in human osteoclasts.Anat Rec (Hoboken).2007,290(7):838-845.
    [100]Watanabe T, Kukita T, Kukita A, et al. Direct stimulation of osteoclastogenesis by MIP-1 alpha:evidence obtained from studies using RAW264 cell clone highly responsive to RANKL.J Endocrinol.2004,180(1):193-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700