γ-氨基丁酸和氟安定对产蛋高峰期母鸡摄食行为及有关内分泌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验首先对原有的摄食行为监测系统(FIDAS)进行了改装,使之国产化。然后以产蛋高峰期母鸡为动物模型,研究了每公斤日粮中添加50mg γ-氨基丁酸(GABA)和/或2mg氟安定(F89)对其摄食模式、血液激素水平、消化系统中酶活性等的影响,以期找到一条使GABA应用于畜牧生产的途径,并对F89的促摄食作用机理做了进一步探讨。本实验共分四大部分,现摘要如下:
     第一部分 仪器改装
     采用南京美易公司研制开发的Medlab生物信号采集处理系统,将整套仪器国产化,改装后的仪器不但利于维护,而且在数据采集、存储、处理等方面的功能更加完善,操作简单,使用方便。通过应用此系统进行产蛋高峰期母鸡摄食行为的研究,摄食模式与文献报道一致,证明国内产品可替代国外软件和配件,改装后的FIDAS系统完全可应用于动物摄食行为的研究。
     第二部分 添喂GABA和F89对产蛋高峰期母鸡摄食行为的影响
     系列一:选用210日龄依莎蛋鸡4只,隔笼并排单饲,采用自身对照法,对照期饲喂基础日粮,GABA期饲喂基础日粮添加50mg/kgGABA,F89+GABA期饲喂基础日粮添加2mg/kgF89和50mg/kgGABA,利用改装后的FIDAS系统建立其摄食模式,结果表明:GABA对产蛋高峰期母鸡的摄食模式有一定影响,但相对较弱,而F89和GABA的共同作用可使产蛋高峰期母鸡的摄食量增加15.76%(P<0.05),摄食餐数增加12.56%(P<0.01),摄食时间减少15.12%,两个实验期也有较大差异,推测其中F89起着主要作用。
     系列二:选用230日龄依莎蛋鸡4只,隔笼并排单饲,采用自身对照法,对照期饲喂基础日粮,F89期饲喂基础日粮添加2mg/kg F89,F89+Pic期在F89期基础上;每天早上添料前翅静脉注射1.25mg/kg印防己毒素,利用FIDAS系统建立其摄食模式,结果显示:F89可使产蛋高峰期母鸡的摄食量增加10.34%(P<0.05),摄食餐数增加8.37%(P<0.05),摄食时间减少12.37%,在此基础上注射印防己毒素后,可在一定程度上阻断F89的促食作用,由F89所引起的摄食模式的改变也相
    
     Y一氨基丁酸和氟安定对产蛋高峰期母鸡摄食行为及有关内分泌的影响
    应减小.表明 F89可通过GABA^受体发挥促食作用。
    第三部分添喂GABA和F89对产蛋高峰期母鸡血液激素水平的影响
     系列一的血样采自第二部分系列一中的高峰期蛋鸡,分组方法与其一致,采用
    放射免疫法测定了血液中的相关激素,结果显示:日粮中添加 50mg八gGABA使血液
    中WY的变化不大,胰岛素、胰高血糖素、T;、l均有一定增加,但影响程度相对
    较*、.F89和GABA的共同作用可使血液中 NPY t匕对照期增ba 11.04%,胰岛素增加
    23.03%(P(0.05),胰高血糖素增加7.50%(P(0.05),T;增加19.75%(P(0.05)。
    T;增加13.45%。两者的共同作用远大于GABA自身的作用。
     系列二的血样采自第二部分系列二中的高峰期蛋鸡,分组方法与其一致,采用
    放射免疫法测定了血液中的相关激素,结果显示:日粮中添加 Zing/kgF89使血液NPY
    比对照期增加9.87%,胰岛素增加19.2地(Pu.05),胰高血糖素增加5.15%,、
    增加 16.46%(P(0.05);T.增加 14.73%。注射n 后,这几种激素的水平都有所下
    降,但仍高于对照水平.
     系列三选取2N日龄依莎蛋鸡18只,对照组饲喂初出日粮,加SA组饲喂基础
    口粮添加 50mg/kgGABA,F89组饲喂基础日粮添力 Zing/kg F89,每组六只。取其肌
    胃及小肠段内客物,采用放射免疫法测定了消化道中的SlgA浓度,结果发现,GABA
    组的消化道中SIgA浓度比对照组升高10.70儿F89组的消化道中SlgA浓度比对照
    组升高19.90%。卜89组比GABA组也略高,但差异都不显著。
    第四部分添喂GABA和F89对产蛋高峰期母鸡消化道酶的影响
     本部分的样品和分组方法与第三部分系列三一致,测定相关酶的活性,结果显
    示:加认可使胃蛋白酶活性较对照组增加汤.叨%,胰蛋白酶活性显著增加59.8册
     (P(0.05),F89使胃蛋白酶活性较对照组增加32.28%(P(0.05),胰蛋白酶活性
    增加 68.39%闪闪.05),两者对淀粉酶和脂肪酶也有一定改善作用,但影响程度不
    大.FS 9对消化酶活性的影响略好于 GABA。
In the research, we have modified the Food Intake Data Acquisition System (FIDAS), using the materials made in our country. Then we studied the effect of adding 50mg Y -Aminobutyric acid(GABA) and/or 2mg Flurazepam (F89) in every kilogram diet on feed intake in young laying hens and endocrine mechanisms involved. We hope that we could find a way to make GABA serve in stockbreeding. We also discussed the mechanisms of F89 in increasing feed intake of animals. The research included 4 parts: Part one: Modification of the FIDAS .
    We applied the Medlab system of Nanjing Medease Science and Technology CO. LTD to modify the FIDAS system. After modified, the system was not only easy to maintain, but also capable of stronger ability in data collection, storage and analysis, and it was easy to operate. We used this system studied the feed intake pattern of young laying hens, which proved the modified FIDAS was fit for the study on feed intake behavior of animals.
    Part two: Effect of diet supplemented with GABA and/or F89 on feed intake in young laying hens.
    This part was divided into two series. Series I : Four young laying hens (two hundred and ten days old) were used. The experiment was divided into three periods: control period, the animals were fed basal diet; GABA period, basal diet supplemented with 50mg/kg GABA;F89+GABA period, basal diet supplemented with 2mg/kg F89 and 50mg/kg GABA. The modified FIDAS was used to observe the feed intake pattern. Compared to control period, GABA have relatively small effect on feed intake of young laying hens; the F89 and GABA together have stronger effect on the feed intake of these animals, which made the feed intake (15. 76%, P<0. 05)and the number of meal(12. 56%, P<0. 01)increased and the time of feeding reduced (15. 12%). The two experiments periods also had strong difference, we presumed that
    
    
    the F89 play a main role in the course.
    Series II:Four young laying hens (two hundred and thirty days old)were used. The experiment was divided into three periods: control period, the animals were fed basal diet;F89 periods, basal diet supplemented with 2mg/kg F89;F89+Pic periods, basal diet supplemented with 2mg/kg F89 and infusion of 1.25mg/kg picrotoxin (Pic)in the wing before adding food. The modified FIDAS was used to observe the feed intake pattern. Compared to control period, F89 increased the feed intake (10. 34%, P<0. 05)and the number of meal (8. 37%, P<0. 01) and reduced the time of feeding (12. 37%). After infusion the Pic, the action of F89 on feed intake was prohibited in a degree, and the change of feed pattern in young laying hens bring by F89 was reduced correspondly. This series suggested that the F89 can via the GABAA receptor to increase feed intake.
    Part three: Effect of diet supplemented with GABA and/or F89 on serum hormones in young laying hens.
    This part was divided into three series. Series I :The sample were get from the young laying hens in series I of part two, and the grouping was same. The RIA data showed: Compared to control period, 50mg/kg GABA increased the concentrition of serum hormones, but the effect was relatively small; the F89 and GABA together also increased the concentrition of NPY (11.04%), insulin (23.03%, P<0.05), glucagon(7. 50%, P<0. 05), T3 (19. 75%, P<0. 05) and T4 (13.45%).
    Series II :The sample were get from the young laying hens in series II of part two, and the grouping was same. The RIA data showed: Compared to control period, the concentrition of NPY(9. 87%), insulin (19.24%, P<0. 05), glucagon (5.15%), T3 ( 16.46%, P<0.05) and T4 (14.73%)all increased in the F89 period. After the infusion of Pic, the concentrition of these serum hormones reduced, but still higher than the control's.
    Series III: Eighteen young laying hens (two hundred and ten days old) were used in this series. The experiment was divided into three groups:control group, the animals were fed basal diet;GABA group, basal diet supplemented with 50mg/kg GABA;F89 group, basal diet supplemented with 2mg/kg F89. There are six animals in
    
    every group. T
引文
1. Ricy C. J. Temporal control of feeding behavior and its associated withgastrointestinal function[J]. Journal of Experimental Zoology, 1999, 283(4~5): 339~347.
    2.张月萍,王建军.摄食控制的神经体液机制研究进展.[J].中国神经科学杂志,2001,(4):350~353.
    3.江连海,沈锷.摄食控制的中枢神经化学机制[J].生理科学进展,1984,15(2):120~124.
    4. Scalera G. Effects of corticocerebellar lesions on taste preferences, body weight gain, food and fluid intake in the rat[J]. J Physiol(Paris), 1991, 85: 214~222.
    5. Min B, Oomura Y, Katafuchi T. Responses of rat lateral hypothalamic neuronal activity to fastigial nucleus stimulation[J]. J Neurophysiol, 1989, 61: 1178~1184.
    6. Pu YM, Wang JJ, Wang T, et al. Cerebellar interpositus nucleus modulates neuronal activity of lateral hypothalamic area[J]. NeuroReport, 1995, 6: 985~988.
    7. Wellmam P. J. Norepinephrine and the control of food intake[J]. Nutrition, 2000, 16(10): 837~842.
    8. Harrison J.K., Parson W. R..Molecular characterization of and adrenceptors[J]. Trends in Pharmacol Sci, 1991, 12: 62~67.
    9.金国章.胆碱能神经系统.基础神经药理学(第二版)[M].科学出版社.1999,198~220.
    10. Flynn M. C., Scott. T. R., Pritchard T. C., et al. Mode of action of OB protein(leptin)on feeding [J]. AM J PhysioI, 1998, 275: R174~R185.
    11.徐淑静,徐明彤,傅祖植.肥胖基因和瘦素[J].中华内分泌代谢杂志,1999,15(2):155~157.
    12. Shiraishi T, Sasaki K, Nijima A, et al. Leptin effects on feeding-related hypothalamic and peripheral neuronal activities in normal and obese rat[J]. Nutrition, 1999,15:576~579.
    13. Halford J. C., Blundell J. E. Separate systems for serotonin and leptin in appetite control[J]. Ann Med, 2000, 32: 222~232.
    14.傅茂,李秀均.神经肽Y在物质代谢和神经内分泌调节中的作用[J].中华内分泌代谢杂志,1999,4(15):169~172.
    
    
    15. Wisialowski T, Parker R, Preston E, et al. Adrenalectomy reduces neuropeptide Y-induced insulin release and NPY receptor expressor in the rat ventromedial hypothalamus[J]. J Chin Invest, 2000, 105: 1253~1259.
    16. Mondal M. S., Nakazato M, Mizukami K, et al. Orexins(hypocretins): novel hypothalamic peptides with divergent functions[J]. Biochem Cell Biol, 2000, 78: 299~305.
    17.何天培.肥胖研究的新发现—增食因子[J].生理科学进展,2000,31(1):74~75.
    18.雷帆,刑东明,孙虹等.肥胖相关生物因子的研究[J].中国药学杂志,2002,37(1):6~8.
    19. Cai X. J., Evans M. L., Lister C. A., et al. Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract[J]. Diabetes, 2001, 50: 105~112.
    20. Fink H, Res A, Voits M, et al. Major biological actions of CCK: a critical evaluation of research findings[J]. Exp Brain Res, 1998, 123: 77~83.
    21. Bray G. A. Afferent signals regulating food intake[J]. Proc Nutr Soc, 2000, 59: 373~384.
    22. Monnikes H, Lauer G, Arnold R. Peripheral administration of cholecystokinin activates c-fos expression in the locus coeruleus/subcoerleus nucleus, dorsal vagal complex and paraventricular nucleus in the rat[J]. Brain Res, 1997, 770: 277~288.
    23. Qu D. A. Role for melanin corcentrating hormone in the central regulation of feeding behaviour[J]. Nature. 1996, 380: 243~246.
    24. Vergoni A.V., Schioth H. B., Bertolini A. Melanocortins and feeding behavior[J]. Biomed Pharmocother, 2000, 54: 129~134.
    25. Benoit S, Schwartz M, Baskin D, et al. CNS melancortin system involvement in the regulation of food intake[J]. Horm Behav, 2000, 37: 299~305.
    26. Kim MS, Rossi M, Abusnana S, et al. Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone[J]. Diabetes, 2000, 49: 177~182.
    
    
    27. Schwartz G. J. The role of gastrointestinal vagal afferents in the control of food intake: current prospects[J]. Nutrition, 2000,16: 866~873.
    28. Nijima A, Meguid MM. Parenteral nutrients in rat suppresses hepatic vagal afferent signals from portal vein to hypothalamus[J]. Surgery, 1994,116:294~301.
    29. Yuan C.S., Barber W.D. Hypothalamic unitary responses to gastric vagal input from the proximal stomach[J]. AM J Physiol, 1992, 262: G74~G80.
    30.李在琉,中山沃.刺激饱中枢和摄食中枢对迷走神经胃支传出性活动和胃运动的影响[J].中华消化杂志,1983,3:247~249.
    31.葛盛芳.苯二氮卓化合物提高鸡、鹅摄食和增重的研究.南京农业大学硕士论文.
    32. Shurlock T.G.H. and Forbes J.M. Evidence for hepatic glucostatic regulation of food intake in the domestic chicken and its interaction with gastrointestinal control. British Poultry Sci, 1981, 22: 333~346.
    33. Shurlock T. G. H. and Forbes. Effects on voluntary intake of infusions of glucose and amino acid into the hepatic portal vein of chickens. British Poultry Sci, 1984, 25: 303~308.
    34. Shires A, Thompson J. R. Rate of passage of cormn-canola meal and com-soybean meal diets through the gastrointestinal tract of broiler and white leghorn chickens. Poultry Sci, 1987, 66: 289~298.
    35. Cook C.N. Effect of oligosaccharide-free soybean meal on true metabolizable energy and fiber digestion in adult roosters. Poultry Sci, 1990, 69: 787~93.
    36. Kristjan R, Jessen, Rhona Mirsky, et al. GABA may be a neurotransmitter in the vertebrate peripheral nervous system[J]. Nature. 1979, 281: 71~74.
    37. Chikaka Tanaka. Γ-Aminobutyric acid in peripheari tissues[j]. Life Sci. 1985, 37(24): 2221~2235.
    38. Shiramine, Katsuhiko, Shuji Aou, et al. Lateral hypothalamic injection of GABA, antagonist induces gastric vagus-mediated hypocalcemia in the rat[J]. Am. J. Physiol. 1997, 273(Regulatory Integrative Comp. Physiol. 42): R1492~R1500.
    39. Erdo S. L., Woff J. R. Releasable, non-neuronal GABA pool in rat stomach[J]. Eur. J. Pharmacol. 1988, 56: 165~168.
    40.谢启文主编.现代神经内分泌学(第一版)[M]上海医科大学出版社,1999.4:61~65.
    
    
    41.张道启,杨雄里.GABA_(?)受体及其功能特性.生命科学.1997,9(4):158~161。
    42.王秀坤,Nielsen M. GABA_A受体药理学研究进展[J].国外医学药学分册.2001,28(1):29~34。
    43.柳海珍,朱剑琴.神经活性载体与GABA_A受体[J].生命科学.1997,9(4):162~165.
    44.朱国庆.苯二氮卓和Γ-氨基丁酸/苯二氮卓/氯离子通道受体复合物[J].生理科学进展.1993,24(2):145~148。
    45.郭文.王丽.苯二氮卓类受体的结构功能与苯二氮卓类耐受性和依赖性机制的研究进展[J].中国药理学通报.1999,15(2):111~114.
    46. AlexanderS, PetesJ. A. GABA_Arecepter[J]. Tips, 1997(suppl): S42~39.
    47. Wilke K, Gaul R, Klauk S. M, et al. A gene in human chromosome band X q 28(GABRE) define esaputative new subunit class of the GABA_A neurotransmitter receptor[J]. Genomics, 1997, 45: 1~10.
    48. Mckernan R. M., Whiting P. J. Which GABA_A receptor subtypes really occur in the brain[J]? Trends in NeuroSci, 1996: 19(4): 139~4311.
    49. Fritschy J.M.,Mohler H. GABA_A receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits[J]. J Comp Neurol, 1995, 359: 154~94.
    50. Fritschy J.M.,Benke D, Johnson D.K.,et al. GABA_A receotor subunit is a nessential Pre-requisite for receptor formation in vivo[J]. Neurosci, 1997, 81(4): 1043~5313
    51.李建一,赵天睿,南国华.Γ-氨基丁酸与抗惊厥[J].生理科学进展.1987,18(2):123~126
    52.白小川,包永德.GAB_C受体研究的最新进展[J].Chin J Neurosci.1998.14(2):121~125.
    53. Stratford TR, Kelley AE. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior[J]. J Neurosci 1999, 19(24): 11040~11048.
    54. Beverly J. L., Martin R. J. Influence of serum glucose on glutamate decarboxylase activity in the ventromedial nucleus of rats[J]. The American Physiological Society. 1990: R697~R703.
    55. Inui A, Okita M, Nakajima M, et al. Neuropeptide regulation of feeding in dogs[J]. Am
    
    J Physiol. 1991, 261: R588~R594.
    56. Larsen P. J., Tang-Christensen M, Cameron J. L. Centrol administration of neuropeptide Y potently stimulates food intake in male rhesus monkeys[J]. Soc Neurosci Abstr. 1997, 23: 1345.
    57. Kalra S. P., Dube M. G., Sahu A, et al. Neuropeptide Y secretion increases in the paraventri- cular nucleus in association with increased appetide for food[J]. Proc Natl Acad Sci USA. 1991, 88: 10931~10935.
    58. Bai F. L., Yamano M, Shiotani Y, et al. An arcuato-paraventricular and dorsomedial hypo- thalamic neuropeptideY-containing system which lacks noradrenaline in the rat[J]. Brain Res. 1985, 331: 172~175.
    59. Sahu A, Kalra S.P., Crowley W.R.,et al. Evidence that NPY-containing neurons in the brain- stem project into selected hypothalamic neulei: implication in feeding behavior[J]. Brain Res. 1988, 457: 376~378.
    60. Shuye P. U., Mukul R. Jain.,Tamas L. et al. Interactions between neuropeptide Y and Γ-Aminobutyric acid in stimulation of feeding: a morphological and pharmacological analysis[J]. Endocrinology. 1999, 140(2): 933~940.
    61. Reddy DS, Kulkarni SK. Sex and estrous cycle-dependent changes in neurosteroid and benzodiazepine effects on food consumption and plus-maze learning behaviors in rats[J]. Pharmacol Biochem Behav, 1999, 62(1): 53~60.
    62. Ohtani N, Sugano T, Ohta M. Alterations in monoamines and GABA in the ventromedial and paraventricular neulei of the hypothalamus following cold exposure: a redution in noradrenaline induces hyperphagia[J]. Brain Res. 1999, 842(1): 6~14.
    63. Ward B. O., Somerville E. M., Clifton P. G. Intraaccumbens baclofen selectively enhances feeding behavior in the rat[J]. Physiol Behav. 2000, 68(4): 463~468.
    64. Ebenezer I. S., Baldwin B. A. Effect of intracerebroventricular administration of the GABAB-receptor agonist baclofen on operant feeding in satiated pigs[J]. Br J Pharmacol. 1990, 101(3): 559~562.
    65. Jessen K. R., Hills J. M. and Linbrick. GABA immunoreactivity and H-GABA uptake in mucosal epithelial cells of the rat stomach[J]. Gut. 1988, 29: 1549~1556.
    66. Anthony Krantis, Marcello Costa, John B., et al. Γ-Aminobutyric acid stimulates
    
    intrinsic inhibitory and excitory nerves in the guinea-pig intestine[J]. European Journal of Pharmacology. 1980, 67: 461~468.
    67. Giotti A. Luzzi S, Spagnesi, et al. GABA_A and GABA_B receptor-mediated effects in guinea-pig ileum[J]. Br. J. Pharmac. 1983, 78: 469~478.
    68. Harry R. F. and Franklin P. A. GABA affects the release of gastrin and somatostatin from rat antral mucosa[J]. Nature. 1983, 303: 623~624.
    69. Harty R. F. and Franklin P. A. Cholinergic mediation of Γ-Aminobutyric acid-induced gastrin and somatostatin resease from rat antrum[J]. Gastroenterol. 1986, 91: 1221~1226.
    70. Li Hsuen Tsai, Kohtaro Taniyama, Chikako Tanaka. Γ-Aminobutyric acid stimulates acid secretion from the isolated guinea pig stomach[J]. Am J Physiol, 1987, 253 (Gastrointest. Liver Physiol. 16): G601~G606.
    71.徐项桂,朱剑琴.小鼠胃中GABA摄取系统的负反馈式自身调节机制[J].南京农业大学学报,1996,32(1):192~198.
    72. Park Hyung Seo, and Hyoung Jin Park. Effects of Γ-Aminobutyric acid on secretagogue-induced exocrine secretion of isolated, perfused rat pancreas[J]. Am J Physiol. 2000, 279: G677~G682.
    73. Hyung Seo, and Hyoung Jim Park. Effects of GABA on pancreatic exocrine secretion of rat[J]. J Korean Med Sci, 2000, 15(Suppl): S24~S26.
    74. Krantis A, Costa M, Furness JB, et al. Γ-Aminobutyric acid stimulates intrinsic inhibitory and excitatory nerves in the guinea-pig intestine[J]. European Journal of Pharmacology, 1980, (67): 461~468.
    75. Baile CA, McLaughlin CL. A review of the behavioral and physiology responses to elfazepam, a chemical and intake stimulant[J]. J Anim Sci, 1978, 49: 1371~1395.
    76. Mclaughlin C. L., Krabill L.F., Scott G.C. and Baile C. A. Chemical stimulants of feeding animals[J]. Fed. Proc. 1976,35:579.
    77.姜洪林.韩正康.苯二氮卓化合物F89对大鼠、肉鸡摄食和增重的影响.南京农业大学学报.1993,16(增刊):9~143.
    78.赵如茜,韩正康.F89对鹅摄食和血浆胰岛素、β-内啡肽水平的影响.南京农业大学学报.1993,16(增刊):1~45.
    
    
    79.周玉传,徐银学,赵如茜.注射F89对高邮鸭和绍兴鸭GH释放和IGF-Ⅰ水平的影响.全国生理生化第七次会议论文摘要汇编.中国畜牧兽医学会动物生理生化学分会.2001年8月.124.
    80.高腾云,王艳玲,韩正康等.利用F89和瘤胃素减缓奶牛热应激与提高产奶性能的研究.华中农业大学学报.2000,19(4):353~356.
    81.潘同斌,韩正康.F89对湖羊摄食、消化率及复胃消化代谢的影响.南京农业大学学报.1993,16(增刊):35~40.
    82. Papadopoulos V, Amri H, Boujrad N, et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis[J]. Steroids, 1997, 62(1): 21~28.
    83. Joseph-Liauzun E, Delmas P, Shire D, et al. Topological analysis of the peripheral benzodiazepine receptor in yeast mitochondrial membranes supports a five-transmembrane structure[J]. J Biol Chem, 1998, 273(4); 2146~2152.
    84. Bowling A.C. and Delorenzo R. J., Micromolar affinity benzodiazepine recepters: identification and characterizatoin in central nervous system[J]. Science, 216(1982): 1247~1249.
    85. Delorenzo R. J., Burdette S. And Holderness J., Benzodiazepine inhibition of the calcium-calmodulin protein kinase system in brain membrane[J]. Science, 213(1981): 546~549.
    86. Malloga P., Hamburg M, Tallman J. F. and Gallager D.W.,Ontogenetic changes in GABA modulation of brain benzodiazepine binding[J]. Neuropharmacology, 19(1980): 405~408.
    87. Timothy D. Stryker, Tom coni in and Seymour Rrechlin. Influence of a benzodiazepine, midazolam, and gamma-aminobutyric acid(GABA) on basal somatostatin secretion from cerebral and diencephalic neurons in dispersed cell culture[J]. Brain Research, 362(1986): 339~343.
    88. Baile C. A. and Mclaughlin C. L. Mechanisms controlling feed intake in ruminants: A review[J]. J. Anim. Sci. 1987, 64: 915
    89. Seoane J. R., Dunont F., Girard C. L., Bedard L. and Matte J. J. Effects of intraventricular injections of GABA and related substances on feeding behavior in satiated sheep[J]. Can. J. Physol. Pharmacol. 1984, 63; 1296.
    
    
    90. Wang R. Y. and Aghajanian A.K. Physiological evidence for habenula as major link between forebrain and midbrain raphe[J]. Scence. 1977, 197: 89.
    91. Przewlocak B., Stala, L. and Scheel-Kruger J. Evidence that GABA in the neucleus dorsaeis raphe induces stimulation of locomotor activity and eating behavior[J]. Life Sci. 1979,25:937.
    92. Le Magnen, Body energy balance and food intake: a neuroendocrine regulation mechanism[J]. Physiol Rev, 1983, 63: 314~318.
    93. Forbes J. M. Integration of regulatory signals controlling forage intake in ruminants[J]. J Anim Sci, 1996, 74: 3029~3035.
    94. 张盛友.舍饲水牛采食行为监测系统的建立和应用研究.南京农来大学硕士论文.
    95. Wangsness P. J. System for monitoring feeding behavior of sheep[J]. Journal of Animal Science, 1976, 42, 1544~1549.
    96. Chase L. E. Feeding behavior of steers fed a complete mixed ration[J]. Journal of Dairy Science, 1976, 59: 1923~1928.
    97. Suzuki S. Change in the rate of eating during a meal and the effect of the interval between meals on the rate at which cows eat roughages[J]. Animal Production, 1969, 11, 29~41.
    98. Baldwin B. A. A method for the quantitative recording of ingestive behaviour in sheep, using closed circuit television[J]. Journal of Physiology, 1983b, 343: 5~11.
    99. Savory C. J. Feeding behavior in food intake regulation in poultry[J]. Edinburgh, 1979: 277~323.
    100. Broster W. H. Electronically controlled feeding trought for dairy cows: some nutritional implications[J]. Journal of Dairy Research, 1982: 11~36.
    101. Jackson D. A. A method for the automatic recording of the meals of individual cows offered silage ad libitum and housed in a group[J]. Animal Production, 1985, 40: 146~149.
    102.左伟勇.蛋鸡摄食行为及大豆黄酮和F89对摄食产蛋及有关内分泌的影响.南京农业大学硕士论文.
    103. Zhou J. Z.,Gonyou H. W. Selfish animats and robot ethology: using artificial animals to investigate social and spatial behavior[J]. Appl Anim Behav Sci, 1995, 44: 187~
    
    203.
    104.朱祖康,张盛友,武枫林.青干草日粮条件下舍饲水牛采食行为的特点.[J].草食家畜,1999.103(2):16~17
    105. Forbes. J.M. Physiology of regulation of food intake.[M].London Edinburgh, 1981,197
    106.左明雪.细胞和分子神经生物学[M].北京高等教育出版社,2000:185~194.
    107.杨倩.鸡SIgA及生长抑素对鸡粘膜免疫调节的作用.南京农业大学博士论文.
    108. Aguila M.C, et al. Evidence that somatostatin is localized and synthesized in lymphoid organs[J]. Proc. Natl. Acad. sci. USA. 1991, 88: 1148~1149
    109. Hagen. V. P. M. Somatostatin receptor expression in clinical immunology Metabolism [J]. 1996, 45(8): 86~87
    110. Stanisz. A. M. et al. Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes From Peyer's patchs, mesenteric lymph nodes, and spleen. [J]. J. Immunol, 1986, 136: 1
    111.高峰,周光宏,韩正康.小麦基础日粮添加酶制剂对肉仔鸡生产性能和血液某些指标的影响.南京农业大学学报,2000, 23(4):71~75
    112.周密妹,李性天,耿立坚等.罗痛定对大鼠胃酸分泌和胃蛋白酶活性的影响[J].中国药学杂志.1998,23(5):301~303
    113.崔福生.医学生化检验手册[M].天津科技出版社,1981,314~315.
    114.喻冲云.生化检验单一试剂选[M].辽宁科学技术出版社,1987,67~77.
    115.张龙翔,张庭芳,李令媛.生化实验方法和技术[M].高等教育出版社,1997,167~174.
    116.Shek E.化学传送系统与抗惊厥前药[J].国外医学药学分册,1995,22(1):33~35
    117.郭文,王丽.苯二氮卓类受体的结构功能与苯二氮卓类耐受性和依赖性机制的研究进展[J].中国药理学通报,1999,15(2):111~114.
    118.韩正康,毛鑫智.家禽生理学[M],1986:169~170.
    119.艾晓杰,韩正康.酶制剂对成年鹅血液中IGF Ⅰ、β-END及某些激素含量的影响.畜牧兽医学报,2002,33(5),439~442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700