发芽糙米营养特性、γ-氨基丁酸富集及生理功效的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻谷砻谷后的糙米虽然营养丰富,但蒸煮性和适口性等较差,且脂肪含量高,长期贮藏易酸败而导致品质下降。糙米加工精米的过程中造成了大量的营养损失。因此,在传统稻谷加工基础上,结合现代生物技术对糙米进行深加工是今后稻谷及其制品深加工的主要发展趋势之一。
     发芽糙米是糙米发芽至适当长的芽体,主要由幼芽和带种皮的胚乳构成,富含许多生物活性物质如γ-氨基丁酸(gamma aminobutyric acid,GABA),是一种具有全营养概念、特殊营养价值的功能性主食。本研究在糙米发芽后组织化学、理化特性的变化以及γ-氨基丁酸(GABA)富集探索基础上,进一步探讨GABA对小鼠体内糖类、脂类和蛋白质代谢的影响。旨在从宏观和微观揭示糙米发芽过程中发生的变化,评价发芽糙米的营养价值;筛选富含GABA发芽糙米制备的工艺条件;开发富含GABA发芽糙米及其制品。
     1糙米发芽过程中营养成分及抗营养因子、碳水化合物组成及其相关酶活性的变化
     目的:研究不同品种糙米发芽过程中营养成分和植酸含量、碳水化合物组成及相关酶活性的变化。方法:Ⅱ优838、川香优2号、江镇粳糯和香粳99糙米分别在35℃下发芽60h,每间隔12h取样并进行化学分析。结果:不同品种糙米发芽过程中淀粉、直链淀粉、支链淀粉和抗营养因子植酸含量均呈下降趋势,其他营养成分先上升后下降。总淀粉酶活力、α-淀粉酶活力先增加后降低。4个品种糙米发芽24h时抗坏血酸含量最高;赖氨酸含量约是发芽前的3倍,除江镇粳糯在发芽24h最高外,其余3个品种均在发芽36h达到峰值。色氨酸含量除Ⅱ优838在发芽48h最高外,其余3个品种在发芽36h达到峰值,约是发芽前的2倍。Ⅱ优838和川香优2号糙米可溶性蛋白、游离氨基酸和还原糖的含量在发芽36h达到峰值,江镇粳糯和香粳99的峰值则出现在发芽48h。其中,籼稻糙米(Ⅱ优838和川香优2号)糙米发芽36h时,还原糖和可溶性糖含量、总淀粉酶和α-淀粉酶活力达到高峰,而粳稻糙米(香粳99)和糯稻糙米(江镇粳糯)高峰值则出现在发芽48h时。结论:发芽可提高糙米营养成分的含量,降低抗营养因子植酸的含量;并通过影响糙米淀粉酶的活性,改善碳水化合物的组成,有利于糙米品质的改善。
     2发芽对糙米蛋白质及氨基酸组成特性的影响
     目的:研究发芽过程中糙米蛋白质和氨基酸含量和组成特性的变化,并与精米和糙米比较,评价发芽糙米蛋白质的营养价值。方法:糙米在35℃下发芽48h,每隔6h取样并进行化学分析。结果:发芽可以增加糙米蛋白质、总氨基酸和必需氨基酸的含量,必需氨基酸指数提高。发芽过程中清蛋白和谷蛋白含量均呈上升趋势,球蛋白含量呈下降的趋势。除发芽24h外,醇溶蛋白的含量在整个发芽期间也呈现增加趋势,增加的蛋白质主要是谷蛋白。各发芽阶段糙米的必需氨基酸和总氨基酸的比值均大于55%。18种氨基酸中有12种的含量在发芽24h最高。发芽后赖氨酸和苏氨酸的含量增加较明显,但仍是限制性氨基酸;丝氨酸、谷氨酸、精氨酸和组氨酸含量均有所增加。发芽24h时必需氨基酸指数最大,与FAO/WHO模式相比,必需氨基酸组成模式更加合理。结论:发芽可以提高糙米蛋白质的营养价值,改善籼稻米的品质,其中以发芽24h为宜。
     3发芽对糙米淀粉理化特性和超微结构的影响
     目的:研究发芽对糙米淀粉理化特性和超微结构的影响。方法:以未发芽、发芽12h、24h、36h的糙米为原料提取淀粉,并对淀粉及其组分含量、淀粉糊的透明度、凝沉性质、冻融稳定性、酶解率以及粘度等进行分析。结果:糙米发芽后淀粉及其组分的含量、淀粉糊的酶解率以及淀粉糊的粘度均降低;淀粉糊的透明度和冻融稳定性均增强;凝沉稳定性、糊化温度和淀粉颗粒超微结构变化不明显。结论:发芽对糙米淀粉的理化特性具有一定的改善作用。其中发芽24h的糙米淀粉的理化特性变化最明显。
     4糙米发芽过程中GABA富集的研究
     目的:研究不同浸泡剂对糙米发芽过程中γ-氨基丁酸富集的影响。方法:采用蒸馏水、CaCl_2溶液和壳聚糖溶液浸泡糙米,并通过控制不同的发芽温度(A:25℃、35℃、45℃)、发芽时间(B:12h、24h、36h)和pH(C:5.6、7.0、8.4)的正交试验设计[L_9(3~4)],研究γ-氨基丁酸富集的适宜条件。结果:(1)蒸馏水浸泡的糙米在发芽24h前其GABA的含量呈现增加的趋势,发芽24h达到高峰,然后GABA含量呈下降趋势;各发芽阶段糙米中GABA含量均高于糙米和精米。(2)随着发芽时间的延长,0.1%CaCl_2溶液浸泡的糙米中GABA含量呈逐渐增加趋势,而0.5%CaCl_2溶液浸泡的糙米中GABA含量先增加后降低转而又增加,两种浓度下发芽42h时GABA均达到峰值,但低浓度下GABA的峰值高于高浓度。(3)随着发芽时间的延长,0.1%、0.3%和0.5%壳聚糖浸泡后糙米发芽24h内GABA含量呈逐渐增加趋势,24h后GABA含量逐渐减少;3种浓度下糙米发芽24h时GABA均达到峰值,在整个发芽期间,壳聚糖浓度高低与糙米中GABA含量呈正相关。(4)三因素三水平正交设计试验结果表明,pH为5.6时GABA富集效果明显。各因素水平对GABA含量的影响从主到次的顺序为C>A>B。结合前面系列实验结果综合考虑,选择各因素的最佳水平组合为A_3B_2C_1,即发芽温度为45℃、发芽时间为24h、发芽pH为5.6。
     结论:蒸馏水、低浓度的CaCl_2和壳聚糖浸泡均有利于糙米发芽过程GABA的富集;pH值是影响发芽糙米GABA富集的主要因素,其中酸性环境有利于GABA的富集,其次是发芽温度,再次是发芽时间。
     5小鼠体内GABA生理功效的研究
     目的:通过分析GABA对小鼠体内血清、肌肉和肝脏中与糖类、脂类和蛋白质等代谢相关的生理生化指标的影响,探讨小鼠体内GABA的生理功效。方法:56只体重22g左右的4w雄性昆明种小鼠(p>0.05),随机分成4组,每组设2个重复,每个重复7只,分别为CK组(对照组,GABA量为零)、A组(低剂量组,GABA量为12.5mg/L)、B组(中剂量组,GABA量为125mg/L)和C组(高剂量组,GABA量为1250mg/L)。饲养2d后每天早晨0.2mL/只空腹灌胃,连续18d;每周末清晨空腹称重一次;屠宰前禁食12h,眼球取血,分离血清;并迅速处死,取其肝脏和肌肉,分析肝脏和肌肉中蛋白质、脂肪和胆固醇的沉积以及血清生理生化指标。结果:(1)每周末各GABA组小鼠的平均体重均高于CK组(p>0.05);C组小鼠的平均体重最大,但与其他各组间差异不显著(p>0.05)。(2)与CK组相比,各GABA组小鼠肝脏和肌肉中蛋白质含量均增加,以B组肝脏和肌肉中蛋白质含量最高,但各组小鼠肌肉中蛋白质的沉积差异不显著(p>0.05);而B组肝脏中蛋白质的沉积显著高于CK组(p<0.01)、A组(p<0.05)和C组(p<0.05)。(3)与CK组相比,各GABA组小鼠肝脏和肌肉中胆固醇含量均下降,但各组间差异不显著(p>0.05)。其中肝脏胆固醇以B组最低,而肌肉中以C组最低。各GABA组小鼠肝脏脂肪含量也均有所降低,但各组间差异不显著(p>0.05),其中以B组最低,比对照组降低2.25个百分点;而肌肉中脂肪的沉积却加强,其中B组沉积量最大,高于CK组(p<0.01)、A组(p<0.05)和C组(p<0.05)。(4)与CK组相比,各GABA组小鼠血清中TP、ALB、GLOB、UA、TG、CHOL、HDL-C、LDL-C含量以及AKP、CHE、LDH、ALT的活性均增加。其中B组TP最高,与CK组间差异极显著(p<0.01),A组和C组与CK组间差异显著(p<0.05),各GABA组间差异不显著性(p>0.05)。ALB以B组最高,各GABA组间无显著性差异(p>0.05),但均显著高于CK组(p<0.05)。各组的GLOB、UA、TG、HDL-C的含量以及CK、CHE、LDH、ALT的活性间差异不显著(p>0.05),其中B组的GLOB、HDL-C和CK最高,A组的UA、CHE、LDH、ALT最高,TG以C组最高。各GABA组小鼠的A/G、GLU均比CK组有所下降,但各组间差异不显著(p>0.05),其中A组的GLU最低,B组的A/G最低。各GABA组的BUN、CREA、BUN/CR与CK组相比增减不一,其中C组的这三个指标均高于CK组(p<0.05;p>0.05;p>0.05),而A组和B组的均低于CK组(p>0.05;p>0.05;p>0.05),此外,C组的BUN也高于A组(p<0.05)和B组(p<0.05)。C组(p<0.01)、A组(p<0.05)和B组(p<0.05)的CHOL均高于CK组,但A、B、C组间无显著性差异(p>0.05)。与CK组相比,C组(p<0.01)、B组(p<0.05)和A组(p>0.05)的LDL-C均增加,A组(p>0.05)、C组(p>0.05)和B组(p<0.05)的AKP也增加。结论:GABA可促进小鼠生长;加强肌肉和肝脏中蛋白质的合成与沉积,减少胆固醇的沉积,降低肝脂含量,加强肌脂的沉积。
Brown rice dehulled from paddy has poor taste, lower cooking capability and high fat content though enriched with nutrition that, however, tends to decay because of acidification for long term stocking. Substantial nutrition loss will happen during the process from brown rice to polished one. Thus it will be the trend that conventional rice processing techniques combine with modern biological farther processing methods.
     Germinated brown rice consists of brown rice with proper amount of sprout and endosperm with seed coat, which is enriched with many biological active components such as gamma aminobutyric acid (GABA) and thus regarded as functional food that combines broad spectrum nutrition with special nutrient. With the study of histochemical change, physicochemical property, and GABA accumulation during germinating of brown rice, the effect is farther investigated of GABA on the metabolism of carbohydrate, lipid and protein of mice. This investigation was aimed to reveal microcosmic and macroscopic variation of brown rice during germination, evaluate its nutrition, determine the optimum germinating condition and develop germinated brown rice products enriched with GABA.
     1 Investigation of brown rice germination on nutrients, anti-nutrition factor, carbohydrate and related enzyme
     Purpose: Investigation of germination on nutrients, phytic acid, carbohydrate content and related enzyme activity in brown rice. Method: Four types of brown rice (Ⅱyou838, Chuanxiangyou2, Xiangjing99, Jiangzhenjingnuo) were selected to germinate for 60 hours under 35℃. Samples were taken for each 1:2 hours and tested chemically. Result: For all types, tests revealed that the contents of starch, amylose, amylopectin and anti-nutrition factor phytic acid reduced, while other nutrition content, activity of total amylase andα-amylase increased at first and then reduced. For all four types, ascorbic acid contents reached the highest level at 24h, and the lysine contents were about 3 times higher than those before germination and reached the highest level at 36h except for Jiangzhenjingnuo whose apex was at 24 hours. Tryptophan content reached the highest level at 36h-about 2 times of original except forⅡyou838 whose apex was at 48h. The contents of soluble protein, free amino acid and reduced sugar inⅡyou838 and Chuanxiangyou2 reached the highest level at germination of 36h, while the highest values happened at germination of 48h for Xiangjing99 and Jiangzhenjingnuo. For indica type rice among them (Ⅱyou838 and Chuanxiangyou2), the max. contents of reduced and soluble sugar, total amylase and a-amylase activity happened at germinated 36h, while 48h for nonglutinous rice (Xiangjing99) and glutinous rice (Jiangzhenjingnuo). Conclusion: By germinating, the contents of nutrition increased and phytic acid as anti-nutrition factor reduced. Besides, carbohydrate composition and the quality of brown rice were improved through affecting the amylase activity.
     2 Effect of germination on protein and amino acid composition properties of brown rice
     Purpose: Assessing the protein nutrition value of germinated brown rice by investigating the content and composition variation of protein and amino acid during germination, comparing with brown rice and polished rice as reference. Method: Brown rice was kept at 35℃for 48 hours and samples were taken every 6h and tested chemically. Result: Germination can increase the content of crude protein (CP), total amino acid (TAA), essential amino acid (EAA) and its index (EAAI). Content of albumin and glutelin increased as well while dropping of globulin content during germination. Except germinating for 24 hours, the content of prolamine rose and mostly was in glutelin. During the process, the ratio of essential amino acid to total amino acid kept over 55%. 12 of 18 types of amino acid reached the highest level at germination of 24 hours. The content of lysine and the threonine increased substantially also after germination though as limited amino acid yet. The content of serine, glutamic acid, arginine and histidine all increased then. EAAI summited at germination of 24 hours and with had more preferable EAA composition compared with FAO/WHO. Conclusion: The nutritional value of protein and the quality of indica brown rice can be improved by germinating and 24h is the most preferred germinating time.
     3 Effect of germination on starch physicochemieal properties and granular micro-structure in brown rice
     Purpose: Investigation of the effect of germination on starch physicochemical property and granular micro-structure of brown rice. Method: Extracting starch from brown rice germinated for Oh, 12h, 24h and 36h and testing its starch content, components, paste clarity, retrogradation, freeze-thaw stability, enzymatic hydrolyzation and viscosity. Result: After germinating of brown rice, the content of starch and its component, enzymatic hydrolyzation and viscosity declined, whereas clarity and freeze-thaw stability enhanced. Paste retrogradation, gelatinization temperature and granular micro-structure of starch had no obvious change. Conclusion: Germinating resulted in improvement of physicochemical properties of brown rice starch and that at 24h was most significant.
     4 Accumulation in brown rice of GABA during the germination
     Purpose: Investigation of the effect of different soaking agents on the accumulation of gamma aminobutyric acid in germinated brown rice. Method: Soaking brown rice with distilled water, CaCl_2 solution and chitosan at different temperature (A: 25℃, 35℃, 45℃), time (B: 12h, 24h, 36h) and pH (C: 5.6, 7.0, 8.4) that was designed as three-factor and three-level orthogonal experiment [L_9 (3_4)] to determined the content variation of GABA in the process of brown rice germination. Result: (1) Within 24h, the GABA content in brown rice soaked in distilled water increased, then decreased and kept higher than that of brown rice and polish rice in every germination stage. (2) Along with the germination time, the GABA content of brown rice soaked in 0.1%CaCl_2 solution gradually increased, while that in 0.5%CaCl_2 solution increased at first and then reduced and increased again. The peak of GABA all happened at germination of 42h, and was higher in low concentration than that in high one. (3) Along with the germination time, the GABA content of brown rice soaked in 0.1%、0.3%、0.5% chitosan solution gradually increased within 24h then decreased. The peaks of GABA all happened at germination 24h. The content of GABA was positively correlated with that of chitosan. (4) The orthogonal experiment revealed that GABA accumulated substantially at pH5.6. Factors affecting GABA content ranked as C>A>B. Considering results of all series as a whole, the optimum condition of GABA accumulation in the process of brown rice germination was A_3B_2C_1, namely 45℃, 24h and pH5.6. Conclusion: Distilled water, low concentration CaCl_2 solution and chitosan all can enhance GABA accumulation of brown rice in germination, pH is the key factor affecting GABA accumulation, while second is germination temperature and time the third. Acid condition can promote GABA accumulation.
     5 Physiological functions of GABA on mice
     Purpose: Investigation of physiological functions of GABA on mice by analyzing the effects on biochemical parameters correlative to the metabolism of carbohydrate, lipid and protein in mice serum, muscle and liver. Method: 56 male Kunming mice of 4-w-old and weighing about 22g (p>0.05) were randomly divided into 4 groups, and each group consisted of 14, and 7 of per group serving for one repeat. The groups were named as group CK (Control group, 0mg/L GABA), group A (low dose, 12.5mg/L GABA), group B (middle dose, 125mg/L GABA) and group C (high dose, 1250mg/L GABA). After two day's breeding, each mouse was filled in stomach with 0.2mL GABA for 18d at limosis state every morning, and was weighed every weekend morning under limosis state. With 12-hour fasting before slaughter, the blood sample was taken from eyeball to separate serum. Right after slaughtering, the liver and muscle were sampled to determine the deposit of protein, fat, cholesterol and biochemical parameters in serum. Result: (1) Every weekend, average weight of all GABA groups was higher than that of group CK (p>0.05) and group C was highest at every stage, though the difference was not significant from other groups (p>0.05). (2) Compared with group CK, the protein content of liver and muscle of each GABA group mice increased and group B was the highest, though the deposit difference in muscle was not significant among groups (p>0.05). The deposit of protein in liver of group B was significantly higher than group CK (p<0.01), A (p<0.05) and C (p<0.05). (3) Compared with group CK, the cholesterol content of liver and muscle of each GABA group decreased (p>0.05) though without significant difference among GABA groups. The cholesterol content of group B was the lowest in liver while group C was the lowest in muscle. The content of fat in liver of each GABA group decreased (p>0.05) though without significant difference among groups, while group B was the lowest and 2.25 percentage point lower than group CK. The deposit of fat in muscle enhanced, while group B was the highest, and that of group A (p<0.05) and C (p<0.05) were also higher than group CK. (4) Compared to group CK, the content of TP、ALB、GLOB、UA、TG、CHOL、HDL-C、LDL-C and activity of AKP、CHE、LDH、ALT in serum of GABA groups increased. The TP content of B was highest, and significantly different from group CK (p<0.01). Group A and C were also significantly different from group CK (p<0.05). The difference among GABA groups was not significant (p>0.05). The ALB content of B was highest, and the difference among GABA groups was not significant (p>0.05), though significantly higher than that of group CK (p<0.05). The content of GLOB、UA、TG、HDL-C and activity of CK、CHE、LDH、ALT had no significant difference among different groups (p>0.05). The GLOB、HDL-C content and CK activity of group B were highest. The content of UA and activity of CHE, LDH、ALT of group A were highest. The TG content of group C was highest. Compared to group CK, A/G value and GLU content of each GABA group reduced, but without significant difference among groups (p>0.05). GLU and A/G were lowest for group A and group B, respectively. The content variation of BUN, CREA and BUN/CR was notegular while group C were higher than those of CK group (p<0.05; p>0.05; p>0.05). The BUN content of group C was higher than that of group A (p<0.05) and group B (p<0.05), but the BUN content of group A and group B was lower than that of group CK (p>0.05; p>0.05; p>0.05). CHOL content of group C (p<0.01), A (p<0.05) and B (p<0.05) was higher than that of group CK, though the difference among GABA groups was not significant (p>0.05). Compared to group CK, LDL-C content of group C (p<0.01), B (p<0.05), A (p>0.05) and AKP of group C (p>0.05), B (p<0.05) and A (p>0.05)all increased. Conclusion: GABA can enhance mice growth, strengthen the synthesis and deposit of protein in muscle and liver, reduce cholesterol deposition and content of fat in liver and also boost the deposition of fat in muscle.
引文
1.爱岩.Development of a super-GABA by lactic acid fermentation.食品开发[日刊],2001,36(6):12-14
    2.包清彬,猪谷富雄.储藏条件对糙米理化特性影响的研究.农业工程学报,2003,19(6):25-27
    3.蔡宁生.内源性GABA受体结合抑制物对大鼠血压的影响.中国药理学报,1989,10(2):101-103
    4.蔡向忠,赵则胜.乌贡糙米粉的研制和利用.上海农学院学报,1998,16(3):218-220
    5.常沽琴,崔广智.γ-氨基丁酸抗心律失常作用.中国药学杂志,1994,29(12):752
    6.曹广才,黄长玲.特用玉米品种、植被、利用.北京:北京轻工业出版社,1999,55-56
    7.曹雅君,江玲,罗林广,翟虎渠,志村英二,杨世湖,万建民.水稻品种休眠特性的研究.南京农业大学学报,2001,24(2):1-5
    8.曹江北,李云峰,米卫东.γ-氨基丁酸受体系统在脑缺血诱发神经元再生过程中的调节作用.国外医学:药学分册,2006,33(2):89-92
    9.陈克复.食品流变学及其测量.北京:中国轻工业出版社,1989,215-217
    10.陈国宏,黄志荣.鸡血浆碱性磷酸酶与生产性能关系的研究.江苏农学院学报,1990,11(2):37-39
    11.陈健,宋松泉,傅家瑞.钙对玉米种子活力的作用.种子,1995,1:1-4
    12.陈忠,李书珍,朱剑琴.急性热应激对大鼠大脑皮质GABA受体的影响.南京大学学报,1997,33(3):386-389
    13.陈忠,李书珍,朱剑琴.急性热应激对小鼠高亲和性GABA摄取抑制.动物学研究,1999,20(2): 156-157
    14.陈忠,王婷,黄丽明,方代南.GABA对热应激仔鸡的影响.动物学研究,2002,23(4):341—344
    15.陈志刚,顾振新,王玉萍.不同粳稻品种的糙米发芽力及其发芽糙米中主要物质含量的比较.中国粮油学报,2003a,26(1):74-77
    16.陈志刚,顾振新.温度处理对发芽糙米中淀粉酶活力的影响.食品与发酵工业,2003b,29(3):46-49
    17.陈志刚,顾振新,汪志君,方维民,段颖.糙米的营养成分及其在发芽过程中的变化.南京农业大学学报,2003c,26(3):84-87
    18.陈其才,Jen P,吴飞健.γ-氨基丁酸能抑制对大棕蝠听皮层神经元反应特性的影响.生物物理学报,2004,19(5):1-2
    19.陈庶来,杨小明,刘伟民,杨燕萍.糙米酵素发酵工艺的研究.食品科学,2005,26(7): 275-277
    20.杜先锋,许时婴,王璋.淀粉凝胶力学性能的研究.农业工程学报,2001,17(2):16-19
    21.杜先锋,许时婴,王璋.淀粉糊的透明度及其影响因素的研究.农业工程学报,2002,18(1):129-131
    22.二枝贵代.The function of defatting with organic solvent on accumulation of γ-amino butyric acid (GABA)in the rice germ.Nippon Shokuhin Kagaku Kaishi[日刊],2001,47(3):196-201
    23.范少光.脑内γ-氨基丁酸能神经及其功能.生理科学进展,1984,15(1):41-45
    24.方廉,罗荣生.γ-氨基丁酸(GABA)对离体大鼠卵巢颗粒细胞孕酮分泌的影响.细胞生物学杂志,1994,16(3):137-139
    25.傅晓如,程人俊.早稻糙米饼干和桃酥的研制与生产.食品科技,2000,1:20-21
    26.甘平.GABA受体在脑缺血中的作用.中国神经科学杂志,2004,20(1):78-81
    27.冈田忠司.Physiological function of rice germ enriched with GABA.食品工业[日刊],2001,36(6):7-8
    28.高宁国,韩正康.大麦日粮添加粗酶制剂对肉仔鸡生产性能和血液某些指标的影响.江苏农学院报,1991,20(4):65-70
    29.高洪波,郭世荣.外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响.植物生理与分子生物学学报,2004,30(6):651-659
    30.顾振新,陈志刚,段颖.钙处理对发芽糙米中淀粉酶活力的影响.食品与发酵工业,2002,28(11):4-7
    31.顾振新,陈志刚,蒋振晖.赤霉素处理对糙米发芽力及其主要成分变化的影响.南京农业大学学报,2003,26(1):74-77
    32.谷达雄.贮藏米[R].日本农业水产省食品综合研究所研究报告,1972,27:1—8
    33.管敦仪.啤酒工业手册(修订本).北京:轻工业出版社,2001,12:8-10,234-240
    34.郭文.GABA_A受体的研究进展.国外医学生理、病理科学与临床分册,1999,19(3):161—164
    35.郭鸰,霍贵成.发芽大豆生化特性及其营养成分变化.粮油食品科技,2002,4:8-9
    36.郭晓娜,朱永义.糙米发芽工艺参数的研究.粮食与饲料工业,2003,2:8-11
    37.郭晓娜,朱永义.发芽糙米糊化特性的研究.粮食与油脂,2004,2:10-12
    38.郭莲军.GABA_A受体与脑缺血.咸宁学院学报(医学版),2004,18(2):77-80
    39.韩济生.神经科学纲要.北京:北京医科大学中国协和医科大学联合出版社,1993,407-415
    40.韩雅珊.食品化学实验指导.北京:中国农业大学出版社,1996,75-77
    41.杭维亮.应用γ-氨基丁酸等治疗癫痫79例临床观察.遵义医学院学报,1994,17(1):23-25
    42.郝艳丽,巨修练.GABAAR研究进展.武汉化工学院学报,2006,28(2):12—18
    43.鹤田理.玄米贮藏主微生物推移[R].日本农业水产省食品研究所研究报告, 1972,28:10-18
    44.何照范.粮油籽粒品质及其分析技术.北京:农业出版社,1983,57-59;76-78;131.135;150-153
    45.何瑞国,麻益良,王艳青.猪消化代谢试验对糙米营养价值的研究.华中农业大学学报,1994,13(3):268-273
    46.何瑞国,麻益良,毛学英,董泽敏,郑艺梅,马立保,和希顺.湖北早籼稻糙米营养物质可利用率的研究.中国粮油学报,1999a,14(6):23-27
    47.何瑞国,王玉莲,马立保,黎明,胡建国,王建华.糙米代替玉米对断奶仔猪肥育效果的研究.湖北农业科学,1999b,3:48-50
    48.何瑞国,王玉莲,马立保,和希顺,郑桂菊,胡洪涛,王志文.早杂籼稻糙米代替玉米日粮对肉鸡增重效果的研究.中国家禽,1999c,21(4):5-6
    49.何瑞国,王玉莲,马立保,黎明,张顺喜.湖北早稻糙米营养价值研究(Ⅱ)—糙米代替玉米作饲料对肥猪增重和肉品质影响的研究.中国粮油学报,2000a,15(1):50-53
    50.何瑞国,马立保,熊统安,王玉莲,林发光,张小元.早籼稻糙米代替玉米对60kg肥育猪生长和肉品质影响的研究.养猪,2000b,1:26-27
    51,何瑞国,熊统安,王玉莲,胡洪涛,王志文,魏忠家.湖北早籼糙米营养价值研究(Ⅲ)—糙米代替玉米作能量饲料对蛋鸡产蛋率和肉鸡增重与肉蛋品质影响的研究.中国粮油学报,2000c,15(2):44-47
    52.何小兵,严缘昌.γ-氨基丁酸B型受体(GABA_BR)研究最新进展.细胞生物学杂志,2002,24(4):217-223
    53.胡文玉,吴娇莲.壳聚糖的性质用途及其在农业上的应用前景.植物生理学通讯,1994,30(4):294-296
    54.胡元元,何善述,徐仁泗.神经元GABA合成、分解和分泌与癫痫发病的研究.中风与神经疾病杂志,2002,18(3):134—136
    55.黄超武,黄远生.水稻品种种性研究—籼稻品种稻米游离氨基酸含量与饭味关系的研究.广州:广东科技出版社,1995,73-78
    56.黄强,杨连生, 罗发兴,熊犍.高黏度十二烯基琥珀酸淀粉钠理化性质的研究(I)—糊的性质.华南理工大学学报,2001,29(12):42-45
    57.黄迪芳,陈正行.发芽糙米.粮食与油脂,2004,4:17-18
    58.贾富国,邓华玲,郊先哲,白士刚,王福林.糙米加湿调质对其碾米性能影响的试验研究.农业工程学报,2006,22(5):180-183
    59.蒋挺大.甲壳素.北京:中国环境科学出版社,1999,301—305
    60.金增辉.膨化法加工速食糙米粉.粮食与油脂,1995a,1:7-12
    61.金增辉.生化法加工纯天然速食糙米粉.粮食与油脂,J995b,2:1-7
    62.金增辉.全糙米粉加工.粮食与油脂,2002a,8:37-38
    63.金增辉.糙米酵素及其产品开发.粮食与油脂,2002b,4:14-16
    64.金增辉.发芽糙米片的加工技术.粮食加工,2005,6:27-29
    65.赖来展,张占位,陈春洪.黑优粘糙米粉的研制.广东农业科学,1995,5:24-25
    66.李玉荣,杨玉芝,孙明智.脑室注射GABA对大鼠丘脑束旁核痛反应神经元电活动的影响.针刺研究,1989,3:334-338
    67.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,184-185;192-197
    68.李增利.营养糙米面包饼研制.食品工业,2000a,6:25-27
    69.李增利.无糖糙米蛋糕的研制.扬州大学烹饪学报,2000b,3:39-41
    70.李光磊,张军和,刘继华,王忠诚.玉米淀粉磷酸单酯的制备及特性研究.粮食与食品机械,2001,3:31-33
    71.李里特.粮食贮藏加工工艺学.北京:中国农业出版社,2002,198
    72.李增利.糙米曲奇饼干的研制.粮油加工与食品机械,2002,1:47-49
    73.李爱学.γ-氨基丁酸和氟安定对产蛋高峰期母鸡摄食行为及有关内分泌的影响.[硕士研究生论文].南京:南京农业大学:2003,6
    74.李红玫.利用发芽糙米酿制营养味增的技术.中国酿造,2004,2:26-27
    75.李翔,周圻,何瑞国,王玉莲,和希顺。金优402等4种早稻糙米氨基酸含量及其利用率的研究.中国粮油学报,2004,19(4):1-4,8
    76.李翔.糙米茶.粮食问题研究,2005,3:59-60
    77.李咏,邹黎明,于成国.苹果酸、γ-氨基丁酸对Hela细胞端粒酶活性的影响.沈刚医学院学报,2005,7(3):160-161;169
    78.李冰冰,王玉萍,顾振新,韩永斌,蒋振辉.发芽糙米与稻谷的谷氨酸脱羧酶活力及γ-氨基丁酸含量比较.食品与发酵工业,2006,32(5):28-30
    79.柳井昭二.玄米密封系贮藏不活性万影响.日本食品工业学会志[日刊],1979,26(1):179-18
    80.刘惠君.热处理对直链淀粉扩增、蜡性及正常玉米淀粉物理性质和酶解率的影响.中国粮油学报,1998,13(4):25-29
    81.刘玲珑,江玲,刘世家,周时荣,张文伟,王春明, 陈亮明,翟虎渠,万建民.巨胚水稻WO25糙米浸水后γ-氨基丁酸含量变化的研究.作物学报,2005,31(10):1265—1270
    82.刘祥友,何瑞国,周庆安,王程,周世霞,赵娜.糙米对朗德鹅产肝性能影响的研究.中国粮油学报,2005,20(6): 107-110
    83.陆勤,朱剑琴.γ-氨基丁酸的神经营养作用.国外医学生理、病理科学与临床分册,1995,15(3): 187-188
    84.罗履广,赵自鸽,朱族,赵伟.GABA对大鼠下丘脑正中隆起LHRH释放调节的研究生理学 报,1991,43(3):203-212
    85.罗月明,罗文侗.γ-氨基丁酸对呼吸系统的作用.国外医学呼吸系统分册,1996,16(2):78-80
    86.马建明,龚文杰,邬晨阳,金米聪.直接皂化—硫酸铁铵比色法快速测定鸡蛋中胆固醇.中国卫生检验杂志,2001,11(3):378
    87.马鹏鹏.甲壳素及其衍生物在农业生产中的应用.植物生理学通讯,2001,37(5):475-478
    88.马艳风,赵克斌.糙米对断奶仔猪生长性能和回、盲肠微生物的影响.中国畜牧杂志,2006,42(1):30-32
    89.茅原.Recent studies on biological functions of GABA on improvement of hypertension and brain function.食品与开发[日刊],2001,36(6):44
    90.穆小民,吴显荣.高等植物体内4-氨基丁酸的代谢及生理作刖.氨基酸和生物资源,1994,4:44-47
    91.穆小民,沈黎明,吴显荣.高等植物体内γ-氨基丁酸代谢的酶学研究进展.中国农业大学学报,1996,1(1):29-33
    92.农业部种植业管理司、中国水稻研究所.中国稻米品质区划及优质栽培.北京:中国农业出版社,2002,28
    93.欧阳昌汉,郭莲军,吕青,曲玲.γ-氨基丁酸对急性不完全性全脑缺血大鼠脑组织氨基酸利钙离子含量的影响.中国约理学与毒理学杂志,2004,18(4):248-252
    94.潘洪莲.营养快餐糙米加工技术.今日科技,1995,2:11
    95.潘斌,杨东伟,韩太真,谢雯.γ-氨基丁酸在发育期大鼠视皮层长时程增强中的作用.西安交通大学学报(医学版),2004,25(4):313-315
    96.庞志平,徐乐天,李继硕.GABA_A受体的细胞内调控及其机制.中国药理学通报,1998,14:60-62
    97.任安祥,周倩,王羽梅,林维申.催芽温度对芦笋种子发芽及代谢的影响.中国蔬菜,1997,1:11-14
    98.商蕾,王玲,孙宏丽,杨宝峰.氧化苦参碱对大鼠急性心肌缺血保护作州的研究.哈尔滨医科大学学报,2005,39(2):124—129
    99.沈维军,张石蕊,范志勇,赵玉蓉,金宏,田科雄.饲粮中糙米替代玉米的比例对饲料制粒性能的影响.湖南农业大学学报(自然科学版),2006,32(2):161-163
    100.师素云,王学臣.羧甲基壳聚糖对玉米籽粒氮代谢关键酶和种子贮藏蛋白含量的影响.植物生理学报,1999,25(2):187-192
    101.师素云,王学臣.羧甲基壳聚糖(NCMC)对玉米幼苗氮代谢有关酶活性的影响.江苏农业学报,1997,13(2):70-72
    102.石渡健一.多角的利用—健康[发芽玄米]制品化.食品工业[日刊],2002:58-65
    103.舒剑成,金征宇,赵建伟,徐学明,贺建华,陈国平,郭启原,李俊波,刘大建.陈化早籼糙米对仔猪小肠粘膜二糖酶及生产性能的影响.食品与生物技术学报,2005,24(2):100-106
    104.孙云子.不同能量饲料对朗德鹅产肝性能影响的研究.[硕士学位论文]。武汉:华中农业大学,2004,5
    105.孙鹏,陈国平,陈国方,温宁英,曹锋生,韩继媛.γ-氨基丁酸对急性毒鼠强中毒小鼠的实验治疗研究.临床急诊杂志,2005,6(6):6-8;12
    106.孙向东.发芽糙米研究最新进展.中国稻米,2005,3:5-8
    107.孙向东,任红波,姚鑫淼.糙米发芽期间生理活性成分γ-氨基丁酸变化规律研究.粮油加工与食品机械,2006,1:63-68
    108.田小磊,吴晓岚,张蜀秋,娄成后.γ-氨基丁酸在高等植物逆境反应中的作用.生命科学,2002,14(4):215-219
    109.田琴,胡还忠,马立群,汪长东,王晓敏,梁华敏.GABA对小鼠回肠平滑肌自主收缩活动的影响.世界华人消化杂志,2005,13(16):1981—1984
    110.涂清荣,姚惠源.焙炒糙米理化性质的研究.食品科技,2005,2:8—11
    111.涂燕云,许剑.胆碱酯酶及前白蛋白在肝功能评估中的意义.中国煤炭工业医学杂志,2006,9(7):749
    112.王景升.种子科学与技术.北京:中国轻工业出版社,1991,122-126
    113.王中.脑缺血与氨基酸变化的关系.国外医学脑血管疾病分册,1994,2(4):197-200
    114.王真,张路,邱学才,黄大有.中枢神经递质γ-氨基丁酸与其合成阻断剂对大鼠血糖和胰岛素的影响.中国糖尿病杂志,1999,7(4):219-221
    115.王定昌,赖荣婷.糙米酵素的功能与开发.粮油食品技术,2001,9(1):2-7
    116.王若兰,田书普,谭永清.不同储藏条件下糙米保鲜效果的研究.郑州工程学院学报,2001,22(2):32-34
    117.王世明,张颖奇,李晓立.GABAA受体研究进展.中国局解手术学杂志,2001,10(3):307-308
    118.王春梅,刘桂莲,念红,张辉.GABA对黄体细胞孕酮分泌及凋亡的影响.牡丹江医学院学报,2002,21(2):1-3
    119.王文高,陈正行.发芽糙米—21世纪主食.粮油与油脂,2002,12:42-43
    120.王民俊.小曲米酒生产工艺.酿酒科技,2003,3:109-110
    121.王玉萍,韩永斌,蒋振辉,顾振新,汪志君,方维明.通气处理对发芽糙米生理活性及主要物质含量影响.扬州大学学报(农业与生命科学版),2005,26(4):91—94
    122.王玉萍,韩永斌,顾振新,李冰冰.谷氨酸钠和抗坏血.酸对发芽糙米中GABA富集效果的影响.南京农业大学学报,2006,29(2):94-97
    123.王传梁,陈坤杰.富硒发芽糙米加工工艺的研究.粮油加工与食品机械,2006,7:62-64;68
    124.伟光.健康饮品糙米茶.粮油食品科技,2005,13(2):48
    125.魏东,顾蕴辉.兴奋大鼠延髓A1区引起降压、减心率效应的机制.生理学报,1989,41(5):444-458
    126.魏智清,杨涓,邱小琮,马强,贾志丽.GABA牛磺酸及枸杞子水浸液对青鱼鳉抗缺氧能力的影响.水利渔业,2006a,26(2):1-3
    127.魏智清,杨涓,赵红雪,马瑛.牛磺酸、γ-氨基丁酸对鲫抗缺氧能力的影响.淡水渔业,2006b,36(1): 7-10
    128.魏智清,杨涓,赵红雪,赵江涛.牛磺酸、γ-氨基丁酸影响泥鳅抗缺氧能力的试验研究.农业科学研究,2006c,27(1):39-41;58
    129.温博贵.GABA代谢的研究进展.生理科学进展,1980,11(1):26-32
    130.温薇,王玲,张莉,范明,周慎婷,杨宝峰.GABA对谷氨酸和低糖诱导的人少突胶质细胞瘤细胞凋亡增加的影响.哈尔滨医科大学学报,2004,37(4):135-137
    131.吴逊,蒲朝文,封蕾.3.5-二硝基水杨酸快速测定食品还原糖.预防医学情报杂志,2002,1:
    132.吴雪辉,张加明.板栗淀粉糊特性的研究.食品与发酵工业,2005,28(6):46-48
    133.谢涛,谢碧霞,钟海雁.锥栗和茅栗淀粉糊特性的研究.中国粮油学报,2003,18(4):52-54
    134.熊善柏,赵思明,张声华.稻米淀粉的理化特性研究Ⅱ—稻米直链淀粉和支链淀粉的理化特性.中国粮油学报,2003,18(2):5-8
    135.徐红,翟青竹,范少光,韩济生.脑内γ-氨基丁酸(GABA)在急性失血性低血压时对血压的影响.动物学报,1990,36(1):40-45
    136.徐项桂,朱剑琴.小鼠胃中GABA摄取系统的负反馈式自身调节机制.南京农业大学学报,1996,32(1):192-198
    137.徐项桂,杨再福,黄胜和,弋小红.γ-氨基丁酸对小白鼠离体胃标本胃酸分泌的促进效应.动物学报2001,47(2):170-175
    138.徐忠,张亚丽,王遂.羧甲基化对马铃薯淀粉糊性质的影响.食品与发酵工业,2001,27(3):26-29
    139.徐茂军.不同品种大豆发芽过程中抗坏血酸合成累积的比较研究.中国粮油学报,2003,18(3): 51—53;58
    140.许为黎,张志高,倪向群.壳聚糖包农大豆种子的萌发及幼苗的生理特性.中国油料,1997,19(3):44-45;49
    141.许艳,徐满英,闫彬彬.GABA对大鼠伏隔核痛反应神经元电活动的影响.神经科学通报,2005,2l(1):53-57
    142.许艳,徐满英.γ-氨基丁酸对大鼠吗啡戒断症状的影响及其作用机理.中国药物依赖性杂志,2006,15(1):21—23
    143.杨立川.高γ-氨基丁酸与癫痫.国内外医学神经学外科学分册,1993,16(3):19-20
    144.要航,赵彬,黄燕华.GABA减缓缺氧引起的神经营养素mRNA表达量的变化.中国应用生物学杂志,1998,14(4):289-292
    145.叶晓健,田纪伟,高岱峰.脊髓半切伤大鼠血清谷丙转氨酶和谷草转氨酶活性变化的研究.中国兽医杂志,1992,8(17):282-283
    146.余成瑶,何明清,郑德成.肉用仔鸡饲喂鸡微生物饲料添加剂8901细胞碱性磷酸酶AKP定性、定位研究.四川农业大学学报,1994:12(增刊):596-601
    147.张南玲.胃肠胰系统内γ-氨基丁酸研究的新进展.国外医学(生理病理科学与临床分册),1993,13(3):139-142
    148.张石蕊,田科雄,王继成,赵玉蓉.饲用糙米、玉米对猪消化代谢性能的评价.饲料工业,1999a,20(8):31-32
    149.张石蕊,田科雄,王继成,黄美华,沈维军,金宏.糙米与玉米型饲粮对肉猪饲用价值比较研究.饲料工业,1999b,20(5):26-27
    150.张兴荣,Minuk G Y.国外医学消化系分册,1999,13(4):226-228
    151.张振汉,陈文颖,石其贤,袁玉英,楼云曹.GABA和孕酮对人及豚鼠精子的体外获能作用生理学报,2000,52(3):179-184
    152.张辉,倪江,张伟.GABA影响大鼠卵巢黄体细胞原酮的生成.生理学报,2000,52(3):185—187
    153.张宏福,秦加华.断奶日龄对仔猪血清中几种生化成分的影响.仔猪营养生理与饲料配制技术研究.北京:中国农业科技出版社,2001:234-239
    154.张卫卫,王学清,李岩.血清前白蛋白、胆碱酯酶对判断肝硬化患者肝储备功能及预后的临床价值.中国实用内科杂志,2002,11(1):16-17
    155.张晖,姚惠源,姜元荣.富含γ-氨基丁酸保健食品的研究与开发.食品与发酵工业,2002a,28(9):70-71
    156.张晖,姚惠源,姜元荣.γ-氨基丁酸的功能性质及其在稻米制品中的富集利用.粮食与饲料工业,2002b,8:41—42
    157.张辉,张玮,倪江,田淑君,边淑玲,张丽敏.GABA抑制hCG诱发大鼠卵巢黄体细胞孕酮生成.基础医学与临床,2004,24(1):40-42
    158.张继武,郑艺梅,曾国荣.富钙发芽糙米的研制.食品与发酵工业,2005,31(10):54-56
    159.张瑞宇.超声波处理对糙米发芽生理影响的研究.食品与机械,2006,22(1):56-58
    160.张燕,鲁战会.李里特,李永玉,陈金显,朱韶娟.杀菌剂对发芽糙米富集γ-氨基丁酸的影响.食品科技,2006,5:94-97
    161.赵彤,王祸庄,黄燕华,要航,刘振伟,范明.GABA对大鼠海马脑片缺氧损伤的保护作用.中国应用生理学杂志,2003,19(1):16-19
    162.郑艺梅,何瑞国.早稻糙米蛋白质品质的评价.粮食与饲料工业,2001,12:5-8
    163.郑艺梅,何瑞国,蔡道明,隗德合.不同品种早稻糙米养分利用率的研究.中国粮油学报,2002a,17(1):38-42
    164.郑艺梅,何瑞国,徐二平,蔡道明.不同品种早稻糙米营养成分含量的分析.中国粮油学报,2002b.17(6):44-47
    165.郊艺梅,郑琳,徐福宝,董邦兵,华平.不同品种早稻糙米蛋白质和氨基酸组成研究.营养学报,2004,26(6):482-485
    166.郑艺梅,王明才,华平.发芽糙米微波干燥工艺研究.粮食与饲料工业,2005,11:1-2
    167.郑艺梅,何瑞国,黄霞,郊琳,胡秋丽,华平.发芽对不同品种糙米碳水化合物组成及其相关酶活性的影响.粮食与饲料工业,2006a,5:1-2;14
    168.郑艺梅,何瑞国,郑琳,华平,胡秋丽,黄霞.糙米发芽过程中营养成分及植酸含量变化的研究.中国粮油学报,2006b,21(5):1-4
    169.钟诚,方国玺,李凤双.青山羊血.清含氮生化指标与蛋白质营养代谢关系的研究.山东农业大学学报,1986,17(1):83-88
    170.中国预防医学科学院,营养与食品卫生研究所.食物成分表(全国代表值).北京:人民卫生出版社,1997,62
    171.中国食品添加剂生产应用协会.食品添加剂分析检验手册.北京:中国轻工业出版社,1999,53-54
    172.周顺伍.动物生物化学.北京:中国农业出版社,2000:133
    173.周秀琴.日本开发糙米和糙米发芽营养食品.粮食与油脂,2002,12:41
    174.周元春.我国培育出预防高血压稻米新品种.科技文萃,2003,4:141
    175.周翔.盐胁迫诱导玉米幼苗GABA作用积累的生理作用.[硕士学位论文].北京:中国农业大学,2004,5
    176.周翔,吴晓岚,李云,张蜀秋.盐胁迫下玉米幼苗ABA和GABA的积累和相互关系.应用与环境生物学报,2005,11(4):412-415
    177.周樱.糙米型日粮中添加胆碱、肉碱对朗德鹅产肝性能及胴体品质影响的研究.[硕士学位论文].武汉:华中农业大学,2005,5
    178.朱展才..稻麦质量分析.北京:中国食品出版社,1988,157-158;135-138
    179.朱长庚,刘庆莹,朱家祥.慢性癫痫大鼠海马内GABA_A受体γ_2亚单位的改变—原位杂交组织化学研究.解剖学报,1995,26(4):352-353
    180.朱永义,赵仁勇,林利忠.挤压膨化对糙米理化特性的影响.中国粮油学报,2003,18(2):14-16
    181.邹冈.基础神经药理学.北京:科学出版社,1999,135-152
    182.邹丽霞,黄国林,刘峙荣,徐琼.羟丙基化对玉米高直链淀粉的物化性能及结构的影响.中国粮油学报,2005,20(5):65-69
    183. Acs Z, Szabo B, Kapocs G, Makara G B. Gamma-aminobutyric acid stimulates pituitary growth hormone secretion in the neonatal rat. A superfusion study. Endocrinology, 1987, 120: 1790-1798
    184. Acs Z, Zsom L, Makara G B. Possible mediation of GABA induced growth hormone secretion by increased calcium-flux in neonatal pituitaries. Life Sci, 1992, 50: 273-279
    185. Acs Z, Zsom L, Mergl Z, Makara G B. Significance of chloride channel activation in the gamma-aminobutyric acid induced growth hormone secretion in the neonatal rat pituitary. Life Sci, 1993,52:1733-1739
    186. Ahmed A F, Consatble P D, Misk N A. Effect of feeding frequency and route of administration on abomasal luminal p H in dairy calves fed milk replacer. Journal of Dairy Science, 2002, 85(6): 1502-1509
    187. Ahmt T, Wischmann B, Blennow A, Madsen F, Bandsholm O, Thomsen J. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model. Nahrung, 2004, 48 (2): 149-155
    188. Amabeoku, George J, Farmer, Celeste C. Gamma-aminobutyric acid and mefloquine-induced seizures in mice. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2005, 29(6): 917-921
    189. Amano M, Kubo T. Involvement of both GABA_a and GABA_b receptors in tonic inhibitory control of blood pressure at RVL of the rat. Naunyn Schmiedebergs Arcj Pharmacol, 1993, 348 (2): 146-153
    190. Aurisano N, Bertani A, Reggiani R. Involvement of calcium and calmodulin in protein and amino acid metabolism in rice root under anoxia. Plant cell Physiol, 1995, 36: 1525-1529
    191. Baker L A, Rayas-Duarte P. Retro-radiation of amaranth starch at different storage temperatures and the effects of salt and sunars. Cereal Chem, 1998, 75(3): 308-314
    192. Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Ann Rev Plant Physiol, 1998,40:95-117
    193. Benhamou N, Theriault G. Treatment with chitosan enhances resistances of tomato plants to the crown and root rot pathogen Fusanum oxyporum F. sp. Radicislycopersici. Physiol Mol Plant Pathol, 1992,41:33-52
    194. Beverly J L, Martin R J. Influence of serum glucose on glutamate decarboxylase activity in the ventromedial nucleus of rats. The American Physiological Society, 1990: 697-703
    195. Bhatnagar P, Glasheen B M, Bains S K. Transgenic manipulation of the metabolism of polyamine s in poplar cells. Plant Physiol, 2001, 125: 2139-2153
    196. Bird AR, Hayakawa T, Marsono Y, Gooden J M, Record I R, Correll R L, Topping D L. Coarse brown rice increases fecal and large bowel short-chain fatty acids and starch but lowers calcium in the large bowel of pigs. The Journal of Nutrition, 2000, 130(7): 1780-1787
    197. Bloomquist J R. Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol, 2002, 54: 145-156
    198. Bolarin M C, Santa A, Cayuel E, Perez-Alfocea F. Short-term solute changes in leaves and roots of cultivated and wild tomato seedlings and salinity. J Plant Physio,\995, 147: 463-468
    199. Bown A W, Shelp B J. The metabolism and physiological roles of 4-aminobutyric acid. Biochemistry, 1989, 8: 21-25
    200. Bown A W, Shelp B J. Themetabolism and function of γ-aminobutyric acid. Plant Physio, 1997, 115:1-5
    201. Bown A W, Ahng G. Mechanical stimulation, 4-aminobutyric acid (GABA) synthesis, and growth inhibition in soybean hypocotyls tissue. Can JBot, 2000, 78: 119-123
    202. Bouche N. Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. PNAS, 2003, 100 (11): 6843-6848
    203. Bouche N. GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol, 2003, 13:607-610
    204. Breitkreuz K E, Shelp B J. Subcellular compartmentation of the 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons. Plant Physiol, 1995, 108: 99-103
    205. Brett A, Cromer, Craig J. Anxiety over GABA_A receptor structure relieved by AChBP. Trends Biochem Sci, 2002, 27(6): 280-287
    206. Busch K B, Fromm H. Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physio, 1999, 121: 589-597
    207. Bush D S. Calcium regulation in plant cells and its role in signalling. Annu Rev Plant Physiol Mol Bio, 1995,46:95-112
    208. Cao W, Nishiyama Y, Koide S. Physicochemical, mechanical and thermal properties of brown rice grain with various moisture contents. International journal of food science & technology. 2004, 39(9): 899-906
    209. Caroll AD, Fox G G, Lauries S. Ammonium assimilation and the role of γ-aminobbutyric acid in pH homeostasis in carrot cell suspension. Plant Physiol, 1994,106: 513-520
    210. Chae H S, Hwangbo J, Ann C N, Yoo Y M, Cho S H, Lee J M, Choi Y I. Effect of Dietary Brown Rice on the Carcass and Meat Quality of Broiler Chicken. Korean Journal of Poultry Science, 2004,31(3): 165-170
    211. Cheah L H, Page, B B C, Shepherd R. Chitosan coating for inhibition of sclerotinia rot of carrots. New Zealand journal of Crop and Horticultural Science, 1997, 25(1): 89-92
    212. Wang, Karen Kerckhofs, Mark Van de Casteele, Use Smolders, Daniel Pipeleers, and Zhidong Ling. Glucose Inhibits GABA-Release by Pancreatic Beta Cells through an Increase in GABA Shunt Activity. Am J Physiol Endocrinol Metab (October 25,2005). doi:10.1152/ajpendo.00304.
    213. Chikaka Tanaka. γ-Aminobutyric acid in peripheari tissue. Life Sci, 1985, 37(24): 2221 -2235
    214. Choi H D, Park Y K, Kim Y S, Chung C H, Park Y D. Effect of Pretreatment Conditions on gamma-Aminobutyric Acid Content of Brown Rice and Germinated Brown Rice. Korean journal of food science and technology, 2004, 36(5): 761 -764
    215. Cholewa E, Cholewinski A J, Shelp B J. Cold shock-stimulated γ-aminobutyric acid synthesis is mediated by increase in cytosolic Ca~(2+), not by increase in cytosolic H~+. Can J Bot, 1997, 75: 375-382
    216. Christensen H N. Special transport and neurological significance of two amino acids in a configuration conventionally designated as D. J Exp Biol, 1994,196: 297-305
    217. Chung I, Bown A W, Shelp B J. The production and efflux of 4-aminobutyrate is isolated mesophyll cells. Plant Physiol, 1992, 99: 659-664
    218. Claudia B, Harald H, Goivanni L R, Jurg W B. Small intestinal morphology in eight-day-old calves fed colostrum for different durations or only milk replacer and treated with Long-R3-insulin growth factor I and growth hormone. Journal of Animal Science, 1998 , 76(3): 758-766.
    219. Coiro V, Capretti L, Bianconi I, Castelli A, Cerri L, Roberti G, Marcato A, Volpi R, Chiodera P. Reduction of baclofen-, but not sodium valproate-induced growth hormone release in type I diabetic men. Horm Metab Res, 1991, 23: 600-604
    220. Couve A. GABA_B receptors: a new paradigm in G protein signaling. Mol Cell Neurosci, 2000, 16:296-312
    221. Crawford L A, Bowm A W, Breitkreuz K E. The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol, 1994, 104: 865-871
    222. Desikachar H S R, Raghavendra Rao S N,Nnathachar T K. Effects of degree of milling on water absor4ption of rice duing cooking. J Food Sci Technol, 1965 (11): 110-112
    223. Dogra J, Dhaliwal Y S, Kalia M. Effect of soaking, germination, heating and roasting on the chemical composition and nutritional quality of soybean and its utilization in various Indian leavened products. Journal of Food Science and Technology, 2001, 38 (5): 453-457
    224. Edmonds. Comparative effects of individual amino acid when added to a corn-soybean meal diet: effects on growth and dietary choice in the chick. J Anim Sci, 1987, 8 (65): 699-705
    225. El-Adawy TA, Rahma EH, El-Bedawy AA, Sobihah TY. Effect of soaking process on nutritional quality and protein solubility of some legume seeds. Nahrung, 2000,44 (5): 339-343
    226. El Adawy T A, Rahma E H, El Bedawey A A, El Beltagy A E. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods for Human Nutrition, 2003, 58(3): 13; 48-50; 53
    227. E J Walsh, J McGee, J L Fitzakerley. GABA actions within the caudal cochlear nucleus of developing kittens. Journal of Neurophysiology, 1990, 64 (3): 961-977
    228. Erdo S L, Rosdy B, Szporny L, Higher GABA concentrations in fallopian tube in brain of rat. J Neurochem, 1982,38: 1174-1176
    229. Erdo S L, Woff J R. Releasable, non-neuronal GABA pool in rat stomach. Eur. J. Pharmacaol, 1988,56: 165-168
    230. Essrich C, Lorez M, Benson J A. Postsynaptic clustering of major GABA_A receptor subtypes requires the α_2 subunit and gephyrin. Neurosicence, 1998, 1: 563-571
    231. Fairen C A, Aivarez-Bolado G, Sanchez M R Prenatal development of intrinsic neurons of rat neocortex: acomparative study of the distribution of GABA immunore active cells and the GABA_a receptor. Neuroscience, 1991, 40: 375-397
    232. FAO/WHO. Energy and Protein Requirements. WHO. Tech. Ser. No.522. FAO/WHO, Geneva, Switzerland: 1973, 380
    233. Fougere F, Rudulier D, Streeter J G Effect of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids and cytosol of alfalfa. Plant Physiol, 1991, 96:1228-1236
    234. Frahm C, Haupt C, Weinandy F, Siegel G, Bruehl C, Witte O W. Regulation of GABA transporter mRNA and protein after photothrombotic infarct in rat brain. The Journal of Comparative Neurology. 2004,478 (2): 176-188
    235. Gale E F. The bacterial amino acid decarboxylase. Adv Enzymol, 1966, 6: 1-32
    236. Gamel T H, Linssen J P, Mesallem A S, Damir, A A, Shekib, L A. Effect of seed treatments on the chemical composition and properties of two amaranth species: starch and protein. Journal of the Science of Food and Agriculture, 2005, 85 (2): 319-327
    237. Giotti A, Luzzi S, Spagnesi. GABA and GABA_a receptor-mediated effects in guinea-pig ileum. Br J Pharma, 1983,78:469-478
    238. Giovannini M G, Rakovska A, Benton R S, Pazzagli M, Bianchi L, Pepeu G Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience, 2001, 106 (1): 43-53
    239. Gloria Urbano, Pilar Aranda, Antonio Vilchez, Carlos Aranda, Lydia Cabrera, Jesus M Porres, Maria Lopez-Jurado. Effects of germination on the composition and nutritive value of proteins in Pisum sativum, L. Food Chemistry, 2005, 93 (4): 671 -679
    240. Gravielle, Maria C, Faris, Ramona, Russek, Shelley J, Farb, David H. GABA Induces Activity Dependent Delayed-onset Uncoupling of GABA/Benzodiazepine Site Interactions in Neocortical Neurons. Journal of Biological Chemistry, 2005, 280 (22), 20954-20960
    241. Graham A R, Johnston, Phan K L. GABA_C receptors as drug targets. Curr. Drug Targ CNS Neurol Disord, 2002, 2 (4): 260-269
    242. Grandmontagne Bernard. Film-forming chitosan solutions for use in the coveting of seeds. FR2701032 A15 Aug, 1994, 16
    243. Green A R, Hainsworth A H, Jackson D M. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology, 2000,39 (9):1483-1494
    244. Hagiwara, Yukihiko, Kubo, Takao. Anterior hypothalamic neurons respond to blood pressure changes via γ-aminobutyric acid and angiotensins in rat. Neuroscience, 2005, 384(3): 250-253
    245. Hallfrisch J, Scholfield D J, Behall K M. Blood pressure reduced by whole grain diet containing barley or whole wheat and brown rice in moderately hypercholesterolemic men. Nutrition research, 2003, 23 (12): 1631-1642
    246. Hamada. J.S. Characterization of protein fractions of rice bran to devise effective methods of protein solublication. Cereal Chem, 1999, 74: 662-668
    247. Hammond- Kosack K E, Jones J D G. Resistance gene-dependent plant defense response. Plant Cell, 1996,8:1773-1791
    248. Hardwiger L A, Ffistensky B, Rieman R C. Chitosan, a natural regulator in plant—fungal pathogen interactions, increases Crop yields. In: John P, Zikakis(eds). Chitin, Chitosan, and Related Enzymes. New York, Winston Inc: Academic Pres. 1984,291-302
    249. He X, Kermode AR. Proteases associated with programmed cell death of megagametophyte cells after germination of white spruce (Picea glauca) seeds. Plant Molecular Biology, 2003, 52(4): 729-744
    250. Heber U, Tyankova L, SAntarius K K. Stabilization and inactivation biological membranes during freezing in the presence of amino acid. Biochem Biophys Acta, 1971, 241: 578-582
    251. Heinemann R J B, Fagundes P L, Pinto E A, Penteado M V C, Lanfer Marquez U M. Comparative study of nutrient composition of commercial brown, parboiled and milled rice from Brazil. Journal of food composition and analysi, 2005, 18 (4): 287-296
    252. Hepler P K, Wayne R O. Calcium and plant development. Ann Rev Plant Physiol, 1985, 36: 397-439
    253. Hibbert B, Fung I, McAuley R, Samia M, Trudeau V. Catecholamine depletion modulates serum LH levels, GAD67 mRNA, and GABA synthesis in the goldfish. General and Comparative Endocrinology, 2005, 140(3): 176-183
    254. Hirano S, Yamamoto T, Hayashi M. Chitinase activity in seeds coated with chitosan derivatives. Agricultural and Biological Chemistry, 1990, 54(10): 2719-2720
    255. Hiromi Hagiwara, Taiichiro Seki, Toyohiko Ariga. The Effect of Pre-germinated Brown Rice Intake on Blood Glucose and PAI-1 Levels in Streptozotocin-induced Diabetic Rats. Bioscience, Biotechnology, and Biochemistry, 2004,68 (2): 444-447
    256. Hitzig B M, Kneussl M P, Shih V, Brandstetter R D, Kazemi H. Brain amino acid concentrations during diving and acid-base stress in turtles. Journal of Applied Physiology, 1985, 58 (6): 1751-1754
    257. Hooda S, Jood S. Effect of soaking and germination on nutrient and antinutrient contents of fenugreek (Trigonella foenum graecum L.). Journal of Food Biochemistry, 2003, 27 (2): 165-176
    258. Ian D Wilson, Gary L A Barker, Chungui Lu, Jane A, Coghill, Richard W, Beswick, John R, Lenton, Keith J Edwards. Alteration of the embryo transcriptome of hexaploid winter wheat (Triticum aestivum cv. Mercia) during maturation and germination. Functional & Integrative Genomics, 2005,5(3): 144-154
    259. Ikonomovic S, Kharlamov E, Manev H, Ikonomovic M D, Grayson D R. GABA and NMDA in the prevention of apoptotic-like cell death in vitro. Neurochemistry International, 1997, 31(2): 283-290
    260. Il-Jun Kang, Cha-Kwon Chung, Jeong-In Sohn. Effects of pH and gamma irradiation on the physicochemical properties of corn starch. Journal of food science and Nutrition, 1999, 4 (3): 175-179
    261. Inmaculada Martinez, Pedro Partal, Jose Mufioz, Crispulo Gallegos. Influence of thermal treatment on the flow of starch-based food emulsions. European Food Research and Technology. 2003,217 (1): 17-22
    262. Ishikawa A, Ishiguro S, Tamai M. Changes in GABA metabolism in streptozotocin-induced diabetic rat retinas. Current Eye Research, 1996, 15 (1): 63-71
    263. Jeon T 1, Hwang S G, Lim B O, Dong Ki Park. Extracts of Phellinus linteus grown on germinated brown rice suppress liver damage induced by carbon tetrachloride in rats. Biotechnology Letters, 2003, 25 (24): 2093-2096
    264.Jeyarani T, Reddy S Y, Prabhakar J V. PHYSICO-CHEMICAL AND FUNCTIONAL PROPERTIES OF STARCHES SEPARATED FROM BOMBAY HALWA, A TRADITIONAL INDIAN. Journal of Food Science and Technology, 1996, 33 (2): 116-120
    265. Kalia V, Hole D R, Willson C A. Effect of gonadal steroid and gamma-aminobutyric acid on LH release and dopmine expression and activity in the zona incerta in rats. Reproduction and Fertility, 1999, 117: 189-197
    266. Kanjanapruthipong J. Supplementation of milk replacers containing soy protein with threonine, methionine, and lysine in the diet s of calves. Journal of Dairy Science, 1998, 81 (11): 2912-2915
    267. Kathiresan A, Tung P, Chinnappa C C . γ-aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiol, 1997, 115: 129-135
    268. Kathiresan A, Miranda J, Chinnappa C C. γ-aminobutyric acid promotes stem elongation in stellaria pongipes: the role of ethylene. Plant Growth Regul, 1998,26: 131-137
    269. Kim H Y, Yokozawa, Takako, Nakagawa, Takako Sasaki, Sumiyo. Protective effect of γ-aminobutyric acid against glycerol-induced acute renal failure in rats. Food & Chemical Toxicology, 2004, 42 (12): 2009-2014
    270. Kim K M, Jang I S, Ha S D, Bae D H. Improved Storage Stability of Brown Rice by Coating with Rice Bran Protein. Korean Journal of Food Science and Technology, 2004, 36 (3): 490-500
    271. Kinnersly A M, Lin F. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is potential modulator of ion transport in plants. Plant Growth Regul 2000, 32: 65-76
    272. Klein R I, Harris R A. Regulation of GABAa receptor structure and function by chronic drug treatment in viov and with stably transfected clls. Jpa. J Pharmacol, 1996, 70 (1): 1-15
    273. Knight M R, Campbell A K, Smith S M. Transgenic plant aequorin reports the effect of touch and cold shock and clicitors on cytoplasmic calcium. Nature, 1991, 325: 524-526
    274. Krantis A, Costa M, Furness J B. γ-minobutyric acid stimulates intrinsic inhibitory and excitatory nerves in the guinea-pig intestine. European Journal of Pharmacology, 1980, 67: 461-468
    275. Kumumato E. The pharmacology of amino-acid response in septal neutrons. Prog Neurobiology, 1997, 52 (3): 197-259
    276. Kuo Y H, Pascale Rozan, Fernand Lambein, Juana Frias, Concepcion Vidal-Valverde. Effects of different germination conditions on the contents of free protein and non-protein amino acids of commercial legumes. Food Chemistry, 2004, 86 (4): 537-545
    277. Kurkdjian A, Guern J. Intracellular pH: measurement and importance in cell activity. Annu Rev Plant Physilo Plant Mol Biol, 1989, 40: 271 -303
    278. Jaworski J N, Francis DD, Brommer C L, Morgan E T, Kuhar M J. Effects of early maternal separation on ethanol intake, GABA receptors and metabolizing enzymes in adult rats. Psychopharmacology, 2005, 181 (1): 8-15
    279. Janzen D J, Allen L J, Mac Gregor K B. Cytosolic acidifaction and γ-aminobutyric acid synthesis during the oxidative burst in isolated Asparagus sprengeri mesophyll cells. Can J Bot, 2001, 79: 438-443
    280. J Dogra, Y S Dhaliwal, Manoranjan Kalia. COMPOSITION AND NUTRITIONAL QUALITY OF FABABEAN AND UTILIZATION IN PREPARATION OF VARIOUS INDIAN LEAVENED PRODUCTS. Journal of dairying, foods & home sciences, 2004, 23 (1): 1 -8
    281. Johnson B A. Recent advances in the development of treatments for alcohol and cocaine dependence: focus on topiramate and other modulators of GABA or glutamate function. CNS Drugs, 2005, 19 (10): 873-896
    282. Jensen K R, Mirsky R. GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature, 1979, 281:71-74
    283. Larsen P J, Tang- Christensen M, Cameron J L. Central administration of neuropeptide Y potently stimulates food intake in male rhesus monkey. Soc Neurosci Abstr 1997, 23: 1345
    284. Lauder J M, Han V K M, Henderson P. Characterization of somatomedin/insulin-like growth factor receptors and correlation with biologic action in cultured neonata lrat astroglial cells. Neuroscience, 1986,19:465-493
    285. Lauren H B, Lopez-Picon, F R Korpi, E R Holopainen, I E. Kainic acid-induced status epilepticus alters GABA receptor subunit mRNA and protein expression in the developing rat hippocampus. Journal of Neurochemistry, 2005, 94 (5): 1384-1394
    286. Leigh A J, Carte N D, Horto R. Ovarian steroid regulation of glutamic acid decarboxylase gene expression in individual hypothamic nuclei Neuroendocrinology, 1990, 52: 43-48
    287. Li D F, Zhang D F, Piao X S, Han I K, Yang C J, Li J B, Lee J H, Li D. Effects of replacing corn with Chinese brown rice on growth performance and apparent faecal digestibility of nutrients in weanl ing pigs. Asian-Australasian Journal of Animal Sciences, 2002, 15(8): 1191 -1197
    288. Li J B, Li D F, Yin Y L, Piao X S, He J H, Chen G P, Shu J C. Performance, nutrient digestibility and intestinal disaccharidase activity of weaner/grower pigs given diets containing extruded Chinese stored brown rice with exogenous enzyme supplements Animal science, 2004, 79 (3): 429-438
    289. LI X, ZHOU Q, HE R G, WANG Y L, SUN Y Z, ZHOU Y, YANG Z-M, ZHANG W. Performance of Fatty Liver Development in Response to Brown Rice and Corn-Based Diets in Overfed Landes Geese (Anser ansef). Agricultural sciences in China, 2005, 4 (2): 150-155
    290. LIM B O, CHO B G, PARK T, YAMADA K, JEON T, KANG S A, PARK D K, HWANG S G. Comparative Study on the Modulation of IgE and Cytokine Production by Phellinus linteus Grown on Germinated Brown Rice, Phellinus Linteus and Germinated Brown Rice in Murine Splenocytes. Bioscience, Biotechnology, and Biochemistry, 2004, 68 (11): 2391-2394
    291. Lim B O, Jeon T I, Hwang S G, Moon J H, Park D K. Phellinus linteus grown on germinated brown rice suppresses IgE production by the modulation of Thl/Th2 balance in murine mesenteric lymph node lymphocytes. Biotechnology Letters, 2005, 27 (9): 613-617
    292. Ling V, Snedden W A, Shelp B J. Analysis of soluble calmodulin binding protein from fava bean involved in regulation of opiate-dependent luteinizing hormone-releasing hormone secretion. Endocrinology, 1989,125: 548-553
    306. Masotto G, Negro-Vilar A. GABA and gonadotropin secretion: evidence from in vitro studies n the regulation of LHRH secretion. In: Racagni G, Donoso AO (eds). Advances in Biochemical Psychopharmcology. New York Raven Press. 1986, 243-250
    307. Mayer R R, Cherry J H, Rhodes D. Effect of heat shock on aminoacid metabolism of Cowpea cells. Plant Physiol, 1990, 94: 796-810
    308. McCann S M, Vijayan E, Negro-Vilar A. Role of gamma aminobutyric acid (GABA) in control of anterior pituitary hormone release. In: Costa, E Chiara G, Gessa G. (eds) GABA and Benzodiazepine Receptors. New York, Raven Pres, 1981, 237-246
    309. McCann S M, and Rettori V. Gamma aminobutyric acid (GABA) control anterior pituitary hormone. Secretion. In Racagni G, Donoso A O, (eds). Advances in Biochemical psychopharmacology. New York, Raven Press, 1986, 178-180
    310. Mergl Z, Acs Z, Makara G B. Growth hormone secretion and activation of cyclic AMP by growth hormone releasing hormone and gamma-aminobutyric acid in the neonatal rat pituitary. Life Sci 1995,56:579-585
    311. Mi Y K, Kim S Y, Koh H J, Chin J H Chin, Nam S H. Antioxidative Activity of Germinated Specialty Rices. Korean journal of food science and technology, 2004, 36 (4): 624-630
    312. Mi Young Kang, Yeon Ri Lee, Seok Hyun Nam. Characterization of the germinated rice to examine application potentials as functional rice processed foods. Korean journal of food science and technology. 2003,35 (4): 696-701
    313. Momose Sato Y, Sato K, Hirota A, Sakai T, Yang X S, Kamino K. Optical characterization of a novel GABA response in early embryonic chick brainstem. Neuroscience, 1997, 80(1): 203-219
    314. Minorskv P V. An heuristic hypothesis of chilling injury on plants. A role for calcium as the primary physiological transducer of iniry. Plant Cell Envion, 1985, 8: 75- 83
    315. Monteleone P, Iovino M, Orio F, Steardo L. Impaired growth hormone response to sodium valproate in normal aging. Psychopharmacology, 1987, 91:10-13
    316. Monteleone P, Maj M, Iovino M, Steardo L. Evidence for a sex difference in the basal growth hormone response to GABAergic stimulation in humans. Acta Endocrinol (Copenh), 1988, 119: 353-357
    317. Monteleone P, Maj M, Iovino M, Forziati D, Veltro F, Steardo L Baclofen-induced growth hormone secretion is blunted in chronic schizophrenics: neuroendocrine evidence for a GABA disturbance in schizophrenia. Psychiatry Res, 1988, 26: 1-9
    318. Mubarak A E. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chemistry, 2005, 89(4): 489-495
    319. Negro-Vilar A, Vijayan E, McCann S M The effect of intraventricular gamma-aminobutyric acid GABA on hypothalamic catecholamines and LHRH and on pituitary hormone release. Brain Res Bull 1980, 5, 239-244
    320. Nelson R M, Green A R, Lambert D G. On the regulation of ischaemia-induced glutamate efflux from rat cortex by GABA; in vitro studies with GABA, clomethiazole and pentobarbitone. Br J Pharmacol, 2000, 130(5): 1124-1130
    321. Nicoll R A. The coupling of neurotransmitter receptors of ion channels in the brain. Science, 1988, 241:545-551
    322. Nikolarakis K E, Almeida O F X, Herz A. Corticotropin-releasing factors (CRF) inhibits gonadotropin-releaseing hormone (LHRH) release from superfused rat hypothalamus in vitro. Brain Res, 1986, 377, 388-390
    323. Nikolarakis K E, Loeffler O F X, Herz A. Pre-and postsynoptic actions of GABA on the release of hypothalamic gonadotropin-releasing hormone(GnRH). Brain Re, Bull, New York, 173-189
    324. Nirmala M, Rao MVSSTS, Muralikrishna G. Carbohydrates and their degrading enzymes from native and malted finger millet (Ragi, Eleusine coracana, Indaf-15). Food Chemistry, 2000, 69 (2): 175-180
    325. Nitecka L M, Sobkowicz H M. The GABA/GAD innervation within the inner spiral bundle in the mouse cochlea. Hearing Research, 1996, 99 (1/2): 91-105
    326. Obrietan K, van den Pol AN. Growth cone calcium elevation by GABA. The Journal of Comparative Neurology, 1996, 372 (2): 167-175
    327. Obrietan K, Gao X B, Van DenPolAN. Excitatory actions of GABA increase BDNF expression via a MAPK-CREB-dependent mechanism—a positive feedback circuit in developing neurons. J Neurophysiol, 2002, 88: 1005-1015
    328. Ogbonna A C, Obi SKC, Okolo B N. Protein modification in malting sorghum. World Journal of Microbiology & Biotechnology, 2003, 19 (5): 495-503
    329. Oh CH, Oh SH. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. Journal of medicinal food, 2004, 7 (1): 19-23
    330. Oh SH, Soh J R, Cha Y S. Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. Journal of medicinal food, 2003, 6 (2): 115-121
    331.Ohtsubo K, Suzuki K, Yuji. Bio-functional components in the processed pre-germinated brown rice by twin-screw extruder. Journal of food composition and analysis, 2005, 19: 303-316
    332. Ohtsubo K, Suzuki K, Yasui Y, Kasmi T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of food composition and analysis, 2005, 18 (4): 303-316
    333. OKADA T, SUGISHITA T. Effect of the defatted rice germ enriched with GABA for sleepness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kogaku Kaishi, 2000, 47(8): 596-603
    334. Okada T, Sugishita T, Murakami T, Murai H, Saikusa T, Horino T. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration Japanese. 日本食品科学工学会誌, 2000, 47(8): 596-603
    335. Onimawo I A, Asugo S. Effects of germination on the nutrient content and functional properties of pigeon pea flour. Journal of Food Science and Technology, 2004,41 (2): 170-174
    336. Otani, Kyohei Ujike, Hiroshi Tanaka, Yuji Morita, Yukitaka Katsu, Takeshi Nomura, Akira Uchida, Naohiko Hamamura, Takashi Fujiwara, Yutaka Kuroda, Shigetoshi. The GABA type A receptor α-5 subunit gene is associated with bipolar I disorder. Neuroscience Letters, 2005, 381(1/2): 108-113
    337. Peng Z, Hong Q, Ying X. GABA and glycine are protective to mature but toxic to immature rat cortical neurons under hypoxia. European Journal of Neuroscience, 2005, 22(2): 289-300
    338. Perez-Alfocea F. NaCl stress-induced organic solute changes on leaves and calli of Lycopersicon enculentum L. pennelli and their interspecific hybrid. J Plant Physiol, 1994, 143: 106-111
    339. Perez-Amador, Carbonell J. Aginine decarboxylase andputrescine oxidase in ovaries of Pisum sativum. Plant Physiol 1995, 107: 865-872
    340. Perez L J, Valcarcel A, de las Heras M A. The storage of pure ram semen at room temperature results in capacitation of perm subpopulation Theriogenology, 1997, 47: 549-558
    341. Piao X S, Li De Fa, Han I K,Chen Y, Lee J H, Wang D Y, Li J B, Zhang D F, Li DF. Evaluation of Chinese brown rice as an alternative energy source in pig diets. Asian-Australasian Journal of Animal Sciences, 2002, 15(1): 89-93
    342. Pospieszny H, Chirkov S, Atabekov J G. Induction of antiviral resistance in plants by chitosan. Plant Sci, 1991, 79(1): 63-68
    343. Raggi V. Changes in free amino acids and osmotic adjustment in leaves of water-stressed bean. Physiol Plantarum, 1994, 91: 427-434
    344. Ramadan BR, Sorour MAH, Hussein AASI. Effect of germination on phytochemical screening, rheological and bread-making properties of mung bean. Assiut Journal of Agricultural Sciences, 2001,32(4): 153-166
    345. Ramputh A I, Bawn A W. Rappid γ-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol, 1996, 111: 1349-135
    346. Rcge A, Pai J S. Thermal and freeze-thaw properties of starch of chickpea (Cicer arietinum). Food Chemistry, 1996, 57(4):545-547
    347. Reema, Hira C K, Balwinder Sadana. Nutritional evaluation of supplementary foods prepared from germinated cereals and legumes. Journal of Food Science and Technology, 2004, 41 (6): 627-629
    348. Reggiani R, Laoreli P. Evidence for involvement of phospholipase C in the anaerobic signal transduction. Plant Cell Physiol, 2000, 41(12): 1392-1396
    349. Rhode D, Handa S, Bressan R A. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol, 1986, 82: 890-903
    350. Robert J K M. Contribution of malate and amino acid metabolism to cytoplasmic pH regulation in hypoxic maize root tips studied using magnetic resonance spectroscopy. Plant Physiol, 1992, 98: 480-487
    351. Rosahl T W, Atack J R. Preface. Curr Drug Targ CNS Neurol Disord, 2003, 2(4): 1 -3
    352. Rudd J J, Franklin-Tong V E. Unravelling response-pecificity in Ca2+ signalling pathways in plant cells. New Phytol, 2001 ,151: 7-33
    353. Ryan C A. Oligosaccharide as recognition signals for the expression of defensive genes in plants. Biochem, 1988, 27: 8879 -8883
    354. Sabehat A, Weiss D, Lurie S. Heat-shock proteins and cross-tolerance in plants. Physiol Plant, 1998, 103:437-441
    355. Saharan K, Khetarpaul N, Bishnoi S. Antinutrients and protein digestibility of fababean and ricebean as affected by soaking, dehulling and germination. Journal of Food Science and Technology, 2002, 39(4): 418-422
    356. Saikusa T. Accumulation of Gama aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotech, Biochem 1994, 58( 12): 2291 -2292
    357. Saikusa T. Distribution of free amino acid in the rice kernel and kernel fraction and the effect of water soaking on the distribution. J Agri Food Chem, 1994, 42: 1122-1125
    358. Salmenkallio M M, Heinio R L, Myllymaki O, Lille M, Autio K, Poutanen K. Relating microstructure, sensory and instrumental texture of processed oat. Agricultural and Food Science, 2004, 13 (1-2): 124-137
    359. Satyanarayan V, Nair P M. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plant. Phytochemstry, 1990, 29: 367-375
    360. Satyanarayan V, Nair P M. Purification and characterization of glutamate decarboxylase from Solanum Tuberosum. Eur J Biochem, 1985,150:53-60
    361.SchalIer B, Graf R. Cerebral ischemia tolerance. Sehweiz Rundsch Med Prax, 2002, (91): 1639-1644
    362. Segura MEM, Sira EEP. Characterization of native and modified cassava starches by scanning electron microscopy and X-ray diffraction techniques. Cereal foods world, 2003, 48(2): 78-81
    363. Seki T, Nagase R, Torimitsu M, Yanagi M, Ito Y, Kise M, Mizukuchi A, Fujimura N, Hayamizu K, Ariga T. Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in the pre-germinated brown rice. Biological & pharmaceutical bulletin, 2005, 28(8): 1539-1541
    364. Serraj R, Shelp B J, Sinclair T J. Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress. Physiol Plant, 1998,102: 79-86
    365. Sharp F R, Butrnan M, Aardalen K. Neuronal injury produced by NMDa antagonists can be detected using heat shock proteins and can be blocked with antipsychotics. Psychopharmacol Buml, 1994,30:555-560
    366. She Q X, Yuan Y Y, Roldan E R. γ-aminobutyric acid (GABA) induces the acrosome reaction in human spermatozoa. Mol Hum Reprod, 1997, 3: 677-683
    367. Shelp B J, Bown A W, McLean M D. Metabolism and function of gamma-aminobutyric acid. Trends Plant Sci, 1999,4(11): 446-452
    368. Shen K Z, Johnson S W. Dopamine depletion alters responses to glutamate and GABA in the rat subthalamic nucleus Neuroreport, 2005, 16(2): 171-174
    369. Shih F F, Daigle K W. Gelatinization and pasting properties of rice starch modified with 2-octen-1-ylsuccinic anhydride. Nahrung, 2003,47( 1): 64-67
    370. Shonis C A, Waldrop T G. Augmented neuronal activity in the hypothalamus of a spontaneously hypertensive rats. Brain Res Bull, 1993, 30(1-2): 45-52
    371. Shuaib A, Ijaz M S, Miyashita H. GABA and gluamate levels in the substantia nigra reticulation following repeatitive cerebral ischemia in gerbils. Exp Neurol, 1997, 147: 311 -315
    372. Sirvanci S, Meshul C K., Onat F, San T. Glutamate and GABA immunocytochemical electron microscopy in the hippocampal dentate gyrus of normal and genetic absence epilepsy rats. Brain Research, 2005, 1053(1/2): 108-115
    373. Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 1989,28: 1057-1058
    374. Snedden W A, Chung I, Pauls R H . Proton/L-glutamate symport and the regulation of intracellular pH in isolated mesophyll cells. Plant Physiol, 1992, 99: 665-671
    375. Snedden W A, Frmm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytol, 2001,151:35-66
    376. Sonnewald, Ursula Olstad, Elisabeth Qu, Hong Babot, Zoila Cristofol, Rosa Sunol, Cristina Schousboe, Arne Waagepetersen, Helle. First direct demonstration of extensive GABA synthesis in mouse cerebellar neuronal cultures. Journal of Neurochemistry, 2004, 91(4): 796-803
    377. Sorour MAH, Ramadan BR, Hussein AASI. Changes of phytase activity, phytates and minerals content during germination and fermentation of two mung bean cultivars. Assiut Journal of Agricultural Sciences, 2001, 32,(3): 87-100
    378. Stanley C C, Williams C C, Jenny B F, Fernandez J M. Effect s of feeding milk replacer once versus twice daily on glucose metabolism in Holstein and Jersey calves. Journal of Dairy Science, 2002, 85(9): 2335-2343
    379. Stratford T R, Kelly A E. Evidence of a functional relationship between the neucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci, 1999, 19(24): 11040-11048
    380. Streeter J G, Thompson J F. In vivo and in vitro studies on γ -aminobutyric acid metabolism with the radish p\ant(Raphanus sativus L) . Plant Physiol, 1972, 49: 579-584
    381. Su Tian, Kozo Nakamura, Hiroshi Kayahara. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of Agricultural and Food Chemistry, 2004, 52(15): 4808-4813
    382. Suk-H Oh, Ju-Ryoun Soh, Youn-Soo Cha. Germinated Brown Rice Extract Shows a Nutraceutical Effect in the Recovery of Chronic Alcohol-Related Symptoms. J Medicinal Food, 2003a, 6: 115-122
    383. Suk-H Oh, Chan-Ho Oh. Brown Rice Extracts with Enhanced Levels of GABA Stimulate Immune Cells. Food science and biotechnology, 2003b,12 (3): 248-252
    384. Sung H G, Shin H T, Ha J K, Lai H L, Cheng K J, Lee J H. Effect of germination temperature on characteristics of phytase production from barley. Bioresource Technology, 2005, 96(11): 1297-1303
    385. Sun L K, Young K S, Jong R S, Han S H. Effect of germination condition and drying methods on physicochemical properties of sprouted brown rice. Korean Journal of Crop Science, 2001, 46(3): 221-228
    386. Suzuki K, Maekawa T. Induction of homogeneous rooting control in liquid cultured brown rice using hypoxic conditions. Seed Science and Technology, 2000, 28(2): 367-379
    387. Suzuki K, Maekawa T. Analysis on sprouting control of brown rice. 農業施设, 1999a, 30(1): 1-10
    388. Suzuki K, Maekawa T. Microorganisms control during processing of germinated brown rice. 農業施设, 1999b, 30(2): 137-144
    389. Suzuki K, Maekawa T. Induction of homogeneous rooting control in liquid cultured brown rice using hypoxic conditions. Seed Science and Technology, 2000, 28(2): 367-379
    390. Tadashi OKADA, Tomoko SUGISHITA. Effect of the Defatted Rice Germ Enriched with GABA for Sleepness, Depression, Autonomic DISORDER by Oral Administration. Nippon Shokuhin Kagaku Kogaku Kaishi, 2000,47(8): 596-603.
    391. Takayo S, Toshiroh H, Yutaka M. Accumulation of a'-am inobutyric acid in the rice gemination during water soaking. Biosci Biotech Biochem, 1994, 58(12): 91-92
    392. Taniyama K, Kusunoki M, Saito N. Release of GABA from cat colon. Science, 1982, 217: 1038-1040
    393. Taniyama K, Kusunoki M, Saito N. Release of endogenous and labeled GABA from isolated guinea-pig ileum. Am J Physiol, 1983, 245: 717-721
    394. Tappaz M L, Oertel W H, Wassef M. Central GABA energic neuroendocrine regulation: pharmacogical and morphological evidence. Progress in Brain Research, 1982, 55: 77
    395. Tiburcio A F, Altabella T, Borell A. Polyamine metabolism and its regulation. Physiol Plant, 1997, 100:664-674
    396. Toofanian F, Targowski S P. Fetal development and distribution of intestinal alkaline phosphatase in rabbit. Research in Vetetinary Science. 1982, 32: 303-305
    397. Toshiaki M, John T. Possible roles of calcium and dalmodulin in the biosynthesis and secretion of a-Amylase in rice seed scutellar epithelium. Plant Physiol, 1984, 75: 21 -25
    398. Tran T U, Suzuki K, Okadome H, Ikezaki H, Homma S, Ohtsubo K. Detection of changes in taste of japonica and indica brown and milled rice (Oryza sativa L.) during storage using physicochemical analyses and a taste sensing system. Journal of Agricultural and Food Chemistry, 2005,53(4): 1108-1118
    399. Tsang S Y, Carl P, Xue H. Development of effective therapeutics targeting the GABA_A receptor: naturally occurring alternatives. Curr Pharmaceut Design, 2004, 10(9):1035-1045
    400. Tsushida T, Murai T. Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic condition. Agr Biol Chem, 1987, 51: 2865-2871
    401. Turano F J, Kramer G F, Wang C Y. The effect of methionine, ethylene and polyamine catabolic intermediates on polyamine accumulation in detached soybean leaves. Physiol Plant, 1997, 101: 510-518
    402. Urbano G, Lopez Jurado M, Frejnagel S, Gomez Villalva E, Porres JM, Frias J, Vidal Valverde C, Aranda P. Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition, 2005, 21(2): 230-239
    403. Vacher C M. GABA_B receptors as potential therapeutic targets. Curr Drug Targ CNS Neurol Disord, 2003,2(4): 248-260
    404. Vinitskaya Hanna, Lachowicz Agnieszka, Kilanowicz Anna, Bartkowiak Jacek, Zylinska Ludmila. Exposure to polychlorinated naphthalenes affects GABA-metabolizing enzymes in rat brain. Environmental Toxicology & Pharmacology, 2005,20(3): 450-455
    405. Volpi R, Scalioni A, Marcato A, Caffarra P, Rossi G, Caffarri G, Delsignore R, Chiodera P, Coiro. Failure of the gamma-aminobutyric acid (GABA) derivative, baclofen, to stimulate growth hormone secretion in Parkinson's disease. J Neural Transm Park Dis Dement Sect 1991, 3: 259-264
    406. Volpi R, Gerra G, Vourna S, Vescovi P P, Maestri D, Chiodera P, Coiro. Failure of the gamma-aminobutyric acid (GABA) derivative, baclofen, to stimulate growth hormone secretion in heroin addicts. Life Sci, 1992, 51: 247-251
    407. Wagner S, Castel M, Gainer H, Yarom Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature, 1997, 387(6633): 598-603
    408. Wallace W, Secor J, Schrader L E. Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol, 1984, 75: 170-175
    409. Wassef A, Baker J, Kochan L D. GABA and Schizophrenia: A Review of Basic Science and Clinical Studies. Journal of clinical psychopharmacology, 2003, 23(6): 601-640
    410. Watanabe M, Maeda T, Tsukahara K, Kayahara H, Morita N. Application of pregerminated brown rice for breadmaking. Cereal Chemistry, 2004, 81 (4): 450-455
    411. Wayne E. Marshall. Effect of degree of milling of brown rice and particle and particle size of milled rice on starch gelatinzation. Cereal Chem, 1992, 69(6): 632-636
    412. Wigge B, Kroemer S, Gardestroem P. The redox levels and subcellular distribution of pyridine nucleotides in illuminated barley leaf protoplasts studied by rapid fractionation. Physiol Plant, 1993,88:10-18
    413. Willson C A, James M D, Leigh A J. Role of gamma-aminobutyric acid in zona inzerta in the control of luteinizing hormone release and ovulation. Neuroendocrinology, 1990, 52: 354-360
    414. Yamasaki Y, Okayama Univ, Bioresources Res Inst, Kurashiki. Beta-amylase in germinating millet seeds. Phytochemistry, 2003, 64 (5): 935-939
    415. Yasui Y, Suzuki K, Okadome H, Okunishi T, Hashimoto K, Ohtsubo, K. Research on development for applications of germinated brown rice. Part II. Preparation of co-extruded flours using germinated brown rice and barley and its antihypertensive effect. 日本食品科学工学会誌, 2004, 51(11): 592-603
    416. Yeh H H, Kolb J E. Ethanol modulation of GABA-activated current responses in acutely dissociated retinal bipolar cells and ganglion cells. Clinical and Experimental Research, 1997, 21(4): 647-655
    417. Yuan T, Vogel H J. Calcium- calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase. J Biol Chem, 1998, 273: 30328-30335
    418. Yuan Y Y, He V N, Shi Q X. GABA initiates the acrosome reaction and fertilizing ability in human sperm. Acta phsiol Sin, 1998, 50(3): 326-332
    419. Zhang G, Raol Y H, Hsu F C. Effects of status epilepticus on hippocampal GABA_A receptors are age-dependent. Neurosci, 2004,125: 299-303
    420. Zhang De Fu, Li De Fa, Piao X S, Han I K, Yang C J, Shin I S, Dai J G, Li J B, Zhang D F, Li D F. Effects of replacing corn with brown rice or brown rice with enzyme on growth performance and nutrient digestibility in growing pigs. Asian-Australasian Journal of Animal Sciences, 2002, 15(9): 1334-1340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700