二元表面活性剂微乳液体系微观结构、性质及在农药药物传递中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微乳液是由油(O)、水(W)、表面活性剂(S)和助表面活性剂(CS)组成的有序多元体系,具有较大的界面面积、超低界面张力和热力学稳定等性质。微乳液作为药物载体已广泛应用于农药学等领域。农药微乳剂(micro-emulsion)以水作为分散介质,不用或仅用少量有机溶剂,在表面活性剂的作用下,将油溶性原药以超微细状态(粒径0.01-0.1μm)均匀分散于水中,形成热力学稳定的透明均相体系。由于传统农药剂型乳油中含有大量甲苯、二甲苯等芳香烃有机溶剂,造成环境污染和资源浪费。而以水部分或全部替代乳油中有机溶剂的微乳剂便成了国内外农药新剂型研究的热点。
     关于农药微乳剂的形成及稳定,目前一些研究主要集中于配方的筛选,尤其是对微乳液形成的关键组分表面活性剂的使用,仍采用随机或经验法,还没有形成有效的理论。
     烷基苯磺酸盐和烷基酚聚氧乙烯醚分别为阴离子表面活性剂和非离子表面活性剂中应用最为广泛的两类表面活性剂,具有优良的润湿及乳化性能。本论文从表面活性剂分子间的相互作用入手,研究了烷基酚聚氧乙烯类型的非离子表面活性剂NP-10及TX-100与烷基苯磺酸盐阴离子表面活性剂SDBA及SDBS在水溶液中形成的混合胶团分子间的相互作用,用正规溶液理论计算它们形成混合胶束组成、分子间相互作用参数。深入研究了复配表面活性剂形成胶团和微乳液的微观结构、相行为及热力学性质,制备了以联苯菊酯、氟硅唑为模型药物的高效载药微乳液。
     首先研究了阴离子表面活性剂SDBA、SDBS分别与非离子表面活性剂复配体系的协同效应。用表面张力法测定了复配体系的临界胶束浓度(cmc),根据正规溶液理论计算分子间相互作用参数及分子交换能,研究了分子间的相互作用及热力学性质。结果表明:所有混合体系在胶团和溶液表面的相互作用参数β值(分别为-5.23、-4.88、-2.54、-1.30)均为负值,表明所有复配体系都产生了协同效应。混合胶束热力学研究表明,复配体系的吉布斯自由能?G emx均为负值,|βM|随温度升高变得更大,表明在混合胶束中存在有利的相互作用。在4种混合体系中,两种不同阴离子表面活性剂与同一种非离子表面活性剂NP-10复配时,SDBA+NP-10的协同增效作用比SDBS+NP-10强,即|βaMve(SDBA+NP-10)|>|βaMve(SDBS+ NP-10)|;而对于同一种阴离子表面活性剂SDBA与两种非离子表面活性剂复配时,非离子表面活性剂疏水基链碳原子数越多,|β|越大,即|βaMve(SDBA+NP-10)|>|βaMve(SDBA+TX-100)。说明极性头基之间的静电吸引作用及疏水基分子间的相互作用是产生协同效应的主要原因。电解质NaCl可使复配表面活性剂临界胶束浓度降低,且随NaCl浓度增加,溶液的cmc和γcmc都逐步降低。在复配体系中加入正丁醇比加入碳链较短的乙醇更能明显提高混合表面活性剂降低表面张力的能力和效率。通过采用自旋标记电子自旋共振法(ESR)测定了表面活性剂复配体系形成混合胶团的微环境参数。结果表明:SDBA+NP-10复配体系达到cmc时,微黏度变大,形成混合胶团。微极性参数AN随着非离子表面活性剂的增多而变大,表明有更多的非离子表面活性剂插入到阴离子表面活性剂胶团中,有利于形成胶束。同时以芘为荧光探针、二苯甲酮为猝灭剂,用稳态荧光探针法测得4种单一表面活性剂SDBA、SDBS、NP-10、TX-100的胶团聚集数分别为38.0、34.9、55.3、40.4。不同比例复配体系(SDBA/NP-10、SDBA/TX-100、SDBS/NP-10、SDBS/TX-100)的聚集数都比相应单一阴离子表面活性剂的大,但比单一非离子表面活性剂的小。在阴/非表面活性剂相同比例组成下,4个复配体系聚集数的大小关系是:NSDBA/NP-10> NSDBS/NP-10>NSDBA/TX-100> NSDBS/TX-100。用稳态荧光探针法测得复配体系胶束的微观极性(I1/I3)与ESR法一致。表面活性剂复配协同效应总的结果表明,按一定比例复配后表面活性增强,在降低表面张力的效率、能力和形成胶团能力上均显示协同效应。该结果为表面活性剂的高效复配应用提供了基础数据。
     为进一步探讨二元表面活性剂复配体系在形成胶团及微乳液过程中协同效应,本文用介观动力学方法(DPD)模拟了SDBA、NP-10、SDBA+NP-10胶团及微乳液动力学的形成过程,包括胶束结构、水在胶束中的密度分数和界面张力等。发现复配表面活性剂SDBA+NP-10形成胶团的过程中,界面层中SDBA不是均匀地排布,而是其头基聚集成小的团簇,由非离子表面活性剂填充空穴,两者紧密镶嵌,产生协同作用。
     为获得二元表面活性剂和助表面活性剂在油相和界面上的组成及微乳液液滴尺寸等微观结构方面的信息,采用稀释法测定了助表面活性剂醇(正丁醇及正戊醇)对SDBA+NP-10/ /正构烷(正己烷或正庚烷)/水(盐水)微乳液体系的界面组成、热力学性质及微观结构的影响。结果表明:助表面活性剂(正丁醇及正戊醇)在油水界面的分布( n ai)和在油相(正己烷及正庚烷)中的分布( na o)的值都是随着油链长的增长而增大,即较高碳链长的正庚烷有利于醇分布在界面。所有体系? G<0,正丁醇和正戊醇从油相转移到界面是自发的,但转移过程中的吉布斯自由能在正庚烷中比在癸烷中更易于自发进行。该微乳液微观结构为随着水含量增加(ω=10-50),Re和Rw均增加,而Rw增加幅度更大,液滴的界面层的有效厚度(dI)呈下降趋势,W/O微乳液体系逐渐转向O/W型微乳体系。
     为实现微乳液在农药药物高效传递中的应用,本文以上述二元表面活性剂及助表面活性剂体系作为微乳液的关键组分,研究了联苯菊酯、氟硅唑为模型药物的载药微乳液体系的形成(相行为、微观结构和热力学性质)及应用。结果表明:在SDBA+NP-10/正丁醇/联苯菊酯+环己酮/水载药微乳液体系中,NP-10+SDBA复合表面活性剂较单一非离子表面活性剂形成的O/W微乳区域面积大,温度对该微乳液的相行为影响很小。助表面活性剂醇从分散相进入微乳液界面层的标准自由能变化?Gs<0,随着醇碳链的增长,微乳液形成过程?Gs的绝对值增大,有利于微乳液的形成及微乳区面积增大。微乳液形成过程标准焓变-?Hs=0,为无热效应过程,表明标准自由能的变化?Gs是由醇分子的混乱度熵变?SS决定的。通过偏光、电导率、粘度、折射率等分析手段,确定了该体系形成过程中的微观结构变化:在w(H2O)<32%时,为W/O型,在32%63%时,为O/W型微乳液。由于水溶助长剂可增加有机药物在水中的溶解度,为研制有效成分较高的w(氟硅唑)= 8%微乳剂(ME),考察了5种水溶助长剂对SDBA+NP-10/正丁醇/氟硅唑+环己酮/水载药微乳液体系的影响。结果表明:苯甲酸钠浓度为0.5mol?L-1时,水杨酸钠浓度为0.3mol?L-1时,对药物有增溶作用,并随着水溶助长剂浓度的增大,增溶作用更大。尿素对氟硅唑微乳液体系相行为基本没有影响。间苯二酚、葡萄糖、氯化钠均明显减小了氟硅唑微乳剂单相微乳液区的面积。当w(水杨酸钠)=5%时,配制8%氟硅唑微乳剂热贮稳定性好。室内毒力测定及田间药效试验表明, 2.5%联苯菊酯微乳剂及8%氟硅唑微乳剂均为与环境友好及防效优良的农药药物新制剂。
Microemulsion (ME) is a kind of ordered multi-system, consisting of oil (O), water (W), surfactant (S) and co-surfactant (CS). Because of large interfacial area, ultra-low interfacial tension, and thermodynamic stability, microemulsion has been widely used as drug carrier in agrochemical and other fields. With water as the dispersion medium, microemulsion of agrochemicals can form a thermodynamically stable system. In the microemulsion of agrochemicals, with help of the surfactants, the oil-soluble original drug can be completely disp ersed into water to form ultra-fine particles with size of 0.01-0.1μm. There is few organic solvent in microemulsion of agrochemicals. Usually, agrochemical emulsion includes a lot of aromatic sovent, such as toluene and xylene, causing serious environmental pollution. Nowadays, microemulsion of agrochemicals becomes a worldwide hot topic for the agrochemical new-formulation .Surfactant plays a key role in the formation of microemulsion. However, there is little report about the fundmental investigation of surfactant in the applications of agrochemicals drug delivery.
     In this paper, a binary surfactants microemulsion system was prepared by mixing an anionic surfactant and a non-ionic surfactant, and its microstructure、physicochemical properties, and application in agrochemicals drug delivery has been intensively studied. The main achievements are described as follows.
     Firstly, two types of alkylbenzene sulfonate, SDBA and SDBS, were selected as anionic surfactants, and two types of alkylphenol ethoxylate, NP-10 and TX-100, were selected as non-ionic surfactants. And then an anionic surfactant was mixed with a non-ionic surfactan to form a binary surfactants system. The mixed critical micelle concentration (CMC) of the binary surfactants system was determined by surface tension measurement. CMC was used to calculate the molecular interaction parameters and molecule-exchanging energy according to regular solution theory of the binary surfactant mixtures. The interaction parameterβvalues in the mixed micelles and air/water interface were measured to be all negative values, indicating that a synergistic effect was produced in all of the mixtures. Thermodynamics investigation of mixed micelles showed that the Gibbs free energy values of all the mixed systems were negative, and |βM | increased with the increasing temperature. It suggested that there existed favorable interactions that improve the micelle formation. When NP-10 was used to mix with SDBA or SDBS, two binary mixtures, SDBA/NP-10 and SDBS/ NP-10, were formed. The |βaMve| of SDBA/NP-10 is larger than that of SDBS/NP-10, which suggested that the synergism interaction of SDBA and NP-10 was stronger than that of SDBS and NP-10. When SDBA was used to mix with NP-10 or TX-100, two binary mixtures, SDBA/NP-10 and SDBS/ TX-100, were formed. The |βaMve| of SDBA/NP-10 is larger than that of SDBS/TX-100. It suggested that the value of |β| was greater when the carbon atom number of the hydrophobic chain of nonionic surfactant was bigger. This synergy phenomenon was caused mailnly by the electrostatic attraction between the polar head groups of the ionic component and the interaction between the hydrophobic molecules.
     The critical micelle concentration (cmc) of mixed surfactants was decreased by adding electrolyte, such as NaCl. With increasing concentration of NaCl, the cmc andγcmc were decreased gradually. It was more significant to improve the capacity and efficiency of mixed surfactants in reducing surface tension by adding n-butanol into the mixed system than ethanol.
     The micro-environmental parameters of mixed surfactant micelle were determined by electron spin resonance (ESR). When the concentration of the SDBA/NP-10 mixture reached cmc, its microviscosity increased suddently, and then formed mixed micelles. The micropolar parameters AN became bigger with the increasing concentration of non-ionic surfactant. It indicated that more non-ionic surfactant entered into the anionic surfactant micelle, which was helpful for the formation of micelles. At the same time, the aggregation numbers of micelles for four pure surfactants SDBA, SDBS, NP-10 and TX-100 were determined to be 38, 34.9, 40.4, and 55.3 by steady-state fluorescence probe method with pyrene as fluorescence probe and benzophenone as quencher. The aggregation numbers of micelles for the mixed systems (SDBA/NP-10, SDBA/TX-100, SDBS/NP-10, SDBS/TX-100) were all bigger than that of the pure anionic surfactants, but smaller than that of pure non-ionic surfactants. The order of aggregation numbers of the four mixed system was NSDBA/NP-10> NSDBS/NP-10>NSDBA/TX-100> NSDBS/TX-100. The micropolarity of mixed micelles (I1/I3) determined by steady-state fluorescence probe method was agreement with the ESR results. The analysis result showed that there existed a synergistic effect both in the efficiency and ability of reducing the surface tension and forming micelles when two surfactants were mixed with a certain proportion. These results would provide some basic reference for the application of mixed surfactants with high efficiency.
     In this paper dissipative particle dynamics (DPD) was applied to simulate the micelle formation process of SDBA, NP-10, and SDBA/NP-10, and the dynamics process of microemulsion, including the structure of micelles, density distribution and fraction of water in the micelles and interfacial tension.
     During the micelle formation of mixture of SDBA/NP-10, the SDBA molecules were not evenly arranged, but formed some small clusters through their head groups. The cavities of clusters were filled by TX-100 molecules.
     For the microemulsion system of SDBA/NP-10/n-butanol (or amyl alcohol)/n-hexane (or n-heptane)/water (or salt water), the effect of cosurfactant alcohol on the interfacial composition, microstructure and its thermodynamic properties was studied by the dilution method. The distribution of cosurfactant (1-butanol and 1-pentanol) between the oil-water interfacial region (nai) and the continuous oil phase (n-hexane and heptane) (nao) were both increased with the increase of oil’s molecular chain length. The longer carbon chain of oil would improve the dispersion of alcohol in the interface. For all these systems, ?G<0, so it was spontaneous for 1-butanol and1-pentanol to transfer to the interface from the oil phase. However, the transfer process was easier for n-heptane than for n-decane because of the lower Gibbs free energy. The ionic surfactant would give important effect on the W/O microemulsion with the presence of non-ionic surfactant. Both Re and Rw values increased with increasing water content (ω=10-50) in all these surfactant systems. Rw increased more quickly than Re, so the effective thickness of interface layer of liquid drops (dI) tended to decrease. It suggested that the transition from W/O to O/W microemulsion would occur at high water content (ω).
     The phase behavior, microstructure and thermodynamic properties of drug-carried microemulsion system (SDBA/ NP-10) /1-butanol / (bifenthrin / cyclohexanone) / water were studied through ternary phase diagram. The results showed that the O/W microemulsion region area of mixed surfactants (NP-10 / SDBA) was larger than that of a single nonionic surfactant, and the temperature had little effect on the phase behavior of microemulsion. The standard free energy change of cosurfactant alcohol transfered into the microemulsion interface layer from the dispersed phase was negative, e.g. ?Gs <0. The absolute value of ?Gs for the process of microemulsion formation increased with the growth of alcohol’s carbon chain, which would improve the formation of microemulsion and increase its area of microemulsion. The standard enthalpy change of microemulsion formation was zero, e.g. -?Hs = 0, which revealed that the process is non-thermal. It indicated that the standard free energy change ?Gs were contributed by the entropy change of the alcohol molecules ?SS. The structure change of the formation process of the system was detected by conductivity, viscosity, refractive index and polarizing microscope. It was a W/O microemulsion system when the mass fraction of water is less than 32 %, e.g. w (H2O) <32%. The liquid crystal structure was formed at 32%63%. The allied toxicity measurement and field efficacy trials results showed that 2.5 wt% bifenthrin microemulsions was an environment-friendly agrochemical formula with long duration of the efficacy.
     The influence of several soluble promotors on the (SDBA/NP-10) / butanol / (flusilazole / cyclohexanone) / water system was tested. The results showed that 0.5 mol?L-1 sodium benzoate and 0.3mol?L-1 sodium salicylate could improve the solubility of flusilazole in water, and the solubility increased with the increase of the two hydrotrope concentration. The effect of urea on the phase behavior of flusilazole microemulsion was insignificant. Resorcinol, glucose and sodium chloride reduced noticably the flusilazole microemulsion zones of the ternary phase diagram. 8wt% flusilazole microemulsion prepared by 5 wt% sodium salicylate showed good heat storage stability. The allied toxicity measurement and field efficacy trials results showed that 8 wt% flusilazole microemulsions had great control effect against pear scab, indicating that it was an environmentally friendly fungicide.
引文
[1]刘程.表面活性剂应用手册[M].第二版.北京:化学工业出版社, 1995:
    [2]郭祥峰,贾丽华.离子表面活性剂及应用[M].北京:化学工业出版社, 2002:
    [3]黄惠琴.表面活性剂的应用与发展趋势[J].现代化工, 2001, 21(5): 6-8.
    [4]刘彩娟.表面活性剂的应用与发展[J].河北化工, 2007, 30(4): 20-21.
    [5]李文安.绿色表面活性剂的应用及研究进展[J].安徽农业科学, 2007, 35 (19):5691-5692.
    [6]黄树华,陈铭录.我国农药表面活性剂发展探讨[J].农药研究与应用, 2008, 12(6): 5-7.
    [7]郑忠.混合表面活性荆的协同效应[J].广州化工, 1996, (4): 24-34.
    [8]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社, 2003:
    [9]朱歩瑶.表面活性剂复配规律(一)[J].日用化学工业, 1988, (1): 36-39.
    [10]朱歩瑶.表面活性剂复配规律(二)[J].日用化学工业, 1988, (2): 35-41.
    [11]朱歩瑶.表面活性剂复配规律(四)[J].日用化学工业, 1988, (4): 37-43.
    [12]王仲妮,李干佐,管如诗,等.二元表面活性剂混合水溶液的分子间相互作用——结构和温度对混合吸附的影响[J].日用化学工业, 2002, 32(1): 1-5.
    [13]王仲妮,李干佐,张高勇,等.十二烷基混合糖苷与其它表面活性剂二元体系[J].高等学校化学学报, 2006, 27(2): 314-318.
    [14]王正武,李干佐,牟建海,等.二元表面活性剂溶液表面吸附层分子交换能的研究[J].高等学校化学学报, 2001, 22(7): 1225-1227.
    [15]王正武,李干佐,牟建海.皂荚素的表面活性及其二元体系的热力学研究[J].高等学校化学学报, 2002, l23(8): 1583-1587.
    [16]黄宏度,何归,张群,等.非离子、阳离子表面活性剂与驱油表面活性剂的协同效应[J].石油天然气学报(江汉石油学院学报), 2007, 29(4): 101-104.
    [17]南海明,张高勇,王红霞.十二烷基苯磺酸钠-聚醚混合表面活性剂体系增效作用的研究[J].日用化学工业, 2007, 37(5): 290-292.
    [18]刘军,徐桂英,李一鸣,等.十二烷基磺基甜菜碱与其它类型表面活性剂的相互作用[J].山东大学学报(理学版), 2005, 40(3): 90-94.
    [19]丁振军,方银军,高慧,等.阴离子/非离子表面活性剂协同效应研究[J].日用化学工业, 2007 , 37(3): 145-148.
    [20]倪大茹,王立欣,赵瑞霞,等.二元表面活性剂混合物的分子间相互作用参数[J].天津化工, 1998, (1): 40-41
    [21]周蕊,毛娜,邓榴. N-辛基-2-吡咯烷酮表面活性剂复配体系的研究[J].精细化工, 1999, 5(16): 15-17.
    [22]林翠英,赵剑曦,杨顺德. C12 TAB和C12E7混合水溶液中胶团生成和表面层吸附[J].福州大学学报(自然科学版), 1999, 27(6): 93-97.
    [23] Javadian S, Gharibi H, Bromand Z, et al. Electrolyte effect on mixed micelle and interfacial properties of binary mixtures of cationic and nonionic surfactants[J]. Colloid Interface Sci, 2008, (318): 449–456.
    [24] Razavizadeh B.M., Mousavi-Khoshdel M, Gharibi H, et al. Thermodynamic studies of mixed ionic/nonionic surfactant systems[J]. Colloid Interface Sci, 2004, (276): 197–207.
    [25] Gharibi H, Sohrabi B, Javadian S, et al. Colloids Surf. A Physicochem. Eng, 2004, (244):187–196.
    [26] Hou Z.S, Li Z.P, Wang H.Q. The interaction of sodium dodecyl sulfonate and petroleum sulfonate with nonionic surfactants (Triton X-100, Triton X-114)[J]. Colloids Surf. A Physicochem. Eng, Aspects, 2000, (166): 243–249.
    [27] Rosen M.J, Zhou Q. Surfactant-Surfactant interactions in mixed monolayer and mixed micelle formation[J]. Langmuir, 2001, 17(12): 3532-3537.
    [28]阎云,韩峰,黄建滨,等.规则溶液理论应用于Bola/SDS混合体系的研究[J].物理化学学报. 2002, 18(9): 830-834.
    [29] Rubingh D.N. Mixed micelle solutions in solution chemistry of surfactants[M]. New York: IBM Corporation, East Fishkill Facility, Hopewell Junction, 1984: 337-338.
    [30] Joshi T, Mata J. Micellization and interaction of anionic and nonionic mixed surfactant systems in water[A]. Colloids and Surfaces A, 2005, (248): 209–215.
    [31] Aiysha A.W, Karen M.G, et al. Thermodynamic and interfacial properties of binary cationic mixed systems[A]. Colloids and Surfaces A, 2004, (247): 115–123.
    [32]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社, 2003:
    [33]刘金彦,赵剑曦,杨连枝.自发射荧光猝灭测定Gemini阴离子表面活性剂胶团聚集数[J].光谱学与光谱分析, 2006, 26(4): 682-684.
    [34]徐桂英,栾玉霞,刘静,等.稳态荧光法研究表面活性剂/大分子相互作用[J].物理化学学报, 2005, 21(5): 577-582.
    [35] Yoshimura T, Esumi K. Synthesis and surface properties of anionic gemini surfactants with amide groups[J]. J. Colloid Interface Sci., 2004, 276: 231–238.
    [36]郑欧,赵剑曦,游毅.连接基团链长度对季铵盐二聚表面活性剂C12-s-C12 2Br在水溶液中胶团化行为的影响[J].高等学校化学学报, 2002, 7: 1352-1355.
    [37]廖琳,张路,赵濉,等.稳态荧光探针法研究Ca2+与十二烷基苯磺酸钠的相互作用[J].感光科学与光化学, 2005, 23(3): 202-207.
    [38]林翠英,宋利,赵剑曦.分子内扭转电荷转移探针DMABN测定表面活性剂水溶液的临界胶团浓度[J].物理化学学报, 2007, 23(12): 1846-1850.
    [39]金谷.表面活性剂化学[M].合肥:中国科学技术出版社, 2008:
    [40]杜西刚,路遥,李玲,等.烷基苯磺酸盐Gemini表面活性剂与非离子表面活性剂C10E6混合溶液的胶团化[J].物理化学学报, 2007, 23(2): 173-176.
    [41]王显光,严峰,张春荣,等.稳态荧光探针法研究烷基苄基聚氧乙烯醚丙烷磺酸钠的聚集行为[J].感光科学与光化学, 2007, 25(1): 31-39.
    [42]蒋福宾,曾华辉,杨正业,等.稳态荧光探针法测定松香基季铵盐Gemini表面活性剂胶束聚集数[J].应用化学, 2008, 25(10): 1166-1170.
    [43]方云,刘雪锋,夏咏梅,等.稳态荧光探针法测定临界胶束聚集数[J].物理化学学报, 2001, 17(9): 828-831.
    [44] Hierrezuelo J.M, Aguiar J, Carnero R.C, Micellar properties of a mixed surfactant system constituted by n-octyl-β-D-thioglucopyranoside and sodium dodecyl sulphate[J]. Colloids Surf A Physicochem. Eng. Aspects, 2005, (264): 29–36.
    [45] Bahri M.A, Hoebeke M, Grammenos A, et al. Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance[J]. Colloids Surf. A, Physicochem. Eng. Aspects, 2006, (290): 206–212.
    [46] Vautier-Giongo C, Singh B.M, Singh J, et al. Effects of interactions on the formation of mixed micelles of 1,2-diheptanoyl-sn-glycero-3-phosphocholine with sodium dodecyl sulfate and dodecyltrimethylammonium bromide[J]. Journal of Colloid and Interface Science, 2005, (282): 149–155.
    [47]龚福忠,刘力恒,马培华.反胶束W/O微乳液的特性及其萃取机理[J].广西大学学报, 2005, 39(2): 119-122.
    [48]胡利利.微乳液的研究进展及应用[J].日用化学品科学, 2007, 30(1): 18-21.
    [49]孙家隆,范本荣,庄乾营,等.微乳剂农药的发展概况及其优越性[J].山东农业科学, 2000, (3): 238-239.
    [50]周雅文,张高勇,王红霞.汽油微乳化技术研究[J].日用化学工业, 2002, 32 (2):124-128.
    [51]潘海敏,杨伯伦,李萌萌.基于相图法的W/O型微乳液体系稳定性分析[J].高校化学工程学报, 2006, 5(20): 345-413.
    [52]刘步林,王雪松,杨桂琴,等.以Span80和Tween60为混合表面活性剂的微乳液的研究[J].化学工业与工程, 2000, 17(5): 249-253.
    [53] Pes M.A, Aramaki K, Nakamura N, et al. Temperature-insensitive microemulsions in a sucrose monoalkanoate system[J]. J. Colloid Interface Sci, 1996, (178): 666.
    [54] Sottmann Y, Strey R, Chen S.H. A small-angle neutron scattering study of nonionic surfactant molecules at the water-oil interface: area per molecule, microemulsion domain size, and rigidity[J]. J. Chem. Phys. 1997, (106): 6483.
    [55] Kegel W.K., Lekkerkerker H.N.W.. Phase behavior of an ionic microemulsion system as a function of the cosurfactant chain length[J]. Colloids Surf. 1993, (76): 241.
    [56] Petit C, Bommarius A.S, Pileni M.P, et al. Characterization of a four-component cationic reversed micellar system: dodecyltrimethylammonium chloride/hexanol/n-heptane and 0.1 M potassium chloride solution[J]. J. Phys. Chem. 1992, (96): 4653.
    [57] Lagues M, Sauterey C. Percolation transition in water in oil microemulsions. Electrical conductivity measurements[J]. J. Phys. Chem. 1980, (84): 3503.
    [58] Bisal S, Bhattacharya P.K, Moulik S.P, Conductivity study of microemulsions: dependence of structural behavior of water/oil systems on surfactant, cosurfactant, oil, and temperature[J]. J. Phys. Chem. 1990, (94): 350.
    [59] Griffin W.L, Johnson Jr.J.S. Alcohol partition in a water-in-oil microemulsion from small-angle neutron scattering[J]. Langmuir 1992, (8): 1554.
    [60] Kegel W.K, van Aken G.A, Bouts M.N, et al. Adsorption of sodium dodecyl sulfate and cosurfactant at the planar cyclohexane-brine interface. Validity of the saturation adsorption approximation and effects of the cosurfactant chain length[J]. Langmuir. 1993,(9): 252.
    [61] Caponetti E, Lizzio A, Triolo R. Small-angle neutron-scattering study of W/O n-hexadecane, potassium oleate, water and alcohol CnH2n+1OH (n = 5-8) microemulsions: effect of water concentration[J]. Langmuir. 1990, (6): 1628.
    [62]郭荣.阴离子型微乳液的电导行为及其溶液结构[J].化学学报, 1987, 45: 55-58.
    [63] Moulik S.P, Paul B.K. Structure, dynamics and transport properties of microemulsions[J]. Adv. Colloid Interface Sci, 1998, (78): 140.
    [64]沈兴海,王文清,高宏成.稀释法求微乳液体系的结构参数[J].北京大学学报, 1994, 30(2): 147-154.
    [65] Birdi K.S. Microemulsions: Effect of alkyl chain length of alcohol and alkane[J]. Colloid Polym. Sci, 1982, (260): 628-631.
    [66] Kumar S, Singh S, Singh H.N. Effect of chain length of alkanes on water-in-oil microemulsions [J]. J. Surf. Sci. Technol, 1986, (21): 85-91.
    [67] Koper G.J.M, Sager W.F.C, Smeets J, et al. Aggregation in oil-continuous water/sodium bis(2-ethylhexyl) sulfosuccinate/oil microemulsions[J]. J.Phys. Chem, 1995, 99(35): 13291-13300.
    [68] Gu G, Wang W, Yan H. Phase equilibria and thermodynamic properties inmicroemulsions [J]. J. Therm. Anal. Calori, 1998, (51): 115-123.
    [69] Schulman J.H, Stockenius W, Prince L.M. Mechanism of formation and structure of micro emulsions by electron microscopy[J]. J. Phys. Chem. 1959, (63): 1677-1680.
    [70] Sjoeblon E. Henriksson U. The importance of the alcohol chain length and the nature of the hydrocarbon for the properties of ionic microemulsion systems in Surfactants in Solution[C]. K.L. Mittal and B. Lindman, Plenum, New York, 1984: 1867-1880.
    [71] Moulik S.P, Aylward W.M, Palepu R. Phase behaviours and conductivity study of water/CPC/alkan-1-ol (C4 and C5) /1-hexane water/oil microemulsions with reference to their structure and related thermodynamics[J]. Can. J. Chem. 2001, (79): 1-12.
    [72] Mohareb M.M, Palepu R.M, Moulik S.P. Interfacial and thermodynamic properties of formation of water-in-oil microemulsions with surfactants (SDS & CTAB) and cosurfactants (n-alkanols C5-C9)[J]. J. Disp. Sci. Technol, 2006, (27): 1209-1216.
    [73] Bayrak Y. Interfacial composition and formation of w/o microemulsion with differentamphiphiles and oils[J]. Colloids Surf. A, 2004, (247): 99-103.
    [74] Digout L.G, Bren K, Palepu R, et al. Interfacial composition, structural parameters and thermodynamic properties of water-in-oil microemulsions[J]. Colloid Polym. Sci, 2001, (279): 655–663.
    [75] Hait S.K, Moulik S.P. Interfacial composition and thermodynamics of formation of water/isopropyl myristate water-in-oil microemulsions stabilized by butan-1-ol and surfactants like cetyl pyridinium chloride, cetyl trimethyl ammonium bromide, and sodium dodecyl sulfate[J]. Langmuir. 2002, (18): 6736–6744.
    [76]闫龙成,李干佐,顾强.醇从油相转移到AEO-9微乳液液滴界面自由能的研究[J].山东大学学报(自然科学版), 1999, 34(3): 317-320
    [77] Abuin E, Lissi E, Olivares K. Dependence of the critical amount of n-hexanol required to form a water-in-oil microemulsion with surfactant characteristics[J]. J. Chil. Chem. Soc, 2004, (49): 215.
    [78] Bayrak Y. Interfacial composition and formation of w/o microemulsion with different amphiphiles and oils[J]. Colloids Surf. A, 2004, (247): 99–103.
    [79] Giustini M, Murgin S, Palazzo G. Does the Schulman's Titration of Microemulsions Really Provide Meaningful Parameters?[J]. Langmuir, 2004, (20): 7381–7384.
    [80] Palazzo G, Carbone L, Colafemmina G, et al. The role of the cosurfactant in the CTAB/water/n-pentanol/n-hexane system: Pentanol effect on the phase equilibria and mesophase structure[J]. Phys. Chem, 2004, (6): 1423–1429.
    [81] Moulik S.P, Digout L.G, Aylward W.M, et al. Studies on the interfacial composition and thermodynamic properties of w/o microemulsions[J]. Langmuir, 2000, (16): 3101.
    [82] Digout L, Bren K, Palepu R, et al. Interfacial composition, structural parameters and thermodynamic properties of water-in-oil microemulsions[J]. Colloid Polym. Sci, 2001, (279): 655.
    [83] Hait S.K, Moulik S.P. Interfacial Composition and Thermodynamics of Formation of Water/Isopropyl Myristate Water-in-Oil Microemulsions Stabilized by Butan-1-ol and Surfactants Like Cetyl Pyridinium Chloride, Cetyl Trimethyl Ammonium Bromide, and Sodium Dodecyl Sulfate[J]. Langmuir, 2002, (18): 6736.
    [84] Paul B.K, Nandy D. Dilution method study on the interfacial composition,thermodynamic properties and structural parameters of W/O microemulsions stabilized by 1-pentanol and surfactants in absence and presence of sodium chloride[J]. Journal of Colloid and Interface Science, 2007, (316): 751–761.
    [85] Mitra R.K, Pal B.K, Moulik S.P. Phase behavior, interfacial composition and thermodynamic properties of mixed surfactant (CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils [J]. J. Colloid Interf. Sci, 2006, (300): 755–764.
    [86] Friberg S.E, Bothorel P. Microemulsions: Structure and Dynamics[M]. CRC Press, Boca Raton, 1987.
    [87] Moulik S.P, Pal B.K. Structure, dynamics and transport properties of microemulsions[J]. Adv. Colloid Interf. Sci, 1998, (78): 99–105.
    [88] Bisal S.R, Bhattacharya P.K, Moulik S.P. Conductivity study of microemulsions: Dependence of structural behavior of water/oil systems on surfactant, cosurfactant, oil and temperature[J]. J. Phys. Chem, 1990, (94): 350–355.
    [89] Mitra D, Chakraborty I, Bhattacharya S.C, et al. Physicochemical studies on cetylammonium bromide and its modifyed (mono-, di-, and trihydroxyethylated) head group analogues[J]. J. Phys. Chem. B, 2006 (110): 11314–11316.
    [90] Chakarborty I, Moulik S.P. Physicochemical studies on microemulsions: Conductance percolation of AOT-derived W/O microemulsion with aliphatic and aromatic hydrocarbon oils[J]. J. Colloid Interf. Sci, 2005, (289): 530–541.
    [91]陆宏志,柴金岭. CTAB/正丁醇/正戊烷/水微乳液体系结构参数的测定[J].临沂师范学院学报, 2008, 30(3): 58-61.
    [92]冯广卫. SDS/正丁醇/正庚烷/水微乳液体系结构参数测定[J].化学与生物工程, 2006, 23(10): 52-54.
    [93]琚行松,赵红丽,芮玉兰,等.修正颗粒模型求微乳液体系的结构参数[J].信阳师范学院学报, 2008, 21(3): 384-387.
    [94]周国伟,李干佐. W/O型微乳液中水的状态和微乳液结构参数的求算[J].中国科学(B辑), 2001, 31(5): 394-398.
    [95]曾红霞,李之平,汪汉卿.水/TX-100/正己醇/正辛烷反相微乳液中水的微环境研究[J].化学研究与应用, 1999, 11(4): 142-143.
    [96]杨汉民,曾红霞,汪汉卿,等. ESR研究Triton X-100体系微乳液的缔合结构[J].武汉工业学院学报, 2002, (4): 79-81.
    [97] Hou Z.S, Li Z.P, Wang H.Q. The interaction of sodium dodecyl sulfonate and petroleum sulfonate with nonionic surfactants (Triton X-100, Triton X-114)[J]. J.Colloids and Surfaces, 2000, (166): 243–249.
    [98] Szajdzinska-Pietek E, Sulak K, Dragutan I, et al. ESR study of aqueous micellar solutions of perfluoropolyether surfactants with the use of fluorinated spin probes[J]. Journal of Colloid and Interface Science, 2007, (312): 405–412.
    [99] Bahri M.A, Hoebeke M, Grammenos A, et al. Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance[J]. Colloids Surf. A Physicochem. Eng. Aspects, 2006, (290): 206–212.
    [100]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社, 1999.
    [101] Shinoda K, Kuineda H. Condition to produce so-called microemulsions:Factors to increase mutual solubility of oil and water solubilisers[J]. Journal of Colloid and Interface Science, 1973,(42): 381–387.
    [102] Danielsson I, Lindman B. The definition of microemulsion[J]. Colloid and Surfaces, 1981, (3): 391-402.
    [103] Tenjarla S. Microemulsions: An overview and pharmaceutical applications[J]. Critical Reviews in Therapeutic Drug Carrier Systems, 1999, 16(5): 461–521.
    [104] Attwood D. Microemulsions: Colloidal Drug DeliverySystems[M]. In Kreuter, J. (Ed.), New York: Marcel Dekker, 1994: 31–71.
    [105] Lawrence M.J, Rees G.D. Microemulsion-based media as novel drugdelivery systems [J]. Advanced Drug Delivery Reviews, 2000, 45(1): 89–121.
    [106] Podlogar F, Gasperlin M, Tomsic M, et al. Structural characterisation of water–Tween40/Imwitor308–isopropyl myristate microemulsion using different experimental methods[J]. International Journal of Pharmaceutics, 2004, (276): 115–128.
    [107] Stilbs P. A comparative study of micellar solubilisation for combination of surfactants and solubilisates using Fourier transform pulsed-gradient spin-echo NMR multicomponent self-diffusion technique[J]. Journal of Colloid and Interface Science, 1986, 94(2): 463–469.
    [108] Krauel K, Girvan L, Hook S.M, et al. Characterisation of colloidal drug delivery systems: From the naked eye to cryoFESEM[J]. Micron, 2007, (38): 796–803.
    [109] Regev O, Ezrahi S, Aserin A, et al. A study of the microstructure of a four-component nonionic microemulsion by Cryo-TEM, NMR, SAXS, and SANS[J]. Langmuir, 1996, 12(3): 668–674.
    [110] Djordjevic L, Primorac M, Stupar M, et al. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug[J]. International Journal of Pharmaceutics, 2004, 271(1–2): 11–19.
    [111] Mehta S, Kaur G, Bhasin K. Incorporation of antitubercular drug isoniazid in pharmaceutically accepted microemulsion: Effect on microstructure and physical parameters[J]. Pharmaceutical Research, 2007, 25(1): 227–236.
    [112] Constantinides P.P, Scalart J.P. Formulation and physical characterization of water-in-oil microemulsions containing long-versus medium-chain glycerides[J]. International Journal of Pharmaceutics, 1997, 158(1): 57–68.
    [113] Graetz K, Helmstedt M, Meyer H.M, et al. Structure and phase behaviour of the ternary system water, n-heptane and the nonionic surfactant Igepal CA520[J]. Colloid and Polymer Science, 1998, 276(2): 131–137.
    [114] Lagues M, Sauterey C. Percolation transition in water in oil microemulsions:Electrical conductivity measurements[J]. Journal of Physical Chemistry, 1980, (84): 3503–3508.
    [115] Mehta S.K, Bala K. Tween-based microemulsions: A percolation view[J]. Fluid Phase Equilibria, 2000, 172(2): 197–209.
    [116] Craig D.Q.M, Reading M. Thermal Analysis of Pharmaceuticals[J]. Boca Raton, FL: CRC Press, 2006.
    [117] Garti N, Aserin A, Tiunova I, et al. DSC study of water behaviour in water-in-oil microemulsions stabilized by sucrose esters and butanol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 170(1): 1–18.
    [118]李春风,罗新民,李燕卿.环保型农药——微乳化农药技术的进展[J].农药研究与应用, 2006, 10(5): 8-12.
    [119]刘步林.农药剂型加工技术[M].北京:化学工业出版社,1999.
    [120]赵军价.廉环保型农药微乳剂技术的研究[D].山东大学硕士学位论文.济南:山东大学, 2007.
    [121]朱建林,张坤,崔正刚.表面活性剂在环境保护中的应用——农药微乳剂[J].日用化学工业, 2002, 32(4): 43-47.
    [122] Bauduin P, Renoncourt A, Kopf A, et al. Unified concept of solubilization in water by hydrotropes and cosolvents[J]. Langmuir, 2005, 21(67): 69–75.
    [123] Cho Y.W, Lee J, Lee S.C, et al. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles[J]. J. Control Release, 2004, 97(2): 49–57.
    [124] Kumar S, Parveen N, Kabir D. Additive-induced association in unconventional systems: a case of the hydrotrope[J]. J Surfactants Deterg, 2005, 8(10): 9–14.
    [125] Srinivas V, Rodley G.A, Ravikumar K, et al. Molecular organization in hydrotrope assemblies[J]. Langmuir, 1997, 13(32): 35–39.
    [126] Pal O.R, Gaikar V.G, Joshi J.V, et al. Small-angle neutron scattering studies of sodium butyl benzene sulfonate aggregates in aqueous solution[J]. Pramana-J Phys, 2004, 63(3): 57–62.
    [127] Srinivas V, Balasubramanian D. When does the switch from hydrotropy to micellar behavior occur[J]. Langmuir, 1998, 14(66): 58–61.
    [128] Friberg S.E, Brancewicz C, Morrison D.S. O/W microemulsions and hydrotropes: the coupling action of a hydrotrope[J]. Langmuir, 1994 , 10(29): 45–49.
    [129] Roy B.K, Moulik S.P. Functions of hydrotropes (sodium salicylate, proline, pyrogallol, resorcinol and urea) in solution with special reference to amphiphile behaviors[J]. Colloids Surf A Physicochem Eng Asp, 2002, 20(31): 55–66.
    [130]胡伟武,陈红艳,徐镇. 5%腈菌唑微乳剂的研制[J].农药, 2003, 42(4): 21– 22.
    [131]贾忠明,刘峰,慕卫,等.己唑醇微乳剂的研制及其在黄瓜白粉病防治上的应用[J].农药, 2006, 45(5): 320– 322.
    [132]雷秋芬,李学丰,张高勇,等.新型农药丙酯草醚对微乳液体系相行为的影响[J].应用化学, 2007, 24(1): 45-48.
    [133]陈福良,王仪,郑斐能,等.微乳剂低温稳定性的研究[J].物理化学学报, 2002, 18 (7): 661– 664.
    [134]陈福良,田慧琴,王仪,等.农药微乳剂乳液稳定性研究[J].农药学学报, 2005, 7 (1): 63– 68.
    [135]张晓光,张高勇,王红霞,等.农药微乳液相行为及微乳结构的研究[J].精细化工, 2003, 20(8): 475-477.
    [136]赵辉,路福绥,李培强,等.三氟氯氰菊酯微乳剂配方筛选及其形成规律[J].农药, 2005, 44(12) : 546– 548.
    [137]黄啟良,李干佐,张文吉,等.高效氯氰菊酯微乳化复合表面活性剂体系的相行为及增溶[J].中国农业科学, 2006, 39(6): 1173– 1178.
    [138]赵辉,路福绥,李培强.不同因素对高效氯氟氰菊酯微乳液相图的影响[J].物理化学学报, 2006, 22(4): 475– 480.
    [139]李培强,路福绥,赵辉.顺式氯氰菊酯微乳液的微观结构[J].山东农业大学学报(自然科学版), 2006, 37(1): 53-55.
    [140]黄啟良,张文吉,折东梅,等.高效氯氰菊酯微乳化分散体系的电导性质[J].农药, 2006, 45(8): 522-524.
    [141]李丽芳,王开运,宋东升,等.农药微乳液中阴/非离子复合表面活性剂作用机理[J].农药, 2008, 47(2): 100-103.
    [142]李韡,韩永才,张金利.大分子自组装特性计算机模拟的研究[J].化学进展, 2004, 16(3): 431-437.
    [143] Raj Rajagopalan. Simulations of self-assembling systems[J].Curr. Opin. Colloid inter- face Sci, 2001. 6: 357-365
    [144]李一鸣,苑世领,徐桂英.计算机模拟技术在表面活性剂研究中的应用[J].物理化学学报, 2003, 19(10): 986.
    [145]李有勇,郭森立,王凯旋,等.介观层次上的计算机模拟和应用[J].化学进展, 2000, 12(4): 361.
    [146] Prabal K.M, Yves L, Mathew A.G, et al. Simulations of micelle self-assembly in surfac- tant solutions[J]. Langmiur, 2002, 18(5): 1908.
    [147] Hoogerbrugge P.J, Koelman J.M.V.A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhys.Lett, 1992, 19(3): 155-160.
    [148] Fraaijc J, Cvan Vlimmcren B.A, Vlanrits N.M, et al. J.Chem.Phys, 1997, 106(10): 4260.
    [149] Groot R.D, Madden T.J. Dynamic simulation of diblock copolymer microphase separation[J]. J. Chem.Phys, 1998, 108(20): 8713-8724.
    [150] Espaňol P, Warren P. Statistic mechanics of dissipative particle dynamics.Europhys[J]. Lett. 1995, (30): 191-196.
    [152] Groot R.D, Warren P.B. Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation[J]. Chem.Phys, 1997, 107(11): 4423-4435.
    [153]陈澍,郭晨,刘会洲.双亲嵌段共聚物自组装特性的计算机模拟[J].化学通报, 2005, (9): 681.
    [154]王晶,史济斌,黄斌,等. Gemini表面活性剂溶液相关性质的Monte Carlo模拟[J].华东理工大学学报(自然科学版), 2007, 33(4), 515.
    [155] Rekvig L, Kranenburg M, Vreede J, et al. Investigation of surfactant efficiency using dissipative particle dynamics[J]. Langmuir, 2003, 19(20): 8195-8205.
    [156]李振泉,何秀娟,李英,等.烷基苯磺酸盐在油水界面行为的介观模拟[J].化学学报, 2007, 65(24): 2803-2808.
    [157]苑世领,徐桂英,蔡政亭,等.聚合物与阳离子表面活性剂相互作用的介观模拟[J].日用化学工业, 2002, 32(6):
    [158]苑世领,刘成卜,徐桂英,等.聚合物PVP与表面活性剂AOT相互作用的介观模拟[J].高等学校化学学报, 2003: 1048-1051.
    [159]苑世领,吴锐,蔡政亭.水溶液中嵌段共聚物的耗散颗粒动力学模拟[J].物理化学学报, 2004, 20(8): 811.
    [160]苑世领,蔡政亭,徐桂英.表面活性剂与聚合物相互作用的动力学模拟[J].化学学报, 2002, 60(2): 241.
    [161] Li Y, He X.J, Cao X.L. Molecular behavior and synergistic effects between sodium dodecylbenzene sulfonate and Triton X-100 at oil/water interface[J]. Journal of Colloid and Interface Science, 2007, (307): 215–220.
    [162] Chen Z.X, Cheng X.L, Cui H.S. Dissipative particle dynamics simulation of the phase behavior and microstructure of CTAB/octane/1-butanol/water microemulsion[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, (301): 437–443.
    [163] Sun H.Y, Xu G.Y, Li Y.M. Mesoscopic simulation of the aggregation behavior of fluorinated surfactant in aqueous solution[J]. Journal of Fluorine Chemistry, 2006, (127): 187–192.
    [164]刘海燕,张明明.联苯菊酯10%乳油高效液相色谱分析[J].农药科学与管理,2009,30(10): 50-52.
    [165]田玉亲,赵春华.氟硅唑原药的高效液相色谱分析[J].农药科学与管理, 2009, 30(8): 42-43.
    [166]许虎军.烷基二苯醚二磺酸钠的合成、聚集体系及应用性能研究[J].博士学位论文[D].江苏:南京理工大学, 2005.
    [167]梁金龙.烷基二苯醚二磺酸钠与普通离子型表面活性剂的复配研究[J].硕士学位论文[D].江苏:江南大学, 2005.
    [168]郑欧,赵剑曦,游毅.连接基团链长度对季铵盐二聚表面活性剂C12-s-C12 2Br在水溶液中胶团化行为的影响[J].高等学校化学学报, 2002, 7: 1352-1355.
    [169]王显光,严峰,张春荣,等.稳态荧光探针法研究烷基苄基聚氧乙烯醚丙烷磺酸钠的聚集行为[J].感光科学与光化学, 2007, 25(1): 31-39.
    [170]徐桂英,栾玉霞,刘静,等.稳态荧光法研究表面活性剂/大分子相互作用[J].物理化学学报, 2005, 21(5): 577-582.
    [171]杨汉民,曾红霞,汪汉卿,等. ESR研究TritonX-100体系微乳液的缔合结构[J].武汉工业学院学报, 2004, 4: 79-80.
    [172] Hou Z.S, Li Z.P, Wang H.Q. The interaction of sodium dodecyl sulfonate and petroleum sulfonate with nonionic surfactants (Triton X-100, Triton X-114)[J]. Colloids and Surfaces, 2000, (166): 243–249.
    [173] Rosen M.J. Surfactants and Interfacial Phenomena, 3 rd Edition[M]. New York: John Willy & Sons, 2004: 395-408.
    [174] Rosen M.J, Zhou Q. Surfactant-Surfactant Interactions in Mixed Monolayer and Mixed Micelle Formation[J]. Langmuir, 2001,17: 3532-3537.
    [175]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社, 2003.
    [176]涂国云,王正武,王仲妮,等.理想混合表面活性剂表面张力的计算公式及实验验[J].物理化学学报, 2008, 24(3): 400- 404.
    [177] Tejas Joshi , Jitendra Mata, Pratap Bahadur. Micellization and interaction of anionic and nonionic mixed surfactant systems in water[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 260: 209–215.
    [178] Okano T, Tamura T, Abe Y, et al. Micellization and Adsorbed Film Formation of a Binary Mixed System of Anionic/Nonionic Surfactants[J]. Langmuir, 2000, 16,1508-1514.
    [179] Moulins J.R, Adam A.H, Rebecca K.D, et al. Micellar, interfacial and fluorescence investigation on binary mixtures of dodecyl cationic surfactants in aqueous media[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 302: 608–615.
    [180]孙志斌,张禹负,李彩云,等.阴离子与非离子表面活性剂混合体系的胶束性质[J].石油勘探与开发, 2004, 31(3): 125-128.
    [181] Okano T, Tamura T, Abe Y, et al. Micellization and adsorbed film formation of a binary mixed system of anionic/nonionic surfactants[J]. Langmuir, 2000, 16, 1508-1514.
    [182] Hou Z.S, Li Z.P, Wang H.Q. The interaction of sodium dodecyl sulfonate and petroleum sulfonate with nonionic surfactants (Triton X-100, Triton X-114)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 166: 243–249.
    [183] Du X.G, Lu Y, Li L, et al. Mixed micellization of alkylbenzene sulfonate gemini surfactant Ia and nonionic surfactant C10E6 in Aqueous Solution[J]. Acta Phys. Chim. Sin., 2007, 23(2): 173-176.
    [184] Javadian S, Gharibi H, Bromand Z, et al. Electrolyte effect on mixed micelle and interfacial properties of binary mixtures of cationic and nonionic surfactants[J]. Journal of Colloid and Interface Science, 2008, 318: 449–456.
    [185]马利静,周卯星,敬登伟,等.温度及无机盐对LMEE和SDS混合溶液表面张力的影响[J].精细化工, 2004, 21(2): 108-111.
    [186]王仲妮,李干佐,王燕,等.二元表面活性剂混合体系中的分子间相互作用-表面活性剂结构和温度对混合胶束中相互作用的影响[J].日用化学品科学, 2000, 23(2): 32-33.
    [187]王仲妮,李干佐,管如诗,等.二元表面活性剂混合水溶液的分子间相互作用—结构和温度对混合吸附的影响[J].日用化学工业, 2002, 32(1): 1-4.
    [188] Bakshi M.S, Sachar S, Singh K, et al. Mixed micelle behavior of Pluronic L64 and Triton X-100 with conventional and dimeric cationic surfactants[J]. Journal of Colloid and Interface Science, 2005, 286: 369–377.
    [189] Chen Z.X, Deng S.P, Li X.K. Micellization and synergistic interaction of binary surfactant mixtures based on sodium nonylphenol polyoxyethylene ether sulfate[J]. Journal of Colloid and Interface Science, 2008, 318: 389–396.
    [190]张志庆,徐桂英,叶繁.十二烷基甜菜碱/十二烷基硫酸钠复配体系的表面活性[J].物理化学学报, 2001, 17(12): 1122-1125.
    [191] Javadian S, Gharibi H, Sohrabi B, et al. Determination of the physico-chemical parameters and aggregation number of surfactant in micelles in binary alcohol–water mixtures[J]. Journal of Molecular Liquids, 2008, 137: 74–79.
    [192] Bakshi M.S, Singh K. Synergistic interactions in the mixed micelles of cationic gemini with zwitterionic surfactants: Fluorescence and Krafft temperature studies[J]. Colloid Interface Sci, 2005, 287: 288–297.
    [193] Vautier-Giongo C, Bakshi M.S , Singh J, et al. Effects of interactions on the formation of mixed micelles of 1,2-diheptanoyl-sn-glycero-3-phosphocholine with sodium dodecyl sulfate and dodecyltrimethylammonium bromide[J]. Colloid Interface Sci, 2005, 282: 149–155.
    [194] Chen Z.X, Deng S.P, Li X.K. Micellization and synergistic interaction of binary surfactant mixtures based on sodium nonylphenol polyoxyethylene ether sulfate[J]. Colloid Interface Sci, 2008, 318: 389–396.
    [195] Sharma K.S, Hassan P.A, Animesh K.R. Self aggregation of binary surfactant mixtures of a cationic dimeric (gemini) surfactant with nonionic surfactants in aqueous medium[J]. Colloids Surf. A Physicochem. Eng. Aspects. 2006, 289: 17–24.
    [196] Jonathan R.M, Adam A.H, Rebecca K.D, et al. Micellar, interfacial and fluorescence investigation on binary mixtures of dodecyl cationic surfactants in aqueous media[J]. Colloids Surf. A Physicochem. Eng. Aspects. 2007, 302: 608–615.
    [197]刘金彦,赵剑曦,杨连枝.自发射荧光猝灭测定Gemini阴离子表面活性剂胶团聚数[J].光谱学与光谱分析, 2006, 26(4): 682-684.
    [198]蒋福宾,曾华辉,杨正业,等.稳态荧光探针法测定松香基季铵盐Gemini表面活剂胶束聚集数[J].应用化学, 2008, 25(10): 1166-1169.
    [199] Hou Z.S, Li Z.P, Wang H.Q. The interaction of sodium dodecyl sulfonate and petroleum sulfonate with nonionic surfactants (Triton X-100, Triton X-114)[J]. Colloids Surf. A Physicochem. Eng,Aspects . 2000, 166: 243–249.
    [200] Hierrezuelo J.M, Aguiar J, Ruiz C.C. Micellar properties of a mixed surfactant system constituted by n-octyl-β-D-thioglucopyranoside and sodium dodecyl sulphate[J].Colloids Surf. A Physicochem. Eng. Aspects. 2005, 264: 29–36.
    [201] Bahri M.A, Hoebeke M, Grammenos A, et al. Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance[J]. Colloids Surf. A Physicochem. Eng. Aspects. 2006, 290: 206–212.
    [202]杜西刚,路遥,李玲,等.烷基苯磺酸盐Gemini表面活性剂与非离子表面活性剂C10E6混合溶液的胶团化[J].物理化学学报, 2007, 23(2): 173- 176.
    [203] Derecskei B, Derecskei-Kovacs, Schelly A.Z.A. Atomic-level molecular modeling of AOT reverse micelles. 1. The AOT molecule in water and carbon tetrachloride[J]. Langmuir, 1999, 15: 1981.
    [204] Chen L.J. Area dependence of the surface tension of a Lennard–Jones fluid from molecular dynamics simulations[J]. J Chem. Phys. 1995, 103: 10214.
    [205] Nijmeijer M.J.P, Bruin C, Woerkom A.B.van, et al. Molecular dynamics of the surface tension of a drop[J]. J Chem. Phys. 1992, 96: 565.
    [206] Haye M.J, Bruin C, Molecular dynamics study of the curvature correction to the surface tension[J]. J Chem. Phys. 1994, 100: 556.
    [207] Fraaije J.G.E.M, Vlimmeren B.A.C.van, Maurits N.M, et al. The dynamic meanfield density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts[J]. J. Chem. Phys. 1997, 106: 4260.
    [208] Hasegawa R, Doi M.. Extension of self-consistent field theory to dynamical problems[J]. Macromolecules .1997,30: 3086.
    [209] Laradji M, Shi A.C, Noolandi et al. Stability of ordered phases in diblock copolymer melts[J]. Macromolecules. 1997, 30: 3242.
    [210] Matsen M.W, Cylinder?Gyroid epitaxial transitions in complex polymeric liquids[J]. Phys. Rev. Lett. 1998, 80: 4470.
    [211] Groot R.D, Mesoscopic simulation of polymer-surfactant aggregation[J]. Langmuir, 2000, 16: 7493.
    [212] Wijmans C.M, Smit B. Simulating tethered polymer layers in shear flow with the dissipative particle dynamics technique[J]. Macromolecules. 2002, 35: 7138.
    [213] Li D.W, Liu X.Y, Feng Y.P. Bond-angle-potential-dependent dissipative particle dynamics simulation and lipid inverted phase[J]. J. Phys. Chem. B. 2004, 108: 1206.
    [214] Mohamed L, Hore Michael J.A. Nanospheres in phase-separating multicomponent fluids: a three-dimensional dissipative particle dynamics simulation[J]. J. Chem. Phys. 2004, 121: 10641.
    [215] Yuan S.L, Cai Z.T, Xu G.Y, et al. Mesoscopic simulation study on phase diagram of the system oil/water/aerosol OT[J]. Chem. Phys. Lett. 2002, 365: 347.
    [216] Qian H.J, Lu Z.Y, Chen L.J, et al. Computer simulation of cyclic block copolymer microphase separation[J]. Macromolecules. 2005, 38: 1395.
    [217] Sarah G.S, Hubert K, G¨unter S, et al. Phase behavior of amphiphilic polymers: a dissipative particles dynamics study[J]. Colliod Polym. Sci. 2004, 283: 284.
    [218] Ryjkina E., Kuhn H, Rehage H, et al. Molecular dynamic computer simulations of phase behavior of non-ionic surfactants[J]. Angew.Chem. Int. Ed. 2002, 41: 983.
    [219] Chen Z.X, Cheng X.L, Cui H.S, et al. Dissipative particle dynamics simulation of the phase behavior andmicrostructure of CTAB/octane/1-butanol/water microemulsion[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2007, 301: 437–443
    [220] Yuan S.L, Cai Z.T, Xu G.Y, et al. Mesoscopic simulation study onphase diagram of the system oil/water/aerosol OT[J]. Chem. Phys. Lett. 2002, 365: 347.
    [221] Qian H.J, Lu Z.Y, Chen L.J, et al. Computer simulation of cyclic block copolymer microphase separation[J]. Macromolecules. 2005, 38: 1395.
    [222] Sarah G.S, Hubert K, G¨unter S, et al. Phase behavior of amphiphilic polymers: a dissipative particles dynamics study[J]. Colliod Polym. Sci. 2004, 283: 284.
    [223] Ryjkina E, Kuhn H, Rehage H, et al. Molecular dynamic computer simulations of phase behavior of non-ionic surfactants[J]. Angew. Chem. Int. Ed. 2002, 41: 983.
    [224] Groot R.D, Warren P.B, Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation[J]. J. Chem. Phys. 1997, 107: 4423.
    [225] Groot R.D, Madden T.J, Dynamic simulation of diblock copolymer microphase separation[J]. J. Chem. Phys. 1998, 108: 8713.
    [226] Wijmans C.M, Smit B, Groot R.D, Phase behavior of monomeric mixtures and polymer solutions with soft interaction potentials[J]. J. Chem. Phys. 2001, 114: 7644.
    [227] Kranenburg M, Smit B. Phase behaviour of model lipid bilayers[J]. Phys.Chem.B. 2006, 14: 6553-6563.
    [228] Espaňol P, Warren P. Statistic mechanics of dissipative particle dynamics.Europhys[J]. Lett. 1995, 30: 191-196.
    [229] Groot R.D, Madden T.J. Dynamic simulation of diblock copolymer microphase separation[J]. J.Chem.Phys. 1998, 108(20): 8713-8724.
    [230] Sun H, COMPASS: an abinitio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. J. Phys. Chem. B. 1998, 102: 7338.
    [231] Schulman J.H, Stockenius W, PrinceL.M. Mechanism of formation and structure of micro emulsions by electron microscopy[J]. J. Phys. Chem. 1959, 63: 1677-1680.
    [232] Sjoeblon E, Henriksson U, The importance of the alcohol chain length and the nature of the hydrocarbon for the properties of ionic microemulsion systems in Surfactants in Solution ed[J]. K.L. Mittal and B. Lindman, Plenum, New York, 1984, 1867-1880.
    [233] Kumar S, Singh S, Singh H.N. Effect of chain length of alkanes on water-in-oil microemulsions[J]. J. Surf. Sci. Technol. 1986, 21: 85-91.
    [234] Moulik S.P, Aylward W.M, Palepu R. Phase behaviours and conductivity study of water/CPC/alkan-1-ol(C4andC5)/1-hexane water/oil microemulsions with reference to their structure and related thermodynamics[J]. Can. J. Chem. 2001, 79: 1-12.
    [235] Giustini M, Murgia S, Palazzo G. Does the Schulmans titration of microemulsions really provide meaningful parameters?[J]. Langmuir, 2004, 20: 7381-7384.
    [236] Mohareb M.M, Palepu R.M, Moulik S.P. Interfacial and thermodynamic properties of formation of water-in-oil microemulsions with surfactants (SDS & CTAB) and cosurfactants (n-alkanols C5-C9)[J]. J. Disp. Sci. Technol. 2006, 27: 1209-1216.
    [237] Y. Bayrak. Interfacial composition and formation of w/o microemulsion with different amphiphiles and oils[J]. Colloids Surf. A. 2004, 247: 99-103.
    [238] K.S. Birdi. Microemulsions: Effect of alkyl chain length of alcohol and alkane[J]. Colloid Polym. Sci. 1982, 260: 628-631.
    [239] Koper G.J.M, Sager W.F.C, Smeets J, et al. Aggregation in oil-continuous water/sodium bis(2-ethylhexyl)sulfosuccinate/oil microemulsions[J]. J. Phys. Chem. 1995, 99(35): 13291-13300.
    [240] Gu G, Wang W, an H. Phase equilibria and thermodynamic properties inmicroemulsions[J]. J. Therm. Anal. Calori. 1998, 51: 115-123.
    [241]郭武棣.液体制剂[M].北京:化学工业出版社, 2004: 65.
    [242]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社, 1999: 311.
    [243]王险峰.进口农药应用手册[M].北京:中国农业出版社, 2000: 146.
    [244] Mitra R.K, Paul B.K. Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT +Brij-35) and butanol[J]. Journal of Colloid and Interface Science, 2005, 283: 565–577.
    [245]李培强,路福绥,艾仕云,等.不同反离子对高效氯氰菊酯微乳液影响的研究[J].学学报, 2006, 64(5): 367-370.
    [246]赵辉,路福绥,李培强.醇对高效氯氟氰菊酯微乳液相图的影响[J].应用化学, 2006, 23(5): 503-507.
    [247]赵辉路,福绥,李培强.不同因素对高效氯氟氰菊酯微乳液相图的影响[J].物理化学学报, 2006, 22(4): 475-480.
    [248]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社, 1997: 402.
    [249]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社, 1999: 311-388.
    [250] Mitra R.K, Paul B.K, Moulik S.P. Phase behavior, interfacial composition and thermodynamic properties of mixed surfactant (CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils [J]. Journal of Colloid and Interface Science, 2006, 300: 755–764.
    [251]罗静卿,赵新华,周固. CTAB/正丁醇-正辛烷-水和盐水的拟三元体系相图及微乳微观结构的电导研究[J].高等学校化学学报, 2004, 6(25): 1085-1089.
    [252] Monzer Fanun. Conductivity, viscosity, NMR and diclofenac solubilization capacity studies of mixed nonionic surfactants microemulsions[J]. Journal of Molecular Liquids, 2007, 135: 5–13.
    [253] Rosen M.J. Surfactants and Interfacial Phenomena, 3 rd Edition[M]. New York: John Willy & Sons, 2004: 395-408.
    [254]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社, 2003: 173-188
    [255] Fanun M. Microemulsions: Properties and Applications[M]. Taylor & Francis Group, 2008: 293-308.
    [256] Koparkar Y.P, Gaikar V.G. Solubility of o-/p-hydroxyacetophenones in aqueous solutions of sodium alkyl benzene sulfonate hydrotropes[J]. J Chem Eng Data 2004, 49: 800–803.
    [257] Lee J, Lee S.C, Acharya G, et al. Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property[J]. Pharm Res, 2003, 20: 1022–1030.
    [258] Friberg S.E, Lochhead R.V, Blute I, et al. Hydrotropes—performance chemicals[J]. J Dispers Sci Technol 2004, 25: 243–251.
    [259] Moulik S.P , Roy B.K. Functions of hydrotropes (sodium salicylate,proline, pyrogallol, resorcinol and urea) in solution with special reference to amphiphile behaviors[J]. Colloids Surf A :Physicochem Eng Asp, 2002, 203: 155–166.
    [260] Bauduin P, Renoncourt A, Kopf A, et al. Unified concept of solubilization in water by hydrotropes and cosolvents[J]. Langmuir , 2005, 21: 6769–6775.
    [261] Roy B.K, Moulik S.P. Effect of hydrotropes on solution behavior of amphiphiles[J]. Curr Sci, 2003, 85: 1148–1155.
    [262] Balasubramanian D, Srinivas V, Gaikar VG, et al. Aggregation behavior of hydrotropic compounds in aqueous solution[J]. J Phys Chem 1989, 93: 3865–3870.
    [263]袁凯,曹栋,胥景瑜.微乳轧制油拟三元相图及电导率的研究[J].日用化学工业, 2008, 38(1): 8-11.
    [264]张晓光,董金凤,张高勇,等.有机盐对水/AOT/醇反相微乳液体系电导行为的影响[J].物理化学学报, 2006, 22(1): 22-27.
    [265] Mitra R.K, Paul B.K. Physicochemical investigations ofmicroemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol[J]. Journal of colloid and interface science, 2005, 283: 565-577.
    [266] Guo R, Qian S, Qian J.H. Hydrotrope and hydrotrope-solubilization action of cephanone in CTAB/n-C5H11OH/H2O system[J]. Colloid Polym Sci, 2004, 283: 15-23.
    [267] Schubert B.A, Kaler E.W, Wagner N.J. The microstructure and rheology of mixed cationic/anionic wormlike micelles[J]. Langmuir, 2003, 19: 4079-4089.
    [268] Hassan P.A, Raghavan S.R, Kaler E.W. Microstructural changes in SDS micelles induced by hydrotropic salt[J]. Langmuir, 2002, 18: 2543-2548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700