草莓枯萎病菌对多菌灵及戊唑醇的抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用戊唑醇和多菌灵2种药剂对草莓枯萎病菌进行室内抗性选育,获得了对戊唑醇和多菌灵的高抗菌株;研究了各菌株的抗性发展规律;检测了各抗性菌株的抗药性遗传稳定性;并测定了各抗性菌株对几种常用药剂的交互抗性;系统研究了不同抗性菌株和敏感菌株在碳源、氮源、产孢能力等方面的生物学差异,不同抗性菌株和敏感菌株对不同pH值和温度的敏感性;比较了以不同浓度的戊唑醇和多菌灵处理后抗戊唑醇菌株、抗多菌灵菌株和敏感菌株的相对渗率变化情况;比较了抗戊唑醇菌株、抗多菌灵菌株和敏感菌株经不同浓度的药剂处理后,其苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)的活力随时间变化的差异;并对抗戊唑醇菌株和抗多菌灵菌株的生理生化特性进行了探讨。本研究取得了以下主要研究结果:
     1.草莓枯萎病菌对多菌灵和戊唑醇的抗性发展速度均较快,在含多菌灵的培养基上选育到45代,对多菌灵的抗性增加到53.91倍,在含戊唑醇的培养基上选育到36代,对戊唑醇的抗性增加到34.22倍。通过对各抗性菌株进行遗传稳定性测定,发现各菌株在无药培养基上连续转代培养8代以后,其生长速率变化较小,抗性稳定性较强,说明草莓枯萎病菌对多菌灵和戊唑醇的抗性能够通过无性繁殖稳定遗传。
     2.利用诱导获得的抗多菌灵和抗戊唑醇菌株,进行交互抗性试验,不同抗性菌株对其它药剂的交互抗性为:抗多菌灵菌株对甲基硫菌灵、福美双的抗性分别达29.98倍、27.58倍,交互抗性十分显著;对三唑酮、苯醚甲环唑、腈菌唑、丙环唑、戊唑醇的抗性分别达7.15倍、5.42倍、5.07倍、4.78倍、2.73倍,交互抗也较明显。抗戊唑醇菌株对三唑酮、丙环唑、烯唑醇、腈菌唑的交互抗性分别达22.21倍、14.12倍、11.91倍、10.52倍,交互抗性也十分显著;对甲基硫菌灵、苯醚甲环唑、多菌灵的抗性分别达6.96倍、4.55倍和2.12倍,交互抗性亦较明显,但总体而言,多菌灵和戊唑醇的双向交互抗性较小,戊唑醇可以作为多菌灵比较理想的轮用或替代药剂。
     3.采用菌落直径法和记录产孢量的方法,研究培养基中不同营养源、pH值和温度对抗性和敏感菌株的影响,以探明各抗性菌株和敏感菌株之间生理适合度的差异。发现在不同的碳源条件下,敏感菌株在蔗糖和甘油中生长最好,抗多菌灵菌株在蔗糖和麦芽糖中生长最好,抗戊唑醇菌株在甘油和麦芽糖中生长最好,敏感菌株和两抗性菌株均在蔗糖、淀粉、甘油中产孢量最大。在不同氮源条件下,敏抗菌株均在KNO3和NaNO3中生长最好,敏感菌株在酵母膏、蛋白胨、尿素中产孢量最高,抗多菌灵菌株在酵母膏、尿素、牛肉膏中产孢量最高,抗戊唑醇菌株在酵母膏、牛肉膏、蛋白胨中产孢量最高。两抗性菌株与敏感菌株对酸碱度和温度反应差异不明显。
     4.在葡萄糖的高渗环境和低渗环境下,两抗性菌株和敏感菌株的渗透压敏感性存在差异,抗多菌灵菌株对葡萄糖的高渗透压表现最为敏感,菌丝生长受到的抑制最为明显;在葡萄糖中渗环境下,抗戊唑醇表现最为敏感。在不同浓度的NaCl渗透环境下,两种抗性菌株和敏感菌株的生长均随着渗透压的增高而受到抑制,其中又以抗戊唑醇受到的抑制最为显著。
     5.以低浓度的多菌灵分别处理敏感菌株和抗多菌灵菌株,抗性菌株的相对渗率始终高于敏感菌株,而且相对渗率也随时间的延长而增大;以高浓度的多菌灵处理敏感菌株和抗多菌灵菌株后,抗性菌株和敏感菌株的相对渗率先下降后上升,并且最终抗性菌株的相对渗率要高于敏感菌株。当用不同浓度的戊唑醇处理敏感菌株和抗戊唑醇菌株后,敏感菌株始终能够释放更多的电解质,其相对渗率要高于抗性菌株。
     6.用多菌灵处理抗多菌灵菌株和敏感菌株,抗性菌株的苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)活性均高于敏感菌株,在药剂处理条件下,其PAL活性表现出先迅速上升后又迅速下降的趋势。用戊唑醇处理抗戊唑醇菌株和敏感菌株,抗性菌株体内的PAL活性高于敏感菌株,经药剂处理的抗性菌株和敏感菌株PAL活性也表现出先上升后下降的趋势。
     7.敏感菌株与抗性菌株的适应性存在差异:敏抗菌株对碳氮营养要求均不严格,离体适合度较高;多菌灵抗性菌株对渗透压的适应力、对药剂的耐受力和排泄能力较强,戊唑醇抗性菌株最差,敏感菌株居中;两抗性菌株体内的防御酶活力均高于敏感菌株。
The purpose of this paper is to study the resistance of Fusarium oxysporum f.sp. fragariae to carbendazim and tebuconazole. In this study, the resistance selection of Fusarium oxysporum f.sp. fragariae to carbendazim and tebuconazole and the cross-resistance test of each resistant strain was carried out. The resistance rule of each strain was studied. The differences on some characterization such as the growth rate, carbon sources, nitrogen sources and the capacity of spore production were studied. The effect of different pH values and temperature on sensitive and resistant strain was also studied. After immersed into carbendazim solution and tebuconzaole solution with different concentrations, the conductivity and the activity of phenylalanine ammonia lyase (PAL) and peroxidase (POD) was compared. At last, the resistance mechanism was studied. And the resistance risk of Fusarium oxysporum f. sp. fragariae to carbendazim and tebuconazole was evaluated. The results could be summarized as follows:
     1. The studies of resistance selection showed that the resistant ratio of ZY-D which is resistant to carbendazim had reached 53.91 fold after 45-time selection, and the ZY-W which is resistant to tebuconazole reached 34.22 fold after 36-time treatment in the laboratory. After 8 successive incubations on the free-fungicide medium, the resistant strains could maintain their resistance.
     2. The cross-resistance of induced resistant strains to fungicides were as follows: the ZY-D had significant positive resistance to Thiophanatemethy and Thiram, the resistance ratio was 29.98 and 27.58 fold, respectively, while the resistance ratio of triadimefon, difenoconazole, myclobutanil, propiconazole and tebuconazole was 7.15, 5.42, 5.07, 4.78 and 2.73 fold; the ZY-W had significant positive resistance to triadimefon, propiconazole, diniconazole and myclobutanil, the resistance ratio was 22.21, 14.12, 11.91 and 10.52 fold, while the resistance to thiophanatemethy , difenoconazole and carbendazim was still remarkable, the resistance ratio was 6.96, 4.55 and 2.12 fold respectively.
     3. By mycelia growth rate tests and counting the number of spore production, the effect of different carbon and nitrogen sources, pH value and temperature on the resistant strains and sensitive strain was determined. The results are as follows: in the different carbon sources, the sensitive strain grew fastest in glycerol and sucrose, while the ZY-D grew fastest in sucrose and maltose, and the ZY-W grew fastest in glycerol and maltose, the number of spore production of the resistant strains and the sensitive strain in sucrose, amylum and glycerol was higher than that in other carbon sources. In the different nitrogen sources, the resistant strains and the sensitive strain grew fastest in KNO3 and NaNO3. For the spore yield of sensitive strain, yeast extract, peptone and carbamide were the best nitrogen source; for the spore yield of ZY-D, yeast extract, carbamide and beef extract were the best nitrogen source; for the ZY-W, yeast extract, beef extract and peptone were the best. There was no significantly difference in the effect on the sensitive and resistant strain of pH value and temperature.
     4. In the medium with high and low concentration of dextrose, there was difference among ZY-D, ZY-W and sensitive strain. In the high concentration of dextrose, the ZY-D was inhibited more than other strains; while in the middle concentration of dextrose, the ZY-W was inhibited more than other strains. In different concentration of NaCl, the ZY-W was inhibited more than other strains. The colony diameter of the ZY-W had negative relationship with concentration of NaCl.
     5. After treated with middle and low concentration of carbendazim, the relative leakage of resistant strains is higher than that of sensitive strain. Moreover, the relative leakage had positive relation with treated time. After treated with high concentration of carbendazim, at the beginning, the relative leakage of ZY-D and sensitive strain was decreased, and then the relative leakage of both strains was increased. Furthermore, the sensitive strain could leak more electrolyte than the ZY-D in the short time. However, the relative leakage of ZY-D is higher than sensitive strain finally. After treated with different concentration of tebuconazole, the strain ZY-W could leak more electrolyte than the sensitive strain continuously.
     6. After treated with carbendazim, the activity of phenylalanine ammonia lyase(PAL) and peroxidase(POD) of the resistant strains was higher than that of the sensitive strain. After treated with carbendazim, the activity of PAL of the ZY-D and sensitive strain firstly increased, and then decreased. After treated with tebuconazole, the activity of PAL of the ZY-W was higher than that of sensitivity. After treated with tebuconzaole, the activity of PAL of the ZY-W and sensitive strain firstly increased, and then decreased.
     7. The fitness differences between sensitive and two resistant strains are as follows: the ZY-D work best in suiting NaCl and dextrose, and leaking fungicide; followed by the sensitive strain; and the ZY-W is the last one. Both resistant strains have more POD and PAL than the sensitive strain.
引文
1.晁龙军,单学敏,车少臣,曾大鹏.草坪褐斑病病原菌鉴定、流行规律及综合控制技术的研究[J].中国草地,2000, (4): 42- 47.
    2.陈珉,汪国平,吴定华.黄瓜枯萎病抗、感品种在病菌入侵后的病理组织学差异研究[J].华南农业大学学报,2003, 24(4): 110-112.
    3.陈年春.农药生物测定技术[M].北京:北京农业大学出版社, 1990.
    4.陈茹梅,李金玉,康振生等.戊唑醇对小麦纹枯菌超微结构的影响[J].菌物系统,2000,19(3): 389-395
    5.陈彦;刘长远;赵奎华;苗则彦;梁春浩;王辉;王晓红.葡萄白腐病有益拮抗菌株YB9的分类鉴定研究[ J]. 2007(3): 4-5
    6.迟玉杰,杨谦.植物病原菌对杀菌剂产生抗性的机制与抗性的利用[J].农业系统科学与综合研究,2001,17(4): 313-316
    7.储国良,吴汉章,于汉寿,等.西瓜专用药肥92-4应用效果及施用技术[J].江苏农业科学,1994,(6): 47-49
    8.丁建成,胡宏云,刘小林,等.豇豆枯萎病防治药剂筛选研究[J].现代农业科技,2008,11: 113
    9.丁中,刘峰,慕立义.应用电导率仪测定番茄灰霉病菌对多菌灵抗药性的初步研究[J].农药学学报. 2003,5(3): 94-96.
    10.甘亚,吕宁.抗真菌药物的作用机制[J].国外医药抗生素分册,1998,19(6): 460
    11.高国平,周志权.我国松树枯萎病发生现状及原因探讨[J].辽宁林业科技.1994, 18(6): 42-48
    12.高克祥,王淑红,刘晓光.等.木霉菌株T88对7种病原真菌的拮抗作用[J].河北林果研究,1999,14(2): 159-162.
    13.高克祥,刘晓光,陈晋江,等.木霉菌株T88生物学特性的研究[J].东北林业大学学报, 1995, 23(2): 33- 39.
    14.葛银林,张元恩.二硝基苯胺类化合物对棉花抗枯萎病的诱导作用及机理[J].植物保护学报,1995. 22(1):62-66
    15.郝保春.草莓新品种石莓2号的选育[J].中国果树, 1999,38(1):59..
    16.何秀萍,张博润.微生物麦角固醇的研究进展[J].微生物学通报,1998,25(3):166
    17.侯幼红,吴绍熙.抗真菌药物作用机理的研究进展[J].国外医学皮肤性病学分册,1993,19(6):34
    18.花锁龙.油桐抗枯萎病株系的选鉴研究[J].林业科学研究,1991,4(2):160-166
    19.黄琼,毛忠顺,李杨苹,等.两株细菌分离物对镰刀菌的拮抗作用[J].云南大学学报,2003,25(增刊): 42-44
    20.黄仲生,杨玉茹,岳斌.菜豆枯萎病病原鉴定及防治研究[J].植物病理学报,1988,4:195
    21.季海涛,张万年,周有骏.抗真菌药物作用靶酶羊毛甾醇14α去甲基化酶研究[J].生物化学与生物物理进展[J],1999,26(2):108-113
    22.贾冬梅.大棚草莓的主要病害及防治.河北果树, 2000 (1): 38.
    23.蒋木庚,杨春龙,蒋丰等.三唑类杀菌剂金环唑构效关系的研究[J].南京农业大学学报,2003,26(2):102-105
    24.蒋细良,谢德龄,倪楚芳,等.中生菌素对真菌作用机理的研究[J],中国生物防治,1997,13(2):69-71
    25.康立娟,张小风等.灰霉菌的抗药性与适合度测定.农药学学报, 2000, 2 (3): 39- 42.
    26.黎起秦,陈永宁,林纬,等.西瓜枯萎病生防细菌的筛选[J].广西农业生物科学,2000,19(2): 81-84
    27.李诚,李俊杰.百合枯萎病病原菌鉴定[J].植物病理学报,1996,26(2):192
    28.李富根,吴新平,刘乃炽.戊唑醇的作用特点及应用概况.农药科学与管理. 2001, 22 (3): 40- 41.
    29.李合生.植物生理生化实验原理和技术[M].高等教育出版社,北京,2000
    30.李红霞,陆悦健,周明国,王晓峰.油菜菌核病菌β-微管蛋白基因与多菌灵抗药性相关突变的研究[J].中国油料作物学报,2003,25(2):56- 60.
    31.李红叶,朱国念,朱金文等.丝状真菌对甾醇生物合成抑制剂的抗性分子机制. [J].系统, 2002, 21(2): 293- 300.
    32.李红叶,谢清云,宋爱环.抑霉唑敏感与抗性指状青霉菌株CYP51基因序列比较.[J].菌物系统,2003,22(1):153- 156.
    33.李怀方.园艺植物病理学[M].北京:中国农业大学出版社,2001,24:145-146.
    34.李金玉,康振生,李振歧等.种衣剂17号包衣对小麦苗期白粉菌发育影响的研究[J].中国农业科学,1995,28(4):60-65
    35.李培夫.新疆陆地棉抗病育种现状及对策[J].西北农业学报,2000, 9 (2):128-131.
    36.李晓亮,辛举文等.山东省草莓生产概况及发展建议中国农学通报,1998,14(3): 60-61.
    37.李增智.菌物在害虫植病和杂草治理中的现状和未来[J].中国生物防治.1999,15(1): 35-40
    38.李召义,孟霞.温室豆角枯萎病的综合防治技术研究[J].河北农业科学,2008,12(2): 70-72
    39.李志坚,管开云.铁线莲属植物上的病虫害及防治[J].植物保护,2002, 28(2): 35-36
    40.梁建根,王建明.辣椒枯萎病病原的初步研究[J].山西农业大学学报(自然科学版), 2002, 22(1): 29- 31, 45.
    41.林才华,王开运,等.山东省草莓枯萎病菌对四种三唑类杀菌剂的敏感性检测.植物保护学报,2009,35(2): 55-60
    42.林时迟,张绍升.福建省香蕉枯萎病鉴定[J].福建农业大学学报,2000, 29(4): 465-469
    43.刘波,蔡德华,苗容.大麦云纹斑病菌对杀菌剂的抗性检测及同工酶谱类型.植物保护学报,1996,23(3):247-252
    44.刘波,苗荣,D.W.Hollomon等.大麦云纹斑病菌中抗多菌灵乙霉威株系及其抗药性对致病性作用的分子分析[J].植物病理学报, 1996,26(3): 211-215
    45.刘波,朱育菁,周涵韬,等.农作物枯萎病研究进展[J].厦门大学学报, 2004,43(8): 47-58
    46.刘铁斌.茄子黄萎病、枯萎病识别与防治[J].农业科技与信息,2002,11(2):25
    47.刘新月,李凡,陈如海,郭俊,张萍.致病性尖孢镰刀菌生物防治研究进展[J].云南大学学报(自然科学版), 2008, 30 (S1): 89- 93.
    48.刘雪静,于海燕.蓖麻枯萎病病菌的研究[J].农业与技术,1994,(5): 36-38
    49.刘英华,王开运,姜兴印,等.植物病原菌抗性生物学及生化机制研究进展[J].世界农药. 2004, 26(3):16-17.
    50.刘英华,王开运,姜兴印,仪美芹,王怀训.禾谷丝核菌对戊唑醇的抗性及抗药性菌系生物学特性[J].植物保护学报. 2003, 30(4): 424- 428.
    51.陆悦健,周明国,叶钟音,王建新.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究.植物病理学报,2000,30(1): 30-34.
    52.马宝红,甄文超,曹克强,等. VAM真菌对草莓促生、防草莓黄萎病效应初探[J].河北农业大学学报, 2004, 27 (4): 71- 73.
    53.马国斌.西瓜枯萎病菌镶刀菌酸对西瓜苗作用机制的初步探讨[[J].植物病理学报,2000, 30 (4): 373.
    54.马志强,刘国容,严乐恩等.小麦白粉病菌对三唑酮抗药性的监测[J].植物保护学报,1997,24,(1):85-88
    55.潘光照,何旭平.我国棉花枯萎病研究进展[J].中国棉花,1999,26(3): 9-10
    56.潘洪玉,张浩,丁利等.黄瓜黑星病菌对多菌灵抗药性的测定.植物保护学报,1997, 24(3):285-286
    57.潘以楼,汪智渊,吴汉章.水稻恶苗病菌(Fusarium monilisforme)对多菌灵不同抗性菌株的菌丝生长、产孢和致病力差异.江苏农业学报, 1997, 13(2): 90- 93.
    58.戚佩坤.瓜类枯萎病菌专化型研究简介[J].华南农业大学学报,1995,16(4):110-114
    59.邱强,胡淼,王志田.原色西瓜甜瓜草莓病虫与营养诊断图谱.北京:中国科学技术出版社,1996: 89-90.
    60.沈瑛,梁天锡,朱培良等.稻瘟菌对三环唑的抗药性研究[J].植物保护,1993,19(3):4-5
    61.石志琦,史建荣,陈怀谷等.小麦赤霉病菌对多菌灵的抗药性研究.农药学学报. 2000, 2(4): 22- 27.
    62.石志琦,周明国,叶钟音,等.油菜菌核病菌对多菌灵、菌核净抗药性菌株性质研究.中国油料作物学报, 2000, 22(4): 54- 57.
    63.石志琦,周明国,叶钟音.核盘菌对菌核净的抗药性机制初探[J].农药学学报,2000, 2(2):47-51
    64.史建荣,王裕中,方中达.三唑酮、三唑醇对小麦纹桔病菌形态和生理的影响[J].植物病理学报,1992,22(3): 205-209
    65.手塚信夫.用非致病性镰刀菌防治草莓黄萎病.李士竹,胡兴平译.农业新技术新方法译丛, 1989,27(4): 34-37
    66.田连生,李书生,史延茂.利用玉米秸秆制备生物杀菌剂的研究[J].中国生态农业学报,2005,13(2): 59-61
    67.田世民,李济宸.河北省马铃薯真菌性病害种类及4种新记录[J].河北农业人学学报,1998, 18(3): 59-62
    68.王昌家,孙毅民.大豆枯萎病的发生与防治[J].大豆通报,2000,24(4):16
    69.王建明,郑经武,贺云春.西瓜枯萎病田间症状类型及侵染来源的研究[J].山西农业大学学报,1992,12 (4): 352-354.
    70.王建明,郑经武,贺运春,等.西瓜枯萎病菌在植株体内的存在状态、数量分布及扩展规律的研究[J],中国农业科学,1993, 26(3): 69-74.
    71.王美琴,刘慧平,阎秀琴,张永杰,韩巨才,郝玩平..山西省番茄叶霉病菌对多菌灵的抗性检测.山西农业大学学报,2002,22(3): 227-230
    72.王美琴,刘慧平,张智广,等.番茄叶霉病菌对多菌灵抗药性的诱导及抗性菌株特性研究.植物保护,2004,30(5): 55-59
    73.王全华,李景富.番茄枯萎病抗病育种研究进展[J].北方园艺,1996,(4): 53-55
    74.王文桥,马志强,张小风,张文吉.植物病原菌对杀菌剂抗性风险评估.农药学学报。2001,3(1): 6-11
    75.王占武,李晓芝,刘彦利,王敬军.拮抗菌防治草莓枯萎病[J].中国生物防治, 1999, 15 (4): 187.
    76.王振中.香蕉枯萎病及其防治研究进展[J].植物检疫,2006 (3): 198-200
    77.王政逸,李德葆.尖孢镰刀菌的遗传多态性[J].植物病理学报,2000, 30 (3): 193-199.
    78.吴加志,Shlomo P.植物土传、根际和内生细菌用于植物病害生物防治潜力的研究[J].中国微生态学杂志, 1996,8(3): 4- 13.
    79.夏晓明,王开运,范昆等.抗戊唑醇禾谷丝核菌的渗透压敏感性及相对渗率变化研究[J].农药学学报,2005, 7 (2): 126-130
    80.夏晓明.禾谷丝核菌(Rhizoctonia cerealis)对戊唑醇的抗性机制研究[D]. 2006.
    81.肖荣凤,刘波,林抗美,等.枯萎病原菌在黄瓜组培苗体内侵染特性的研究[J].厦门人学学报,2004, 43(增):94-96.
    82.谢大森,陈家旺.西瓜枯萎病研究进展[J].江西农业大学学报,1997,19(4): 42- 45.
    83.徐秉良,郁继华,徐琼,等.非洲菊枯萎病菌的生物学特性[J].甘肃农业人学学报,200.2,37(1):35-39
    84.徐汉虹.植物化学保护学. (第四版),北京:中国农业出版社,2006,149.
    85.徐建华,苗琛.黄瓜感染枯萎病后病理组织学的研究[J].植物病理学报,1997, 27(4): 349-352.
    86.徐苏酪译.高活性的新三唑作物杀菌剂RH7592[J].农药译丛,1994,16(4):63-65
    87.徐宗刚,付学艳,李芳,等.菌线威对西瓜枯萎病的防治效果试验初报[J].中国西瓜甜瓜,2002,(4):16
    88.燕嗣皇,陆德清,杨雨环.木霉防治辣椒枯萎病应用技术研究[J].贵州农业科学,1999.27(5): 1-4
    89.杨焕青,王开运,范昆,等.草莓枯萎病菌的生物学特性及7种杀菌剂对其抑制作用[J].植物保护学报, 2008, 35(2): 169-174
    90.杨谦.植物病原菌抗药性分子生物学[M].2003,科学出版社,北京
    91.杨世刚,闺菊香,杨品海.5%安索菌毒清防治棉花枯萎病药效试验[J].石河子科技,1995, (6): 15-!6.
    92.杨涛,赵奎华.蔬菜灰霉病菌抗多菌灵菌系及其适应性研究.辽宁农业科学,1997(4): 15-19
    93.曾富春,黄云,赵燕琴,马淑青.草莓枯萎病菌的生物学特性[J].四川农业大学学报.2006, 24 (2): 156-160.
    94.张承来,欧晓明.植物病原物对杀菌剂的抗药性机制概述.[J].2000, 3(5): 7-10.
    95.张驰,纪明山,王英姿等.番茄叶霉病菌对氟硅唑抗药性的初步研究.[J].沈阳农业大学学报, 2003, 34(4): 255-258
    96.张建树.节能温室草莓栽培技术[J].中国果树, 1997,22(10): 27
    97.张克诚,李研学,贾恩宽,等.拮抗链霉菌s-5对棉花病害的防治作用[J],中国农学通报,2002,18(2): 26-29
    98.张令宏,李敏,高兆银等.抗多菌灵的芒果炭疽病菌的杀菌剂筛选及其交互抗性测定[J].热带作物学报. 2009,30(3): 347- 352.
    99.张小青,曹军卫,翟超等.枯草芽孢杆菌渗透压调节基因proB的克隆和表达[J].微生物学报,2002,42(2): 163-168
    100.张永杰,高俊明,韩巨才等.抗速克灵灰霉病菌菌株电导率变化及对渗透压的敏感性[J].山西农业大学学报(自然科学版), 2004,24(1): 34-36
    101.赵志昆,田海霞.康乃馨主要病害的防治[J].西北园艺, 2000,21(4): 37-38
    102.郑贵彬,王发科.西安地区番茄枯萎病尖孢镰刀菌的生理型鉴定[J].植物病理学报,2000,30(3): 280
    103.郑仁富,俞冠军.棉花枯萎病药剂防效试验总结[J].江西棉花, 1999,21(4):34-36
    104.郑忠元.甜瓜枯萎病的发生与防治[J].福建农业,2002, (8):18.
    105.周华众,李华,刘慧.棉花枯萎病菌侵染棉籽途径的研究[J].华中农业大学学报,1997, 16(3): 263 -267
    106.周明国,D.W. Hollomon. Neurospora crssa对三唑醇的抗药性分子机制.[J].植物病理学报, 1997, 27(3): 275-280.
    107.周明国,王建新.禾谷镰孢霉对多菌灵的敏感性基线及抗药性菌株生物学性质的研究.植物病理学报,2001, 31(4): 365- 370.
    108.周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报, 1994, 17(3): 33-41.
    109.周明国.玉米黑粉菌和粗糙脉孢菌对三唑醇杀菌剂抗药性分子机制研究[D],北京:中国农业大学, 1999, 22-23
    110.周明国.甾醇合成抑制剂杀菌剂抗性的研究[J].农药, 1987,1: 27
    111.诸葛龙,胡金和,王汉荣,等. 40%灭菌净增效作用与抗性治理研究[J].江西农业大学学报,2001,23(3): 450-452
    112.朱乾浩.国外棉花病害防治研究进展[J].江西棉花, 1994, (3): 19-22
    113.Abbas H K. Characterization and biological acitivity of two new mycotoxins produced by species of Fusarium [J].Dissertation Abstracts International, B Sciences and Engineering, 1988, 49(4):962.
    114.Akakkal R.,Debieu D,Lanen C,et al.Inheritance and mechanisms of resistance to tebuconazole,a sterol C14-demethylation inhibitor,in nectria haematococca[J].Pestic. Biochem.Physiol., 1998, 60: 147-166
    115.Alabouvette C, Couteaudier Y. Biological control of Fusarium wilt with nonpathogenic fusaria [A].Tjamos E C, Papvizas G C, Cook R J. Biological Control of Plant Disease [C]. New York: Plenum Press. 1992, 26(5): 415-426
    116.Andotra C S,Kumer,Rajinder,et al.Bridgehead nitrogen heterocycles:Synthis antibacterical and antifungal activities of 2-ary1-6(p-chloro-phenyl)-5-thioxo-1 H-1,2,4-triazole[1,5-a]-s-triazin-7ones.Indian J.Heterocycl Chem.,1998,8(2):139-142.
    117.Baldwin B C,Wiggins T E,Marchington A F,et al.The discovery and mode of action of P450[flutriafol],a new broad spectrum fungicide for cerealis[J].Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent.1984,49(2a):303-310.
    118.Balzi E,Goffeau A.Yeast multidrug resistance:the PDR network[J].J.Bioenerg. Biomembr., 1995, 27: 71-76.
    119.Basarab G S,Pifferitti M,Bolinski M M.The chemistry and biological activity of a new class of azole fungicides:1-amino-1,2,4-triazoles[J].Pesticide Science,1991,31(4): 403-417
    120.Beever R E, Laracy E P, Park H A. Strain of Botrytis cinerea resistant to dicarboximide and benzimidaole fungicides in New Zealand vineyards[J].Plant Pathology,1989,38:427-437.
    121.Beever R E,Brien H M R.A survey of resistance to the dicarboximide fungicides in Botrytis cinerea[J],New Zealand:J..Agric Res.1983,26:391-340.
    122.Beraha L, Garber E D. A genetic study of resistance to thiabendazole and sodium o-phenylphenate in Penicillium italicum by the parasexual cycle. Bot. Gaz. 1980, 141: 204- 209.
    123.Booth C. The Genus Fusarium.Commonwealth Mycological Institute [M]. England: Kew Surrey. 1971
    124.Buchenauer H.Inhibition of ergosterol biosynthesis in Ustilago avenae by triadimefon and fluotrimazole[J].Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz,1976, 83(6):363-367.
    125.Buchenauer H.Mode of action of triadimefon in Ustilago avenae[J].Pesticide Biochemistry and Physiology,1977,7(4):309-320
    126.Buchennauer H,Rohner E.Effect of triadimefon and triadimenol of grow of various plant species as well as on gibberellin content and sterol metabolism in shoots of barley seedings[J].Pesticide of Biochemistry and Physiology,1981,15:58-70
    127.Burton C L,Dewey D H.New fungicides to control benomyl-resistant Penicillium expansum in apples[J].Plant Disease,1981,65(11):881-883
    128.Butters J A,Hollomon D W.Resistance to benzimidazole can be cause by changes inβ-tubulin isoforms. Pesticide Science, 1999, 55: 501~503.
    129.Clemeons G P.Sisler H D. Localizaton of the site of action of a fungitoxic benomyl derivative. Pestic. Biochem. Physiol. 1971,1:32-43.
    130.Cleveland D W, Sullivan K F. Molecular biology and genetics of tubulin. Ann. Rev. Biochem. 1985, 54, 331-365.
    131.CooLs H J,Ishii J,Butters J A,et al.Cloning and sequence analysis of the eburicol 14α-demethylase encoding gene(CYP51)from the Japanse pear scab fungus Venturia nashicola[J].J.Phytopathology,2002,150:444-450.
    132.Cotterill P J. Evaluation of in furrow fungicide treatments to control rhizoctonia root rot of wheat. Crop Prot.,1991,10(12):473-478
    133.Dahmen H,Hoch H C,Staub T.Differential effects of sterol inhibitors on growth,cell membrane permeability,and ultrastructure of two target fungi[J].Phytopathology,1988,78(8):1033-1042
    134.Davidse L C, Antimitotic activity of methyl benzimidazole-2-yl carbamate (MBC) in Aspergillus nidulans. Pestic. Biochem. Physiol. 1973, 3: 317-325.
    135.Davidse L C, Flash W. Interaction of thiabendazole with fungal fungal tubulin. Biochim. Biophys. Acta. 1978, 543: 82-90.
    136.Davidse L C. Benzimidazole fungicides;mechanism of action and biological impact. Ann. Rev. Phytoathol. 1986, 24: 43- 65.
    137.Davidse L C. Metabolic conversion of methyl-benzimidazol-2-yl carbamate(MBC) in Aspergillus nidulans. Pestic. Biochem. Physiol. 1976, 6: 538-546.
    138.Davidse L C. Flach W. Differential binding of methyl benzimidazol-2-yl cabamate to fungal tubulin as a mechanism of resestance to this antimitotic agent in mutant strains of Aspergillus nidulons.J.Cell.Biol, 1977, 72: 174-193
    139.Davis J R.Sensitivity of sharp eyespot of wheat and Rhizoctonia cerealis to fungicide Test:of Agro-chemicals and cultivars of aab.1983,102(4):54-55
    140.De Brabander M J, Van de Veire R M L, Aerts F E M, Borgers M, Janssen P A J. The effects of methyl [5-(2-thienyl-carbonyl)-1H-benzimidazol-2-yl]- carbamate (R17934; NSC238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cance Res.1976, 36: 1011-1018.
    141.De Waard M A, Van Nistelrooy J G M. Antagonistic and synergistic activities of various chemicals on the toxicity of fenarimol to Aspergillus nidulans[J].Pestic.Sci.,1982,13: 279-286.
    142.De Waard M A. Recent developments in fungicides [M].In J. C. Zadoks (ed.), Modern crop protection and perspectives. Wageningen Pers, Wageningen, The Netherlands, 1993, 11- 19.
    143.De Waard M A, J. G. M. van Nistelrooy J G M. An energydependent effluxmechanism for fenarimol in a wild type strainand fenarimol-resistant mutation of Aspergillus nidulans[J]. Pesticide Biochem. Physiol., 1980, 13: 255- 266.
    144.Del Sorbo G., Andrade A C, Van Nistelrooy J G,et al. Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters[J]. Mol. Gen. Genet., 1997, 254:417-426.
    145.Délye C, Laigret F, Corio- Coster M F. Cloning and sequence analysis of the eburicol
    14α-demethylase gen of the obligate biotrophic grape powdery mildew fungus[J]. Gene, 1997b, 195: 29- 33.
    146.Elias KS, Schneider RW, and Lear MM, 1991. Analysis of vegetative compatibility groups in nonpathogenic populations of Fusarium oxysporum isolated from symptomless tomato roots. Canadian Journal of botany, 69: 2089-2094
    147.Ellis S W,Grindle M.Effect of osmotic stress on yield and polyolcontent of dicarboximide-sensitive and resistant strains of Neurospora crassa[J].Mycol.Res., 1981,95:457-464
    148.Faretra F,Pollastro S.Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckeliana(Botrytis cinerea)from nine countries[J].Plant Pathology,1993,42(1):48-57
    149.Faretra F. Pollastro S. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in botryotinia fuckeliana (Botrytis cinerea). Mycol. Res.1991, 95 (8): 943- 951.
    150.Fest C.The chemistry of organo phosphorus.Berlin:springer Veriag,1973,198-200
    151.Fling M E, Kopf J, Tamarkin A, Gorman JA, Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol. Gen. Genet, 1991, 227: 318-329.
    152.Foster B, Staub T. Busis for use strategies of anilinopyrimidene and phenylpyrrole fungicides against Botrytis Cinerea[J].Crop Protection,1996,15:529-537.
    153.Frank J A, Ayers J E. Effect of triademenol seed treatment on powdery mildew epidemics on winter wheat[J].Phytopathology,1986,76(3):254-257
    154.Fuchs A, de Vries F W. Diastereomer-selective resistance in Cladosporium cucumerinum to triazole-type fungicides[J].Pestic.Sci.,1984,15:90-96
    155.Fuchs A, Drandarevski C A. The likelihood of development of resistance to systemic fungicides which inhibit ergosterol biosynthesis[J]. Neth. J. Plant Pahtol.,1976,82:85-87
    156.Funaki Y, Ishiquir Y L, Kato T L, et al. Structure-activity relationships of a new fungicide S-3308 and its derivatives for control of powdery mildews, rusts, scabs and other phytopathogenic diseases[J].Pesticide chemistry: human welfare and the environment: proceedings of the 5th International Congress of Pesticide Chemistry,Kyoto,Japan,1982, 309-314.
    157.Georgopapadakov N H, Walsh T J. Human mycoses: Drugs and targets for emerging pathogens[J]. Science, 1994, 264(15):371.
    158.Golembievski R C, Vargas J R, Jones A L, et al. Detection of demethylation inhibitor(DMI)resistance in Sclerotinia homeocarpa populations[J]. Plant Dis., 1995, 79: 491-493.
    159.Gottesman M M, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu[J].Rev.Biochem.,1993,62:385-427.
    160.Guan J, van Leemput L, Posthumus M et al. Metabolism of imazalil by wild-type and DMI resistant isolof Penicillium italicum[J].Neth. J. Plant Pathol., 1992, 98: 161- 168
    161.Hamamoto H, Hasegawa K, Nakaune R, et al. Tanden repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene(CYP51)in Penicillium digitatum[J]. Applied and Environmental Microbiology.2000, 66 (8):421-426.
    162.Hammerschalg R S, Sisler H D. Benomyl and methyl-2-benzimidazole carbamate (MBC): Biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevisiae. Pestic. Biochem. Physiol. 1973, 3: 42-54.
    163.Hastie A C. Benlate-induced instability of Aspergillus diploids. Nature, 1970, 226: 771.
    164.Health I B. The effect of nocodazole on the growth and ultrastructure of the fungus. Proc. Ruakura Farmers’Conf. Week. N Z. ,1968 . 3-12.
    165.Henry M J. Mode of action of the fungicide flusilazole in Ustilago maydis. Pesticide Science, 1990, 28: 1, 35- 42.
    166.Hippe S.Ultrastructural changes induced by the systemic fungicides triadimefon, nuarimol and imazalil nitrate in sporidia of Ustilago avenae[J].Pesticide Science,1984, 15(2):210-214
    167.Hoebeke R J,Van Nyen G, De Brabander M. Interaction of oncodazole (R17934), a new antitumoral drug, with rat brain tubulin. Biochem. Biophys. Res. Commun. 1976, 69: 319-324.
    168.Hollomom D W.Resistance to azole fungicides in the field[J]. Biochem. Soc. Trans., 1993, 21: 1047-1051.
    169.Ishii H, Davidse L C. Decreased binding of carbendazim to cellular protein from Venturia nashicola and its involbement in benzimidazole resistance. Proceeding of the 1986 British Crop Protection Conference-Pests and Disease,1986: 567-573.
    170.Ishii H, van Raak M. Inheritance of increased sensitivity to N-Phenylcarbamates in benzimidazole-resistant Veuturia nashicola. Phytopathology, 1988,78: 695- 698.
    171.Jones A L, Shabi E, Ehret G R. Genetics of negatively correlated cross-resistance to a N-phenylcarbamate in benomyl-resistant Venturia inaequalis. Canadian Journal of Plant Pathology,1987,9: 195- 199.
    172.Jones J P, Scott J W. Evaluation of Fusariumwilt (race3)-tolerant tomato lines. Proceedings of the Florida [J]. State Horticultural Society, 1987,15(10):240-241.
    173.Josepovits G,Gasztonyi M, Mikite G. Negative cross-resistance to N-Phenylanilines in benzimdazole-resistant strains of Botrytis cinerea,Venturia nashicola and Venturia inaequalis. Pestieide Science,1992,35: 237- 242.
    174.Jung M K, Oakley B R. Identification of an amino acid substitution in the benA,β-tubulin,gen of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cell Motil. Cytoskeleton, 1990, 17: 87-94.
    175.Karaoglanidis G S, Loannidis P M, Thanassoulopoulos C C. Reduced sensitivity of Cercospora beticola isolates to sterol- demethylation- inhbiting fungicides[J].Plant Pathol.,2000, 49: 567- 572.
    176.Kato T. Negative cross-resistance activity of MDPC and diethofencarb against benzimidazole- resistant fungi. In: Fungicide resistance in north America, Delp C J ed. Minnesota: APS Press, 1988. 40.
    177.Kawchuk L M, Hutchison L J ,Verhaege C A, Lynch D R ,Bains P S . Holley J D .Isolation of theβ-tubulin
    178.Kendall S, Hollomon D W, Ishii H, Heaney S P. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis. Pesticide Science, 1993, 40:175-181.
    179.Killer W, Scheinpflug H. Fungal resistance to sterol biosynthesis inhibitors: a new challenge[J]. Plant Disease,1987,71:1066-1074
    180.Kinoshita Y, Sakaguchi H, Manabe A,et al. Difluomethyl triazolone compounds use of the same and intermediates for the production thereof. PCT int. Appl. WO 0142,227, 2001, 14 Jun
    181.Koenraadt H, Somerville S C, Jones A L. Characterization of mutations in the beta-tubulin gene ofbenomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology, 1992, 82: 1348~1354.
    182.Koller W, Smtth F D, Reynolds K L. Phenotypic instability of flusilazole sensitivity in Venturia inaequalis[J]. Plant Pathol., 1991, (40): 608- 611.
    183.Koller W, Wubben J P. Variable resistance factors of fungicides acting as sterol demethylation inhibitors[J]. Pesticide Science, 1989, 26 (2): 133- 145.
    184.Koller W. Isomers of sterol synthesis inhibitors: fungicidal effects and plant growth regulator activities. Pesticide Science, 1987, 18 (2): 129-147.
    185.Kuck K H, and Scheinpflug H. Biology of sterol-biosynthesis inhibiting fungicides[M]. In G. Haug and H. Hoffman (ed.), Chemistry of plant protection, Spring- verlag, K G, Berlin, Germany, 1986, 1: 65- 96.
    186.Leroux P, Gredt M. Effects du barbane, chloryelAme, du chlorpropham et du prophame sur diverses souches de Botrytis cinerea Pers. Et de Penicillium expansum Link sensibles ou resistantes au carbendazime et au thiabendazole. C. R. Acad. Sci. Paris, Ser.1979, 289: 691-693.
    187.Loeffler R S T, Hayes A L. Effects of Sterol Biosynthesis Inhibitor Fungicides on Growth and Sterol Composition of Ustilago maydis, Botrytis cinerea and Pyrenophorteres[J].Pestic.Sci.,1992,36:7-17.
    188.Lurssen K,Reiser W.Triapenthenol-a new plant growth regulator[J]. Pesticide Science, 1987, 19 (2):153-164.
    189.Lux W E.Omnex-a newly developed fungicide against scab and powdery mildew on pome fruit [J]. Gesunde Pflanzen, 1985, 37 (12): 537-540.
    190.Marsh R W.“Systemic fungicides”[M]. Second Edition, London and New York, Longman, 1977: 71.
    191.Marthington A F.“Pesticide synthesis through rational approaches, ACS symposium seies 255”, American Chemical Society, Washington, 1984: 73.
    192.Molnar A. Hornk L, Miklo’s P. The high level of benomyl tolerance in Fusarium oxysporum is determined by the synergistic interaction of two genes. Experimental Mycology, 1985, 9(3):326-333.
    193.Nakata A, Snao S,Hashimoto S,Hayakawa K,Nishikawa H,Yasuda Y. Negatively correlated cross-resistant to N-Phylformamidoximes in benzimidazole-resistant phytopathogeniec fungi. Annals of the Phytopathological Society of Japan,1987,53: 659- 662.
    194.Nakaune R, Adachi K, Nawata O, et al. A novel ATP-Binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum[J]. Appl.Environ.Microbiol., 1998, 64: 3983- 3988.
    195.Ogawa Y.MANAGEReg. Imibenconazole-a new fungicide[J].Agrochemicals Japan, 1995, 67: 20- 21.
    196.Olivain C, and Alaboubette C, 1999. Process of tomato root colonization by a pathogenic strain of Fusarium f. sp. Lycopersici in comparison with a non-pathogenic strain. New plrytologist, 141:497-510
    197.Ozaktan H, Bora T. Biological control of Fusurium oxysporum f. sp. melonis by the formulations of fluorescent pseudomonads [J]. Journal of Turkish Phytopathology, 2000, 29 (2): 133-149;
    198.Paul A. Warthington. Synthesis of 1,2,4-triazole compounds related to the fungicides flutriafol and hexaconazole[J].Pesticide Science, 1991, 31: 457- 498.
    199.Peever T L, Milgroom M G. Inheritance of triadimenol resistance in Pyrenophora teres [J].Phytopathology, 1992, 82: 821- 828.
    200.Picornell D.Process for the preparation of the antifungal agent. Span. ES2, 141, 667, 2000, 16 Mar.
    201.Qin G Z, Tian S P, Liu H B, et al. Polyphenol Oxidase, Peroxidase and phenylalanine ammonia-lyase induced in postharvest peach fruits by inoculation with Pichia membranefaciens or Rhizopus stolonifer [J]. Agricultural Sciences in China, 2002, 1(12):1370-1375
    202.Quinn J A, Fujimoto T T, Egan A R, et al. The properties of RH 3866, a new triazole fungicide[J]. Pesticide Science, 1986, 17(4): 357- 362.
    203.Roepe P D. The role of the MDR protein in altered drug translocation across tumor cell membranes. Biochim[J].Biophys.Acta,1995,1241:385-405
    204.Ruess W, Riebli P, Herzog J, et al. CGA 169374,a new systemic fungicide with a novel broad-spectrum activity against disease complexes in a wide range of crops. Brighton Crop Protection Conference, Pests and Diseases, British Crop Protection Council, Thornton Heath, UK. 1988, 2: 543- 550.
    205.Schnabel G.,Jones A L.The 14α-demethylase(CYP51A1)gene is overexpressed in Venturia inaequlis strains resistant to Myclobutanil[J].Phytopathol,2002,91:102-110.
    206.Shabi E, Katan T, Marton K. Inheritance of resistance to benomyl in isolates of Venturia inaequalis from Israel. Plant Pathology, 1983, 32: 207-211.
    207.Shabi E, Katan T. Fitness of Venturia pirina isolates resistant to benzimidazole fungicides. Phytopathology, 1980, 70: 1172-1174.
    208.Shyadehi A Z,Lamb D C, Kelly S L, et al. The mechanism of the acylcarbon bond cleavage reaction catalyzed byn recombinant sterol 14α-demethylase of candida albicans (other names are: lanosterol 14α-demethylase,P45014DM, and CYP51)[J]. J.Biol.Chem., 1996, 271 (21):12445.
    209.Smiley R W, Impact of fungicide seed-treatment on Rhizoctonia root rot, take-all, eyespot and growth of winter wheat[J]. Plant Disease, 1990, 74: 782- 787.
    210.Southerton S G , Deverall B J. Changes in phenylalanine ammonia-lyase and peroxidase activities in wheat cultivars expressing resistance to the leaf rust fungus (Puccinia recondita f. sp. tritici)[J]. Plant Pathology, 1990, 39(2):223-230
    211.Stanis V F,Jonos A L.Reduced sensitivity to sterol inhibiting fungicides in field isolates of Venturia inaequalis[J]. Phytopathology, 1985, 75: 1098- 1101.
    212.Stefan K, Holger D, Kurt M. Acquisition of resistance to sterol demethylation inhibitors by populations of Venturia inaequalis[J]. Phytopathol. 1997,87:1272-1278.
    213.Stehmann C., De Waard M.. Accumulation of tebuconazole by isolates of Botrytis cinerea differing in sensitivity to sterol demethylation inhibiting fungicides[J].Pestic.Sci.,1995,45:311-318.
    214.Steva H, and Clerjeau M. Cross resistance to sterol biosynthesis inhibitor fungicides in strains of Uncinula necator isolated in France and Portugal. Med. Fac. Landbouww. Rijksuniv[J].Gent., 1990, 55: 983- 988.
    215.Stover, R H. Extranuclear inherited tolerance to to benomyl in Mycosphaerella fijiensis var. difformis, Trans. Br. Mycol. Soc. 1977, 68 (1): 122.
    216.Takeuchi T. Studies of the epidemiology of fungicide resistant gray mold strains. Special Bulletion of the Chiba-Ken Agricultural Experiment Station, 1987, 14: 1-75.
    217.Tomlin C D S. The pesticide manual (11th Edition)[M].British Crop Protection Council, Alton,UK:1997,933-955.
    218.Vonk J W, Sijpesteijn A K. Methyl benzimidazole-2-ylcarbamate, the fungitoxic principle of thiophanate-methyl. Pesticiede Science, 1971, 2:160-164.
    219.Walmsey-Woodward D J, Laws F A, and Whittington W J. Studies on the tolerance of Erysiphe graminis f.sp.hordei to systemic fungicides[J]. Ann.Plant Biol., 1979, 92: 199-209.
    220.Watson P F, Rose M E, Ellis S W, et al. Defective sterol C5–6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals[J]. Biochem. Biophys.Res.Commun., 1989, 164: 1170- 1175.
    221.Wellman H, and Schauz K. Characterization and genetics analysis of triadimefon-resistant laboratory mutants[J], Pestic. Biochem. Physiol., 1992, 43: 171- 179.
    222.Yarden O,Katan T.Mutations leading to substitutions at amino acids 198 and 200 oh beta-tubulin that correlate with benomyl resistance phenotypes of field strains of Botrytis cinerea.Phytoathology,1993,83;1478-1483.
    223.Zwiers L H, Stergiopoulos I, Van Nistelrooy J G. M., et al. ABC transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphaerella graminicola[J]. Antimicroblal Agents and Chemotherapy, 2002, 46(12): 3900- 3906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700