两亲性嵌段共聚物的RAFT法合成及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着活性自由基聚合技术的发展,为合成分子量可控且分子量分布窄的两亲性嵌段共聚物提供了很大的方便。其中可逆加成-断裂链转移(RAFT)自由基聚合具有单体适用范围广、条件温和、不受聚合方法限制等优点,因此成为人们研究的热点。两亲性嵌段共聚物在水中能够自组装形成胶束,在乳液聚合中可代替小分子乳化剂,两亲性嵌段共聚物为乳胶粒提供空间位阻效应和静电效应从而使其稳定,避免了使用小分子乳化剂对乳液及其膜的性能造成的不利影响。所以研究两亲性嵌段共聚物作为乳化剂用于乳液聚合具有十分重要的意义。本论文合成了两种以聚丙烯酸为亲水性嵌段的两亲性嵌段共聚物,对其结构进行了表征,并对其性能及作为乳化剂在乳液聚合中的应用进行了研究。具体研究结果简述如下。
     以2-{[(十二烷基硫基)硫代甲酰基]硫烷基}琥珀酸(DCTSS)为链转移剂,采用RAFT聚合合成了聚丙烯酸(PAA),用FT-IR、1H-NMR和GPC对其结构进行了表征。聚合动力学曲线呈线性,为一级反应,转化率随时间增加而增加,具有活性聚合的特征,得到的PAA分子量分布小于1.37。在一定范围内n(V501):n(CTA)比值对PAA的分子量及分子量分布影响不大;随着n(AA):n(CTA)比值的增加,PAA的分子量线性增加。
     采用RAFT聚合对PAA进行扩链,得到聚丙烯酸-b-聚苯乙烯(PAA-b-PS)两亲性嵌段共聚物,用FT-IR、1H-NMR和GPC对其结构进行了表征。改变n(V501):n(PAA-RAFT)和n(St):n(PAA-RAFT)的值得到了PDI在1.07-1.23的PAA-b-PS,表明聚合过程的可控性。PAA-b-PS在水溶液中的性能研究结果表明:当n(V501):n(CTA)=0.2、n(AA):n(CTA)=20、 n(V501):n(PAA-RAFT)=0.1、 n(St):n(PAA-RAFT)=20时得到的嵌段共聚物乳化性最好,远高于小分子表面活性剂SDS、 SDBS和MS-1的乳化性,同时其起泡性和泡沫稳定性较低;其临界胶束浓度约为2.940×10~(-40g/mL,低于SDBS的CMC=3.240×10~(-3)g/mL,表面张力最低可降至39.89mN·m~(-1),但其降低表面张力的能力不如SDBS;表面张力随着碱浓度的增加呈现先升高后降低的趋势。将乳化性最佳条件下制备的PAA-b-PS作为乳化剂,用于苯丙乳液聚合,研究各因素对乳液及膜性能的影响,用FT-IR、1H-NMR、 DLS和TEM对其进行了表征。结果表明:当NaHCO3用量为0.55%,APS用量为0.8%,PAA-b-PS用量为4%,n(AA):n(CTA)=20:1,n(St):n(PAA-RAFT)=20:1,m(BA):m(St)=60:40时得到的乳液最稳定;TEM结果表明,乳胶粒子呈规则球形,平均粒径90nm左右,且分布较窄,与DLS所测结果较吻合。
     采用RAFT聚合对PAA进行扩链,得到聚丙烯酸-b-聚丙烯酸六氟丁酯(PAA-b-PHFBA)含氟两亲性嵌段共聚物,用FT-IR、1H-NMR和GPC对其结构进行了表征。改变n(V501):n(PAA-RAFT)和n(HFBA):n(PAA-RAFT)的值得到了PDI在1.16-1.47的PAA-b-PHFBA,表明聚合过程的可控性。PAA-b-PHFBA在水溶液中的性能研究结果表明:当n(AA):n(CTA)=30、n(V501):n(CTA)=0.15、n(HFBA):n(PAA-RAFT)=15、 n(V501):n(PAA-RAFT)=0.1时得到的嵌段共聚物乳化性最好,远高于小分子表面活性剂SDS、SDBS和MS-1的乳化性,而其起泡性和泡沫稳定性较差;其临界胶束浓度约为1.35×10~(-4)g/mL,低于SDBS的CMC=3.240×10~(-3)g/mL,表面张力最低可降至24.91mN·m~(-1),降低表面张力的能力与SDBS相当;表面张力随着碱浓度的增加呈现先升高后降低的趋势。将乳化性最佳条件下制备的PAA-b-PHFBA作为乳化剂,用于含氟聚丙烯酸酯乳液聚合,研究各因素对乳液及膜性能的影响。结果表明:当APS用量为1.2%,PAA-b-PHFBA用量为4%,HFBA用量为10%,m(BA):m(MMA)=7:3时,制备的乳液及其膜性能最佳;当HFBA用量为10%时接触角最大达96.8°;TGA结果表明,随着含氟单体用量的增加,乳胶膜的耐热温度增加,热稳定性增强;采用PAA-b-PHFBA作乳化剂制备的乳液与DNS-86作乳化剂相比,其乳胶膜具有更优异的疏水性、表面性能及热稳定性;TEM结果表明该乳液平均粒径为80nm,粒径分布窄,并且具有核壳结构;XPS和接触角测试结果表明,膜-空气界面的氟元素含量高于膜-玻璃界面的氟元素含量,且在成膜过程中氟原子会向膜表面迁移。提出了核壳粒子形成机理模型。
With the development of controlled/"living" polymerization inrecent years, it's convenient to synthesize the amphiphilic blockcopolymers with controlled molecular weight and narrow molecularweight distribution. Among the available controlled/“living”polymerization techniques, the reversible addition-fragmentation chaintransfer (RAFT) polymerization has received much attention due to itscompatibility with a wide range of monomers, functional groups andconvenient experimental conditions. Amphiphilic block copolymers canself-assemble to form micelles in water. Amphiphilic block copolymersas stabilizers in emulsion polymerization are expected to overcomedisadvantages caused by low molecular weight surfactants. Latex wasstabilized by steric stabilization or electrosteric stabilization. So theresearch on amphiphilic block copolymers used as emulsifier inemulsion polymerization caused more and more attention. Wesynthesized and characterized two series of amphiphilic blockcopolymers with poly(acrylic acid) as hydrophilic segments in thisthesis. Their properties and applications in the emulsion polymerizationwere investigated. The main results obtained are as follows.
     Poly(acrylic acid) was synthesized via RAFT polymerization byusing2-{[(dodecylsulfanyl)carbonothioyl]sulfanyl}succinic acid(DCTSS) as chain transfer agent. The structure of the polymer wascharacterized by FT-IR,1H-NMR and GPC. Kinetic exhibited first-orderpolymerization and the monomer conversion increased linearly withtime, exhibiting the living polymerization characteristics. Themolecular weight distribution of the final polymerization products wasless than1.37. The molecular weight and molecular weight distributionhas little effect by changing the molar ratio of V501to CTA. The molecular weight increased linearly with increasing the molar ratio ofAA to CTA.
     Amphiphilic block copolymer poly(acrylic acid)-b-polystyrene(PAA-b-PS) was obtained by chain extending reaction of PAA via RAFTpolymerization. The structure of the polymer was characterized byFT-IR,1H-NMR and GPC. A series of PAA-b-PS with molecular weightdistribution from1.07to1.23were obtained by changing the molarratios of V501to PAA-RAFT and St to PAA-RAFT, which indicated thatthe polymerization was controllable. Results of the properties study ofPAA-b-PS in aqueous solution showed that the optimal emulsifyingproperty achieved when the molar ratio of V501to CTA was0.2, molarratio of AA to CTA was20, molar ratio of V501to PAA-RAFT was0.1,and molar ratio of St to PAA-RAFT was20. The emulsifying propertyof PAA-b-PS was much better than that of low molecular surfactants,such as SDS, SDBS and MS-1, and with low foamability and foamstability. The CMC of PAA-b-PS in aqueous solution was estimated tobe2.940×10~(-4)g/mL, which was lower than that of SDBS(CMC=3.240×10~(-3)g/mL). However, the surface tension could only reduce to39.89mN·m-1. The ability of reducing surface tension was weaker thanthat of SDBS. With increasing the amount of alkali, the surface tensiondramatically increased to a maximum and then decreased. Then thePAA-b-PS with optimal emulsifying property was used in emulsionpolymerization of styrene-acrylate. The effects of some parameters onthe emulsion and properties of its film were investigated. The emulsionwas characterized by FT-IR,1H-NMR, DLS and TEM. Evaluating theobtained results, the optimal synthesis conditions were the NaHCO3mass fraction of0.55wt%, the ammonium persulfate mass fraction of0.8wt%, the PAA-b-PS mass fraction of4wt%, the AA to CTA molarratio of20, the St to PAA-RAFT molar ratio of20, the BA to St massratio of60to40. The latex particles were uniform spheres with thediameter about90nm and narrow distribution observed by TEM, whichwas consistent with the results measured by DLS.
     Amphiphilic block copolymer poly(acrylic acid-b-hexafluorobutyl acrylate)(PAA-b-PHFBA) was obtained by chain extending reaction ofPAA via RAFT polymerization. The structure of the polymer wascharacterized by FT-IR,1H-NMR and GPC. A series of PAA-b-PHFBAwith molecular weight distribution from1.16to1.47were obtained bychanging the molar ratios of V501to PAA-RAFT and HFBA toPAA-RAFT, which indicated that the polymerization was controllable.Results of the properties study of PAA-b-PHFBA in aqueous solutionshowed that the optimal emulsifying property achieved when the molarratio of AA to CTA was30, molar ratio of V501to CTA was0.15, molarratio of HFBA to PAA-RAFT was15, and molar ratio of V501toPAA-RAFT was0.1. The emulsifying property of PAA-b-PHFBA wasmuch better than that of low molecular surfactants, such as SDS, SDBSand MS-1, and with low foamability and foam stability. The CMC ofPAA-b-PHFBA in aqueous solution was estimated to be1.35×10~(-4)g/mL,which was much lower than that of SDBS(CMC=3.240×10~(-3)g/mL).Meanwhile, the surface tension could reduce to39.89mN·m-1, more orless with SDBS. With increasing the amount of alkali, the surfacetension dramatically increased to a maximum and then decreased. Thenthe PAA-b-PHFBA with optimal emulsifying property was used in theemulsion polymerization of fluorinated polyacrylate. The effects ofsome parameters on the emulsion and properties of its film wereinvestigated. Evaluating the obtained results, the optimal synthesisconditions were the ammonium persulfate mass fraction of1.2wt%, thePAA-b-PHFBA mass fraction of4wt%, the HFBA mass fraction of10wt%, the BA to MMA mass ratio of7to3. The contact angle wouldreach a maximum of96.8°when the amount of HFBA was10wt%. TGAanalysis showed that the initial decomposition temperature and thermalstability increased with increasing the amount of HFBA. The filmformed from the fluorinated polyacrylate emulsion with PAA-b-PHFBAas emulsifier showed higher thermal stability and hydrophobocity thanthat of DNS-86as emulsifier. The TEM and DLS results indicated thatthe latex particles presented uniform spherical core-shell particles about80nm in diameter and a narrow particle size distribution. XPS and CA analysis showed that the signal intensity of the fluorine in the film-airinterface was higher than that in the film-glass interface, suggesting thefluorine preferentially concentrated at the film-air interface during filmformation process. Finally, schematic representation of the formation ofcore-shell fluorinated polyacrylate particles with poly(acrylicacid-b-hexafluorobutyl acrylate) trithiocarbonate as emulsifier wasproposed.
引文
[1] Sébastien Garnier, André Laschewsky. New amphiphilic diblock copolymers:surfactant properties and solubilization in their micelles [J]. Langmuir,2006,22:4044-4053.
    [2] Gerard Riess. Micellization of block copolymers [J]. Prog.Polym.Sci.,2003,28:1107-1170.
    [3] Shiyong Liu, Steven P.Armes. Recent advances in the synthesis of polymericsurfactants [J]. Curr. Opin. Colloid Interface Sci.,2001,6:249-256.
    [4] Kenichi Nakashima, Pratap Bahadur. Aggregation of water-soluble blockcopolymers in aqueous solutions: recent trends [J]. Adv. Colloid Interface Sci.,2006,123-126:75-96.
    [5] Gerard Riess, Clorinthe Labbe. Block copolymers in emulsion and dispersionpolymerization [J]. Macromol.Rapid Commun.,2004,25:401-435.
    [6] Karine Khougaz, Irina Astafieva, Adi Eisenberg. Micellization in blockpolyelectrolyte solutions.3. Static light scattering characterization [J].Macromolecules,1995,28:7135-7147.
    [7] Jean-Fran ois Lutz. Solution self-assembly of tailor-made macromoleculularbuilding blocks prepared by controlled radical polymerization techniques [J].Polym. Int.,2006,55:979-993.
    [8] Julien Nicolas, Bernadette Charlexu, Olivier Guerret, et al. Nitroxide-mediatedcontrolled free-radical emulsion polymerization using a difunctional water-soluble alkoxyamine initiator. Toward the control of particle size, particle sizedistribution, and the synthesis of triblock copolymers [J]. Macromolecules,2005,38:9963-9973.
    [9] Barkev Keoshkerian, Micheal K. Georges, and Danielle Boils-Boissier. Livingfree-radical aqueous polymerization [J]. Macromolecules,1995,28:6381-6382.
    [10] Micha l Bouix, Jér me Gouzi, Bernadette Charleux, et al. Synthesis ofamphiphilic polyelectrolyte block copolymers using “living” radicalpolymerization. Application as stabilizers in emulsion polymerization [J].Macromol. Rapid Commun.,1998,19:209-213.
    [11] Guillaume Delaittre, Julien Nicolas, Catherine Lefay, et al. Aqueoussuspension of amphiphilic diblock copolymer nanopartiles prepared in situ froma water-soluble poly(sodium acrylate) alkoxyamine macroinitiator [J]. SoftMatter,2006,2:223-231.
    [12] Ryan W. Simms, Mark D. Hoidas, and Michael F. Cunningham.Nitroxide-mediated styrene surfactant-free emulsion polymerization [J].Macromolecules,2008,41:1076-1079.
    [13] Charlotte Dire, Stephanie Magnet, Laurence Couvreur, et al.Nitroxide-mediated controlled/living free-radical surfactant-free emulsionpolymerization of methyl methacrylate using a poly(methacrylic acid)-basedmacroalkoxyamine initiator [J]. Macromolecules,2009,42:95-103.
    [14] Mary E. Thomson, Anna-Marie Manley, Jason S. Ness, et al.Nitroxide-mediated surfactant-free emulsion polymerization of n-butylmethacrylate with a small amount of styrene [J]. Macromolecules,2010,43:7958-7963.
    [15] Wang Jin-Shan, Matyjaszewski K. Controlled/"living" radical polymerization.Atom transfer radical polymerization in the presence of transition-metalcomplexes [J]. J. Am. Chem. Soc.,1995,117:5614-5615.
    [16] Krzysztof Matyjaszewski, Jianhui Xia. Atom transfer radical polymerization[J]. Chem. Rev.2001,101:2921-2990.
    [17] Carine Burguière, Sagrario Pascual, Bernard Coutin. Amphiphilic blockcopolymers prepared via controlled radical polymerization as surfactants foremulsion polymerization [J]. Macromol.Symp.,2000,150:39-44.
    [18] Carine Burguière, Sagrario Pascual, Chuong Bui, et al. Block copolymers ofpoly(styrene) and poly(acrylic acid) of various molar masses, topologies, andcompositions prepared via controlled/living radical polymerization. Applicationas stabilizers in emulsion polymerization [J]. Macromolecules,2001,34:4439-4450.
    [19] Y. H. Kim, W. T. Ford, T. H. Mourey. Branched poly(styene-b-tert-butyl) andpoly(styrene-b-acrylic acid) by ATRP from a dendritic poly(propyleneimine)(NH2)64core [J]. J. Polym. Sci., Part A: Polym. Chem.,2007,45:4623-4634.
    [20] Kate L. Thompson, Iveta Bannister, Steven P. Armes, et al. Preparation ofbiocompatible sterically stabilized latexes using well-definedpoly(2-(methacryloyloxy)ethyl phosphorylcholine) macromonomers [J].Langmuir,2009,26:4693-4702.
    [21] K. L. Thompson, S. P. Armes, D. W. York, et al. Synthesis ofsterically-stabilized latexes using well-defined poly(glycerol monomethacrylate)macromonomers [J]. Macromolecules,2010,43:2169-2177.
    [22] Jiguang Zhang, Matthew R. Dubay, Carl J. Houtman, et al. Sulfonatedamphiphilic block copolymers: synthesis, self-assembly in water, andapplication as stabilizer in emulsion polymerization [J]. Macromolecules,2009,42:5080-5090.
    [23] Alexandra Munoz-Bonilla, Alex M. Van Herk, Johan P. A. Heuts. Preparationof hairy particles and antifouling films using brush-type amphiphilic blockcopolymer surfactants in emulsion polymerization [J]. Macromolecules,2010,43:2721-2731.
    [24] Xuewei Xu, Chao Liu, Junlian Huang. Synthesis, characterization, andstimuli-sensitive properties of triblock copolymer poly(ethyleneoxide)-b-poly(2-(diethylamino)ethylmethacrylate)-b-poly(N-isopropylacrylamide)[J]. J. Appl. Polym. Sci.,2008,108:2180-2188.
    [25] Ewan Sprong, Joost S.K. Leswin, David J.Lamb, et al. Molecularwatchmaking: ab initio emulsion polymerization by RAFT-controlledself-assembly [J]. Macromol. Symp.,2006,231:84-93.
    [26] John Chiefari, Y.K.(Bill) Chong, France Ercole, et al. Living free-radicalpolymerization by reversible addition-fragmentation chain transfer: the RAFTprocess [J]. Macromolecules,1998,31:5559-5562.
    [27] Graeme Moad, Ezio Rizzardo, San H. Thang, et al. Radical addition-fragmentation chemistry in polymer synthesis [J]. Polymer,2008,49:1079-1131.
    [28] N. Gaillard, A. Guyot, J. Claverie. Block copolymers of acrylic acid and butylacrylate prepared by reversible addition-fragmentation chain transferpolymerization: synthesis, characterization, and use in emulsion polymerization[J]. J. Polym. Sci., Part A: Polym. Chem.,2003,41:684-698.
    [29] Nicolas Gaillard, Jerome Claverie, Alain Guyot. Synthesis andcharacterization of block-copolymer surfactants with specific interactions withassociative thickeners [J]. Prog. Org. Coat.,2006,57:98-109.
    [30] Christopher J.Ferguson, Robert J.Hughes, Duc Nguyen, et al. Ab initioemulsion polymerization by RAFT-controlled self-assembly [J].Macromolecules,2005,38:2191-2204.
    [31] Maud Save, Maggy Manguian, Christophe Chassenieux, et al. Synthesis byRAFT of amphiphilic block and comblike cationic copolymers and their use inemulsion polymerization for the electrosteric stabilization of latexes [J].Macromolecules,2005,38:280-289.
    [32] Maggy Manguian, Maud Save, Bernadette Charleux. Batch emulsionpolymerization of styrene stabilized by a hydrophilic macro-RAFT agent [J].Macromol.Rapid Commun.,2006,27:399-404.
    [33] Amilton Martins dos Santos, Jordan Pohn, Muriel Lansalot, et al. Combiningsteric and electrostatic stabilization using hydrophilic macroRAFT agents in anab initio emulsion polymerization of styrene [J]. Macromol. Rapid Commun.,2007,28:1325-1332.
    [34] Desislava E.Ganeva, Ewan Sprong, Hank de Bruyn, et al. Particle formationin ab initio RAFT mediated emulsion polymerization systems [J].Macromolecules,2007,40:6181-6189.
    [35] Xiaoguang Wang, Yingwu Luo, Bogeng Li, et al. Ab initio batch emulsionRAFT polymerization of styrene mediated by poly(acrylic acid-b-styrene)ttithiocarbonate [J]. Macromolecules,2009,42:6414-6421.
    [36] Yingwu Luo, Xiaoguang Wang, Bo-Geng Li, et al. Toward well-controlled abinitio RAFT emulsion polymerization of styrene mediated by2-(((Dodecylsulfanyl)carbonothioyl)sulfanyl)-propanoic Acid [J].Macromolecules,2011,44:221-229.
    [37] Yingwu Luo, Xiaoguang Wang, Yue Zhu, et al. Polystyrene-block-poly(n-butyl acrylate)-block-polystyrene triblock copolymer thermoplasticelastomer synthesized via RAFT emulsion polymerization [J]. Macromolecules,2010,43:7472-7481.
    [38] Jutta Rieger, Fran ois Stoffelbach, Chuong Bui, et al. Amphiphilicpoly(ethylene oxide) macromolecular RAFT agent as a stabilizer and controlagent in ab initio batch emulsion polymerization [J]. Macromolecules,2008,41:4065-4068.
    [39] Jutta Rieger, Gregor Osterwinter, Chuong Bui, et al. Surfactant-freecontrolled/living radical emulsion (co)polymerization of n-butyl acrylate andmethyl methacrylate via RAFT using amphphilic poly(ethylene oxide)-basedtrithiocarbonate chain transfer agents [J]. Macromolecules,2009,42:5518-5525.
    [40] Jutta Rieger, Wenjing Zhang, Fran ois Stoffelbach, et al. Surfactant-freeRAFT emulsion polymerization using poly(N,N-dimethylacrylamide)trithiocarbonate macromolecular chain transfer agents [J]. Macromolecules,2010,43:6302-6310.
    [41] Yeonhwa Wi, Kangseok Lee, Byung Hyung Lee, et al. Soap-free emulsionpolymerization of styrene using poly(methacrylic acid) macro-RAFT agent [J].Polymer,2008,49:5626-5635.
    [42] Daoben Hua, Jing Tang, Jianlin Jiang, et al. A facile approach for preparationof phenyphosphinic acid-functionalized PSt microspheres by emulsionpolymerization using amphiphilic macro-RAFT agent as emulsifier [J].Macromolecules,2009,42:8697-8701.
    [43] Li Chen, Lili Yan, Qing Li, et al. Controllable synthesis of newpolymerizable macrosurfactants via CCTP and RAFT techniques andinvestigation of their performance in emulsion polymerization [J]. Langmuir,2010,26:1724-1733.
    [44] Fran ois Stoffelbach, Lucie Tibiletti, Jutta Rieger, et al. Surfactant-free,controlled/living radical emulsion polymerization in batch conditions using alow molar mass, surface-active reversible addition-fragmentationchain-transfer(RAFT) agent [J]. Macromolecules,2008,41:7850-7856.
    [45] Khine Y.Mya, Esther M.J.Lin, Chakravarthy S.Gudipati, et al. Self-assemblyof block copolymer micelles: synthesis via reversible addition-fragmentationchain transfer polymerization and aqueous solution properties [J]. J. Phys.Chem. B,2010,114:9128-9134.
    [46] Beng H.Tan, Chakravarthy S.Gudipati, Hazrat Hussain, et al. Synthesis andself-assembly of pH-responsive amphiphilic poly(dimethylaminoethylmethacrylate)-block-poly(pentafluorostyrene) block copolymer in aqueoussolution [J]. Macromol. Rapid Commun.,2009,30:1002-1008.
    [47] S. Xu, W.Q. Liu. Aggregates of amphiphilic fluorinated copolymers and theirencapsulating and unloading homopolymer behaviors [J]. J. Polym. Sci., Part B:Polym. Phys.,2008,46:1000-1006.
    [48] Shouping Xu, Weiqu Liu. Synthesis and surface characterization of anamphiphilic fluorinated copolymer via emulsifier-free emulsion polymerizationof RAFT [J]. J. Fluorine Chem.,2008,129:125-130.
    [49] Guang Li, Haiting Zheng, Yanxue Wang, et al. A facile strategy for thefabrication of highly stable superhydrophobic cotton fabric using amphiphilicfluorinated triblock azide copolymers [J]. Polymer,2010,51:1940-1946.
    [50]龚本华,沈一丁,费贵强,等.苯丙乳液共聚物/ASA乳液对二次纤维浆的施胶及其助留和稳定性能研究[J].中华纸业,2009,30(4):22-25.
    [51]汪海伟,袁荞龙,吴树森.阳离子无皂含氟丙烯酸酯的合成与表面性能[J].功能高分子学报,2007,19-20(2):184-192.
    [52]唐新,沈一丁,李培枝.阳离子型全氟丙烯酸酯无皂乳液的合成及性能[J].涂料工业,2010,40(3):57-60.
    [53]邵谦,孟庆超,徐小琳,等.反应性乳化剂存在下的五元苯丙乳液共聚合[J].化学研究与应用,2006,18(11):1293-1296.
    [54]张凯,沈慧芳,张心亚,等.无皂苯丙乳液的粒径与成核机理[J].高分子材料科学与工程,2008,24(12):50-53.
    [55]王金,曾幸荣,欧阳喜仁,等.核壳型无皂含氟丙烯酸酯共聚乳液的合成[J].高分子材料科学与工程,2009,25(4):24-27.
    [56] Xiao X, Wang Y. Emulsion copolymerization of fluorinated acrylate in thepresence of a polymerizable emulsifier [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2009,348(1-3):151-156.
    [57]王艺峰,陈艳军.表面活性单体和丙酮共作用下甲基丙烯酸三氟乙酯无皂乳液聚合研究[J].化学建材,2007,23(5):10-13.
    [58]刘锦红,黄毅萍.核-壳型含氟丙烯酸酯共聚物乳液的合成与表征[J].安徽大学学报(自然科学版),2010,34(3):97-103.
    [59]唐宏科,张瑜,梁文庆.苯丙无皂核壳乳液的合成与表征[J].中国造纸,2009,28(11):37-40.
    [60]陈立军,史鸿鑫,武宏科,等.无皂乳液聚合法制备氟碳聚合物乳液[J].深圳大学学报理工版,2008,25(4):331-337.
    [61]李刚辉,沈一丁,唐新.含氟无规两亲聚合物法制备含氟无皂乳液[J].中国皮革,2009,38(15):45-48.
    [62]何战友,马少云,沈一丁,等.含氟无皂乳液纸张防油剂的制备及应用[J].中华纸业,2010,31(12):21-24.
    [63]岳丽英.RAFT活性聚合制备嵌段共聚物及其在乳液聚合中的应用研究
    [D].天津:天津大学,2005.
    [64] Christopher Henry Such, Mount Eliza, Algirdas Kazimieras Serelis, et al.Aqueous dispersions of polymer particles[P]. US20060223936A1,2006,5:26-27.
    [65]王云普,张守村,王利平,等.离子液体中的可逆-加成断裂链转移自由基聚合[J].高分子材料科学与工程,2008,24(8):48-50.
    [66] Moad, G., Chiefari, J., Chong, B. Y.et al. Ling free radical polymerizationwith reversible addition-fragmentation chain transfer(the life of RAFT)[J].Polym. Int.,2000,49:993-1001.
    [67]沈晓亮,周建华,马建中.聚丙烯酸-b-聚丙烯酸丁酯的RAFT水溶液聚合及其性能[J].精细化工,2010,27(3):87-94.
    [68]高保娇,许如秀,郁士奎,等.丙烯酰胺-苯乙烯双亲嵌段共聚物的微结构及水溶液行为[J].高等学校化学学报,2004,25(6):1164-1169.
    [69]周建华,张琳,陈超,等.有机硅及纳米二氧化硅改性聚丙烯酸酯无皂乳液的合成和性能[J].精细化工,2010,27(5):480-485.
    [70]张茂根,翁志学,黄志明,等.MMA/BA无皂乳液聚合机理研究—三阶段成粒机理[J].高等学校化学学报,1999,20(11):1795-1799.
    [71]梅爱雄,杨雍,徐君庭,等.双亲性嵌段共聚物胶束形貌调控的研究[J].化学进展,2009,21(10):2188-2198.
    [72]沈晓亮.两亲性嵌段共聚物的RAFT法合成及其在乳液聚合中的应用研究
    [D].西安:陕西科技大学,2009.
    [73] Brandrup, J., Immergut, E. H., Grulke, E. A. Polymer Handbook,4thed. NewYork, US: Wiley-Interscience Publication.1999.
    [74] Zheng Wei, He Ling, Liang Junyan, et al. Preparation and properties ofcore-shell nanosilica/poly(methl methacrylate-butyl acrylate-2,2,2-trifluoroethyl methacrylate) latex [J]. J. Appl. Polym. Sci.,2011,120:1152-1161.
    [75] Xuejun Cui, Shuangling Zhong, Jing Yan, et al. Synthesis andcharacterization of core-shell SiO2-fluorinated polyacrylate nanocompositelatex particles containing fluorine in the shell [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2010,360:41-46.
    [76]曹阳.含氟丙烯酸酯共聚乳液合成、结构及性能研究[D].安徽:安徽大学,2007.
    [77] Ailan Qu, Xiufang Wen, Pihui Pi, et al. Synthesis and characterization ofhybrid fluoro-emulsion based on silica/copolymer composite particles [J].Polym. Int.,2008,57:1287-1294.
    [78] Jin Wang, Xing-Rong Zeng, Hong-Qiang Li. Preparation and characterizationof soap-free fluorine-containing acrylate latex [J]. J. Coat. Technol. Res.,2010,4:469-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700