电化学处理焦油深加工废水资源化研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤是我国的基础能源,在发电过程中产生大量的粉煤灰废弃物;现代煤化工生产过程也产生大量有毒有害废水。资源化处理作为废物处理的有效策略,可降低废物排放带来的污染,同时回收其中的资源。本文针对煤化工生产中产生的焦油深加工有机废水,建立电化学氧化耦合产氢新体系,处理废水同时回收氢气,研究有机物降解耦合产氢机制,以期强化有机物处理能力并降低成本;另一方面,创新性地提出煤发电厂产生的高铝粉煤灰和生物质等固体废弃物的资源化利用新途径,即通过吸附过渡金属离子后直接制备复合催化剂强化焦油深加工废水电化学氧化处理,实现低成本“以废治废”的目的。本论文主要研究的内容和结果如下:
     首先,通过新体系中进行苯酚电化学氧化降解耦合产氢的实验结果表明,新体系中收集氢气浓度大于98%,且苯酚类有机物存在会增大产氢量;苯酚降解满足一级动力学方程。3V电压时,苯酚降解、COD去除、产氢量、动力学、有机物降解电流效率(ICECOD)、能量效率以及有机物转化产氧(YH2)都可以分为三个阶段;结合LC-MS和UV对三个阶段进行了深入探讨。每个阶段COD去除动力学都可以用一级动力学方程描述,动力学常数随着时间的增加而增大,分别为1.86,4.11和7.77×10-3h-1。阳极区ICECOD在前两阶段先从0.326缓慢升高到0.357再快速升高到0.471,到第三阶段急剧下降到0.018。阴极区YH2在第一阶段从2.629L H2/g COD增大至3.168LH2/g COD,随之在第二阶段降低到2.416LH2/gCOD。增大电解电压可以提高苯酚降解和COD的去除速率,同时增大产氢量和产氢速率,但ICECOD、YH2以及氢气能量效率都随之下降。
     另一方而,利用准格尔地区的高铝粉煤灰和北方的松木粉吸附净化含有过渡金属的废水。表征结果表明高铝粉煤灰(FA-A)的主要成分为SiO2和Al2O3(>50%),具有很高的化学和热稳定性;松木粉生物质(SD-C)的主要成分为C、N、O,利于过渡金属离子的吸附。利用FA-A和SD-C吸附过渡金属镍离子的研究结果表明,FA-A和改性后的SD-C对镍离子的吸附量受pH的影响较小;吸附量随初始浓度的升高而升高,随投加量的增大而降低;FA-A和SD-C对镍离子的吸附分别符合Langmuir和Langmuir-Freundlich等温模型和二级吸附动力学;吸附过程的初期是由外部传质和内部扩散控制。
     第三,利用吸附过渡金属离子后的FA-A和SD-C直接制备催化剂及其在电化学氧化中应用研究结果表明,FA-A具有化学稳定性和铝含最高特性可作为载体,SD-C作为致止孔剂可以制备复合催化剂并增大催化剂的比表面积;复合催化剂的加入将COD去除率从30%提高到近60%;高浓度苯酚电催化氧化降解耦合产氢过程中,复合催化剂的加入将降解时间从504h缩短至144h, COD去除率接近100%,产氢速率提高了近10倍;与未添加复合催化剂结果相比,增大电压和添加复合催化剂都可强化有机物的去除和产氢,但从电流效率和能耗上考虑,加入催化剂进行电催化氧化更合适;复合催化剂条件下,苯酚的降解机理主要是氧化/催化降解,同时还有一定的吸附/电吸附作用。因此可以看出,FA-A和SD-C废弃物吸附过渡金属离子后可以直接制备催化剂应用到有机物电化学氧化降解过程中,实现以废治废、固体废弃物资源化利用。
     最后,根据苯酚的降解历程,从能耗、效率和经济性角度确定利用电化学将有机物进行开环氧化,并与生化和深度处理组合处理焦油深加工废水;将复合催化剂电化学氧化处理应用到实际焦油深加工废水处理工艺中,作为预处理过程可以有效地降低废水中的有机物,出水COD浓度降低至1000mg/L,提高废水的可生化性,工艺最终出水回用到生产中,实现废水废弃物的资源化再利用;对电催化氧化工序的技术经济性进行了分析,并探讨了不同中间产物COD和化学潜能。
Coal is the basic energy resource of our country. A large amount of fly ash is produced in coal to electricity process. In addition, lots of poisonous and harmful wastewaters were generated in coal chemical production processes. As an effective means to dispose the wastes, resourceful treatment could not only reduce the pollution mentioned above, but also recycle the resources contained in these wastes. Focused on the organic wastewater produced in tar deep processing at coal chemical industry, a novel electrochemical oxidation system was investigated to degrade the wastewater and produce hydrogen gas. On the other hand, fly ash and biomass were continuously used to prepare composite catalyst following with the adsorption of transition metal ions. The composite catalyst was applied to enhance the degradation of organics in tar deep processing wastewater electrochemical oxidation treatment. This new approach could be an effective exploration of fly ash and biomass utilization and achieve the purpose of "disposal of wastes by wastes". The achieved results show below:
     1. Results obtained from hydrogen gas production coupled with phenol degradation in the new system show that the concentration of collected hydrogen is greater than98%, the presence of phenol type organics could strengthen hydrogen production, and the first order kinetics equation could well describe the COD removal. Three stages were observed of phenol degradation, COD removal, hydrogen production, kinetic, Instantaneous Current Efficiency (ICECOD), Hydrogen Yield to COD (YH2). and energy efficiency during concentrated phenol electrochemical oxidation at3V applied voltage, and first order model could well describe each stage rather than the whole process, and the kinetics constant were1.86,4.11and7.77×10-3h-1, respectively. ICECOD of the anode reactions slowly rose from0.326to0.357and then rapidly increases to0.471in the first two stages, while sharply decreased to0.018in the third stage. YH2of the cathode reactions increased from2.629LH2/g COD to3.168L H2/g COD in the first stage, and then reduced to2.416L H2/g COD in the second stage. In addition, the removal rates of phenol degradation, COD removal and hydrogen gas production were improved by increasing the applied voltage, while the ICECOD, and hydrogen energy efficiency reduced compared with3V applied voltage.
     2. The characterization results of high aluminum fly ash (FA-A) show that FA-A is mainly composed of SiO2and Al2O3(>50%), which has higher chemical and thermal stability, and the C, N, O contained in straw dust (SD-C) are beneficial for transition metal ions adsorption. Results obtained from nickel ions adsorption by FA-A and SD-C show that the adsorption capacity increased with the rise of initial concentration, and decreased with adsorbent dosage, while the pH of the solution had little influence on nickel adsorption by FA-A and SD-C. The maximum adsorption capacity obtained from the Langmuir isotherm model is10.49mg/g and9.109mg/g, respectively. The adsorption process is a physical adsorption, which is controlled by external mass transfer and intra particle diffusion process.
     3. The research results obtained from the preparation of catalyst by FA-A and SD-C after transition metal ions adsorption and the application in electrochemical oxidation process show that FA-A could be the host due to its chemical stability and high aluminum content, and SD-C formed good pore structure of the composite catalyst surface. On the other hand, the COD removal increased from30%to nearly60%when composite catalyst added, which is higher than that of approximately50%with FA-A based catalyst. Compared with nickel and copper doped composite catalyst, iron doped composite catalyst had better removal efficiency of organics. Furthermore, the degradation time cut504h to144h, COD removal is approximately100%, and hydrogen production rate increased nearly10times in concentrated phenol electrochemical oxidation process with the application of the composite catalyst. The organics removal and hydrogen production could be strengthened by increasing the applied voltage and using the composite catalyst, but it could be more suitable with the composite catalyst considering the current efficiency and energy consumption. Besides, the mechanism of phenol electrochemical oxidation degradation is mainly oxidation/catalytic oxidation, while adsorption/electric-adsorption and electric flocculation occurred to the degree. Therefore, it is feasible that the direct preparation of composite catalyst by the FA-A and SD-C after the adsorption of transition metal ions and its application in organics electrochemical oxidation process.
     4. From the perspective of energy consumption, efficiency and economy and the degradation route of phenol, it is determined that organics were degraded to ring-open stage by catalytic electrochemical oxidation, and combined with biochemical and advanced processing in tar deep processing wastewater treatment. The catalytic electrochemical pretreatment could effectively reduce the organics and COD in the wastewater, and improve biodegradability of the wastewater. The final effluent could be reused. The cost and technical economy accounting were analized finally.
引文
[1]李杰.难降解有机物的生物处理技术进展[J].环境科学与技术,2005,(28):187-189.
    [2]Mohanta S., Mishra B. K., Biswal S. K. An emphasis on optimum fuel production for Indian coal preparation plants treating multiple coal sources [J]. Fuel,2010,89:775-781.
    [3]Nakajima T., Hasegawa H., Nakamata S., et al. Mutagenicity of eluent by hot water extraction of various coals:effect of chlorination [J]. Fuel,2008,87:3132-3136.
    [4]何峰.煤化工废水的来源于特点及其相应的处理技术探究[J].环保科技,2012,(23):320-321.
    [5]National Development and Reform Commission (NDRC),2006. The Pollution and Suggestion in coking industries, http://www.ndrc.gov.cn/gzdt/t20060907_83519
    [6]Zhang W. H., Wei C. H., Chai X. S., et al. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant [J]. Chemosphere,2012,88:174-182.
    [7]童莉,郭森,周学双.煤化工废水零排放的制约性问题[J].化工环保,2010,30(5):371-375.
    [8]刁春鹏.焦化废水处理过程苯系物、苯胺类、重金属污染物的存在及去除特性分析[D].广州:华南理工大学,2012.
    [9]魏莜红,魏泽义.镉的毒性及其危害[J].公共卫生与预防医学,2007,04:38-41.
    [10]孙淑兰.汞的来源、特性、用途及对环境的污染和对人类健康的危害[J].上海计量测试,2006,05:34-39.
    [11]刚葆琪,庄志雄.我国镍毒理学研究进展[J].卫生毒理学杂志,2000,14:129-131.
    [12]Derekpleteher Normanlweinel. The green potential of electrochemistry [J]. Part Ⅰ:The fundamental, Chem. Eng.,1992,98-103; Part 2:The applications,1992,132-135.
    [13]Guo H. Ch. Electrochemical technologies in wastewater treatment [J]. Sep. Purif. Technol.,2004,38: 11-41.
    [14]林海波,伍振毅,黄卫民,等.工业废水电化学处理技术的进展及其发展方向[J].化工进展,2008,27(2):231.
    [15]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002,94-95.
    [16]Brillas E., Mur E., Sauleda R., et al. Aniline mineralization by AOPs anodic oxidation photo catalysis electro Fenton and Photoelectron Fenton process [J]. Appl. Cata. B,1998,16:31-42.
    [17]Anderson A. B., Sidik N. M., Shiller P R. Mechanism for the electro-oxidation of water to OH and O bonded to platimum quantum chemical theory [J]. Electrochem. Acta,2002,47:2999-3008.
    [18]Gomez L. V., Ferro S., Battisti A. D. Preparation and characterization of RuO2-IrO2-SnO2 ternary mixtures for advanced electrochemical technology [J]. Appl. Catal. B,2006,67:40-42
    [19]Comninellis Ch. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatmen [J]. Electrochim. Acta,1994,39:1857-1862.
    [20]Chiang L. C., Chang J. E., Wen T. C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate [J]. Water Res.,1995,29:671-678.
    [21]Drogui P., Blais J. F., Mercier G. Review of electrochemical technologies for environmental applications [J]. Recent Patents on Engineering,2007,1:257-272.
    [22]Tasratti S. Electrochemistry Environment:the role of electrocatalysis [J]. Int. J. Hydrogen Energy, 1995,20:835-844.
    [23]Anglada A, Urtiaga A, Ortiz I. Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications [J]. J.Chem. Technol. Biotechnol.,2009,84:1747-1755.
    [24]Chen G. Electrochemial technologies in wastewater treatment [J]. Sep. Purif. Technol.,2004,38:11-41.
    [25]Canizares P., Paz R., Lobato J., et al. Electrochemical treatment of the effulent of a fine chemical manufacturing plant [J]. J. Hazard. Mater. B,2006,138:173-181.
    [26]Anglada A., Urtiaga A., Ortiz I. Pilot scal performance of the electrochemical oxidation of landfill leachate at boron-doped diamond annodes [J]. Environ. Sci. Technol.,2009,43:2035-2040.
    [27]Han W. Q., Wang L. J., Sun X. Y., et al. Treatment of bactericide wastewater by combined process chemical coagulation, electrochemical oxidation and membrane bioreactor [J]. J. Hazard. Materi., 2008,151:306-315.
    [28]El-Ashtoukhy E. S. Z., Amin N. K., Abdelwahab O. Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor [J]. Chem. Eng. J.,2009,146:205-210.
    [29]覃燕,彦幼平,胡剑.电催化氧化技术处理造纸废水的实验研究[J].工业安全与环保,2013,39(2):21-24.
    [30]Cho S. H., Lee H. J., Moon S. H. Integrated electroenzymati and electrochemical treatment of petrochemical wastewater using a pilot scale membraneless system [J]. Process Biochem., 2008,43:1371-1376.
    [31]Li M., Feng C. P., Hu W. W., et al. Electrochmical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt [J]. J. Hazard. Mater.,2009,162:455-462.
    [32]Rajkumar D., Palanivelu K. Electrochemical treatment of industrial wastewater [J]. J. Hazard. Materi., 2004,113B:123-129.
    [33]Zhou M. H., Sarkka H., Sillanpaa M. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes [J]. Sep. Purif. Technol.,2011,290-297
    [34]贾振兴,郑秀清.BDD电极降解酸性橙Ⅱ染料废水研究[J].水处理技术,2013,39(2):38-42.
    [35]胡俊生,李越,郝苓汀.支持电解质对酸性大红染料废水电解的影响[J].水处理技术,2011,37(4):80-83.
    [36]Szpyrkowicz L., Kaul S. N., Neti R. N., et al. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater [J]. Water Res.,2005,39:1601-1613.
    [37]Panizza M., Cerisola G. Electrochemical oxidation as a final treatment of synthetic tannery wastewater [J]. Environ. Sci. Technol.,2004,38:5470-5475.
    [38]Piya-areetham P., Shenchunthicha K., Hunsom M. Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode [J]. Water Res., 2006,40:2857-2864.
    [39]Vyjayaraghavan K., Ahmad D., Leas R. Electrolytic treatment of beer brewery wastewater [J]. Ind. Eng. Chem. Res.,2008,45:6854-6859.
    [40]Giannis A., Kalaitzakis M., Diamadopoulos E. Electrochemical treatment of olive mill wastewater [J]. J. Chem. Technol. Biotechnol.,2007,82:663-671.
    [41]Deligiorgis A., Xekouloilotakis N. P., Diamadopoulos E., et al. Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes:treatmeng optimization by factorial design [J]. Water Res.,2008,42:1229-1237.
    [42]Deng Y., Englehardt J. D. Electrochemical oxidation for landfill leachate treatment [J]. Waste Manage.,2007,27:380-388.
    [43]Vlyssides A. G., Karlis P. K. Electrochemical treatment in releation to pH of domestic wastewater using Ti/Pt electrodes [J]. J. Hazard. Mater.,2002,95:216-226.
    [44]Backhurst J. R., Coulson J. M., Goodridge F., et al. A preliminary investigation of fluidized bed electrodes [J]. J. Electrochem. Soc.,1969,116:1600-1607.
    [45]Zhang C., Jiang Y. H., Li Y. L., et al. Three-dimensional electrochemical process for wastewater treatment:A general review [J]. Chem. Eng. J.,2013,228:455-467.
    [46]Wei L., Guo S., Yan G., et al. Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor [J]. Electrochim. Acta,2010,55:8615-8620.
    [47]Zhou M., Lei L. The role of activated carbon on the removal of p-nitrophenol in an integrated three-dimensional electrochemical reactor [J]. Chemosphere,2006,65:1197-1203.
    [48]Yan L., Ma H., Wang B., et al. Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode [J]. Desalination,2011,276:397-402.
    [49]Zhao H. Z., Sun Y., Xu L. N., et al. Remocal of Acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor:removal mechanism and dye degradation pathway [J]. Chemosphere.2010,78:46-51.
    [50]Foo K. Y., Hameed B. H. A short review of acticated carbon assisted electrosorption process:an overview, current stage and future prospects [J]. J. Hazard. Mater.,2009,170:552-559.
    [51]Ban A., Schafer A., Wendt H. Fundamental of electrosorption on activated carbon for wastewater treatment of industrial effluents [J]. J. Appl. Electrochem.,1998,28:227-236.
    [52]Fockedey E., Lierde A. V. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes [J]. Water Res.,2002,36:4169-4175.
    [53]Wu Z., Cong Y., Zhou M., et al..P-nitrophenol abatement by the combination of electrocatalysis and activated carbon [J]. Chem. Eng. J.,2005,106:83-90.
    [54]Navalon S., Dhakshinamoorthy A., Alvaro M., et al. Heterogeneous fenton catalysts based on activated carbon and related materials [J]. Chem Sus Chem.2011,4:1712-1730.
    [55]Zhu X., Ni J., Xing X., et al. Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system [J]. Electrochim. Acta, 2011,56:1270-1274.
    [56]Brillas E., Sires I., Oturan M. A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry [J]. Chem. Rev.,2009,109:6570-6631.
    [57]张娟,赵地顺,杨洁.芬顿试剂光氧化二苯并噻吩的研究[J].现代化工,2011,31(4):56-58.
    [58]Barb W. G., Baxendale J. H., George P., et al. Reaction of ferrous and ferric ions with hydrogen peroxide. Part I. The ferrous ions reaction [J]. Trans. Faraday Soc.,1951,47:462-500.
    [59]Modenes A. N., Espinoza Quinones F. R., Manenti D. R., et al. Performance evaluation of a photo-Fenton process applied to pollutant removal from textile effluents in a batch system [J]. J. Environ. Manag.,2012,104:1-8.
    [60]Namgoo K., Dong S. L., Jeyong Y. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols [J]. Chemosphere,2002,47 (9):915-924.
    [61]Daneshvar N., Oladegaragoze A., Djafarzadeh N. Decolorization of basic dye solutions by electrocoagulation:an investigation of the effect of operational parameters [J]. J. Hazard. Mater., 2006,129:116-122.
    [62]Emamjomeh M. M., Sivakumar M. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation process [J]. J. Environ. Manag.,2009,90:1663-1679.
    [63]Ghafari S., Hasan M., Aroua M. Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbons as cathode material [J]. Electrochim. Acta,2009,54: 4164-4171.
    [64]Mousavi S., Ibrahim S., Aroua M. K., et al. Development of nitrate elimination by autohydrogenotropic bacteria in bio-electrochemical reactors:a review [J]. Biochem. Eng. J.,2012,67: 251-264.
    [65]Zhou M., Wang W., Chi M. Enchancement on the simultaneous removal of nitrate and organic pollutants by a three-dimensional bio-electrochemical reactor [J]. Bioresour. Technol., 2009,100:4662-4668.
    [66]Kumar S., Ramamurthy T., Subramanian B., et al. Studies on the fluidized bed electrode [J]. Int. J. Chem. Reactor Eng.,2008,6.
    [67]Coeuret F. The fluidized bed electrode for the continuous recovery of metals [J]. J. Appl. Electrochem., 1980,10:687-696.
    [68]Zhou M., Lei L. Electrochemical regeneration of activated carbon loaded with p-nitrophenolin a fluidized electrochemical reactor [J]. Electrochim. Acta,2006,51:4489-4496.
    [69]Reade G. W., Bond P., de Leon C. P., et al. The application of reticulated vitreous carbon rotating cylinder electrodes to the removal of cadmium and copper ions from solution [J]. J. Chem. Technol. Biotechnol.,2004,79:946-953.
    [70]Bisang J. M., Bogado F., Rivera M. O., et al. Electrochemical removal of arsenic from technical grade phosphoric acid [J]. J. Appl. Electrochem.,2004,34:375-381.
    [71]Grau J. M., Bisang J. M. Electrochemical removal of cadmium from dilute aqueous solutions using a rotating cylinder electrode of wedge wire screens [J]. J. Appl. Electrochem.,2006,37:275-282.
    [72]Gasparotto L. H. S., Bocchi N., Rocha-Filho R. C., et al. Removal of Pb(Ⅱ) from simulated wastewaters using a stainless-steel wool cathode in a flow-through cell [J]. J. Appl. Electrochem., 2006,36:677-683.
    [73]Njau K. N., Woude M. V., Visser G. J., et al. Electrochemical removal of nickel ions from industrial wastewater [J]. Chem. Eng. J.,2000,79:187-195.
    [74]Lv G., Wu D., Ma X., et al. Performance of carbon aerogels particle electrodes for the aqueous phase electro-catalytic oxidation of simulated phenol wastewaters [J]. J. Hazard. Mater.,2009,165:961-966.
    [75]Polcaro A. M., Palmas S., Renoldi F., et al. Three-dimensional electrodes for the electrochemical combustion of organic pollutants [J]. Electrochim. Acta,2000,46:389-394.
    [76]Liu Z. G., Wang F. F., Li Y. S., et al. Continuous electrochemical oxidation of methyl orange wastewater using a three-dimensional electrode reactor [J]. J. Environ. Sci.,2011,23:S70-S73.
    [77]Zhao H. Z.. Sun Y., Xu L. N., et al. Removal of acid orange 7 in simulated wastewater using a three-dimensional electrode reactor:removal mechanism and dye degradation pathway [J]. Chemosphere,2010,78:46-51.
    [78]Neti N. R., Misra R. Efficient degradation of reactive blue 4 in carbon bed electrochemical reactor [J]. Chem. Eng. J.,2012,184:23-32.
    [79]Wu X., Yang X., Wu D., et al. Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three dimensional electrode reactor [J]. Chem. Eng. J., 2008,138:47-54.
    [80]Xiong Y., Strunk P. J., Xia H., et al. Treatment of dye wastewater containing acid orange Ⅱ using a cell with three-phase three dimensional electrode [J]. Water Res.,2001,35:4226-4230.
    [81]Kong W., Wang B., Ma H., et al. Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes [J]. J. Hazard. Mater.,2006,137:1532-1537.
    [82]Wang B., Kong W., Ma H. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sn2O5 anode [J]. J. Hazard. Mater.,2007,146: 295-301.
    [83]Nageswara R. N., Rohit M., Nitin G., et al. Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor [J]. Chemosphere,2009,76:1206-1212.
    [84]Jara C. C., Fino D., Specchia V., et al. Electrochemical removal of antibiotics from wastewaters [J]. Appl. Catal. B,2007,70:479-487.
    [85]Barkat M., Nibou D., Chegrouche S., et al. Kinetics and thermodynamic studies of chromium (VI) ions adsorption onto activated carbon from aqueous solutions [J].Chem. Eng. Prog.,2009,48:38-47.
    [86]Kauspediene D., Kazlauskiene E., Gefeniene A., et al.Comparison of the efficiency of activated carbon and neutral polymeric adsorbent in removal of chromium complex dye from aqueous solutions [J].J. Hazard. Mater.,2010,179:933-939.
    [87]EI-Sheikh A. H. Effect of oxidation of activated carbon on its enrichment efficiency of metal ions: Comparison with oxidized and non-oxidized multi-walled carbon nanotubes [J]. Talanta, 2008,75:127-134.
    [88]Allen E. R., Hossner L. R., Ming D. W., et al. Release rates of phosphorus, ammonium, and potassium in clinoptilolite-phosphate rock systems [J]. Soil Sci. Soc. Am. J.,1996,60:1467-1472.
    [89]Kithome M., Paul J. W. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite [J]. Soil Sci. Soc. Am. J.,1998,62:622-629.
    [90]Elden H., Morsy G., Mohamed B. Diatomite:Its characterization, modification and applications [J].Asian J. Mater. Sci.,2010,121-126.
    [91]Selim A. Q., EI-Midany A. A. Miroscopy:Science,Technology, Application and Education [M].4th ed. Spain, J. Diaz,2010:2174-2181.
    [92]Sheng G. D., Wang S. W., Hu J., et al. Adsorption of Pb (Ⅱ) on diatomite as affected via aqueous solution chemistry and temperature [J]. Colloids Surf. A,2009,1-3:159-166.
    [93]Nenadovic S., Nenadovic M., Kovacevic R. Influence of diatomite microstructure on its adsorption capacity for Pb (Ⅱ) [J]. Science of Sintering,2009,3:309-317.
    [94]Li E., Hu J., Zeng Z. Y., et al. Removal of chromium ions (Ⅲ) from aqueous solution by manganese oxide and microemulsion modified diatomite [J]. Desalination,2009,1-3:158-165.
    [95]Allmann R., Jepsen H. P. Structure of hydrotalcite [J]. Neues Jahrbuch fur Minealogie-Monatshefte,1969,12:544-551.
    [96]杨港.类水滑石合成及其对水体中氟离子的去除[D].大连:大连理工大学硕士论文,2010.
    [97]Goswamee R. L., Sengupta P., Bhattacharyya K. G., et al. Adsorption of Cr(Ⅵ) in layered double hydroxides [J]. Appl. Clay Sci.,1998,13(1):21-34.
    [98]周友飞,隋铭皓,盛力.层状双金属氢氧化物在有机污染物吸附方面的应用[J].水处理技术,2012,38(11):1-8.
    [99]张徐宁.粉煤灰和成沸石分子筛及其对铅离子的吸附性能研究[D].太原:太原理工大学硕士学位论文,2012.
    [100]张战军.从高铝粉煤灰中提取氧化铝等有用资源的研究[D].西北大学博士学位论文,2007.
    [101]孙俊民,姚强,武省敦.高铝粉煤灰的特征及综合利用前景.大唐国际及清华大学煤清洁燃烧国家实验室内部资料,2004.
    [102]Wu C. Y., Yu H. F., Zhang H. F. Extration of aluminum by pressure acid-leaching method from coal fly ash [J]. Trans. Nonferrous Met. Soc. China,2012,22(9):2282-2288.
    [103]Banerjee S. S., Jayaram R. V., Joshi M. V. Removal of nickel(Ⅱ) and zinc(Ⅱ) from wastewater using fly ash and impregnated fly ash [J]. Sep. Sci. Technol.,2003,38:1015-1032.
    [104]Ayala J., Blanco F., Garcia P., et al. Austrian fly ash as a heavy metals removal material [J]. Fuel, 1998,77:1147-1154.
    [105]Ricou P., Lecuyer I., Le Cloirec P. Removal of Cu2+, Zn2+, and Pb2+ by adsorption onto fly ash and fly ash/lime mixing [J]. Water Sci. Technol.,1999,39:239-247.
    [106]Panday K. K., Prasad G., Singh V. N. Copper (Ⅱ) removal from aqueous solutions by fly ash [J]. Water Res.,1985,19:869-873.
    [107]Srivastava V. C., Mall I. D., Mishra I. M. Modelling individual and competitive adsorption of cadmium (Ⅱ) and zinc (Ⅱ) metal ions from aqueous solution onto bagasse fly ahs [J]. Sep. Sci. Technol.,2006,41:2685.
    [108]Sen A. K., De A. K. Adsorption of mercury () by coal fly ash [J]. Water Res.,1987,21:885-888.
    [109]Pattanayak J., Mondal K., Mathew S., et al. A parametric evaluation of the removal of As (Ⅴ) and As (Ⅲ) by carbon-based adsorbents [J]. Carbon,2000,38:589-596.
    [110]Diamadopoulos E., Loannidis S., Sakellaropoulos G. P. As(Ⅴ) removal from aqueous solutions by fly ash [J]. Water Res.,1993,27:1773-1777.
    [111]Vimal C. S., Mahadeva M. S., Indra D. M., et al. Adsorptive removal of phenol by bagasse fly ans and activated carbon:equilibrium, kinetics and thermodynamics [J]. Colloid Surf. A,2006, 272:89-104.
    [112]Kao P. C., Tzeng J. H., Huang T. L. Removal of chlorophenols from aqueous solution by fly ash [J]. J. Hazard. Materi.,2000,76:237-249.
    [113]Wang S., Zhu Z. H. Sonochemical treatment of fly ash for dye removal from wastewater [J]. J. Hazard. Mater.,2005,126B:91-95.
    [114]Domingues V. Utilization of um produto natural como adsorvente de pesticidas[J]. Faculty of Engineering, University of Porto,2005.
    [115]Domingues V., Alves A., Cabral M., et al. Sorption behavior of bifenthrin on cork [J]. Journal of Chromatogr. A,2005,1060 (1):127-132.
    [116]Domingues V., Priolo G., Alves A. C., et al. Adsorption behavior of alpha cypermethrin on cork and activated carbon [J]. J. Environ. Sci. Health. Part B,2007,42 (6):649-654.
    [117]Karbowiak T., Mansfield A. K., Barrera V. D., et al. Sorption and diffusion properties of volatile phenols into cork [J]. Food Chem.,2010,122 (4):1089-1094.
    [118]Villaescusa I., Fiol N., Poch J., et al. Mechanism of paracetamol removal by vegetable wastes:the contribution of [pi]-[pi] interactions, hydrogen bonding and hydrophobic effect [J]. Deaslination, 2011,270 (1-3):135-142.
    [119]Barker D. A., Capone D. L., Pollnitz A. P., et al. Absorption of 2,4.6-trichloroanisole by wine corks via the vapour phase in an enclosed environment [J]. Aust. J. Grape Wine Res.,2001,7 (1):40-46.
    [120]Capone D. L., Skouroumounis G. K., Barker D. A., et al. Absorption of chloroanisoles from wine by corks and bye other materials [J]. Aust. J. Grape Wine Res.,1999,5(3):91-98.
    [121]Olivella M. A., Jove P., Oliveras A. The use of cork waste as a biosorbent for perisitent organic pollutants-study of adsorption/desorption of polycyclic aromatic hydrocarbons [J]. J. Environ. Sci. Health, Part A,2011,46 (8):824-832.
    [122]Olivella M. A., Jove P., Sen A., et al. Sorption performance of Quercus cerris cork with polycyclic aromatic hydrocarbons and toxicity testing [J]. Bioresources,2011,6(3):3363-3375.
    [123]Patricia M., Carolina M. Enhanced metal removal from aqueous solution by Fenton activated macrophyte biomass [J]. Desalination,2010,271:20-28.
    [124]Puspa L. H., Kedar N. G., Katsutoshi I. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse [J]. Bioresour. Technol.,2010,101:2067-2069.
    [125]Vimal C. S.,Indra D.,Indra M. M.Competitive adsorption of cadmium (Ⅱ) and nickel (Ⅱ) metal ions from aqueous solution onto rice husk ash [J].Chem. Eng. Process.,2009,48:370-379.
    [126]Pahlvanzadeh H., Keshtkar A.R., Safdari J.,et al. Biosorption of nickel (Ⅱ) from aqueous solution by brown algae:Equilibrium,dynamic and thermodynamic studies [J].J. Hazard. Mater.,2010,175: 304-310.
    [127]Padmavathy V. Biosorption of nickel(Ⅱ) ions by baker'yeast:Kinetic, thermodynamic and desorption study [J]. Bioresour. Technol.,2008,99:3100-3109.
    [128]刘小帅.壳聚糖共混膜的制备与吸附性能研究[D].大连:大连理工大学硕士论文,2008.
    [129]Cheng Z. H., Liu X. S.,Han M. Ma W. Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution [J].J. Hazard. Mater.,2010,182:408-415.
    [130]Internatonal Energy Outlook 2006, Energy Information Administration.
    [131]Park H., Chad D. V., Hoffmann M. R. Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen [J]. J. Phys. Chem. A,2008, 112:7616-7626.
    [132]卢露,张云坏,肖鹏,等.TiO2纳米管光催化分解水产氢研究进展[J].化工进展,2009,28(11):1913-1917.
    [133]Olga B., Pavel S. Production of hydrogen from renewable resource and its effectiveness [J]. Int. J. Hydrogen Energy,2012,37:11563-11573.
    [134]Konieczny A., Mondal K., Wiltowski T., et al. Catalyst development for thermocatalytic decomposition of methane to hydrogen [J]. Int. J. Hydrogen Energy,2008,33:264-272.
    [135]Das D., Khanna N., Veziroglu T. N. Recent developments in biological hydrogen production processes [J]. Chem. Ind. Chem. Eng. Q.,2008,14:57-67.
    [136]Hammer T., Kappes T., Baldau M. Plasma catalytic hybrid processes:gas discharge initiation and plasma activation of catalytic processed [J]. Catal. Today,2004,89:5-14.
    [137]倪萌,Leung M K H, Sumathy K.电解水制氢技术进展[J].能源环境保护,2004,18(5):5-10.
    [138]Vaduva C. C., Vaszilcsin N., Kellenberger A., et al. Catalytic enhancement of hydrogen evolution reaction on copper in the presence of benzylamine [J]. Int. J. Hydrogen Energy,2011,36:6994-7001.
    [139]Park H., Vecitis C. D., Hoffmann M. R. Solar-Powered Electrochemical Oxidation of Organic Compounds Coupled with the Cathodic Production of Molecular Hydrogen [J]. J. Phys. Chem. A, 2008,122:7616-7626.
    [140]Park H., Vecitis C. D., Hoffmann M. R. Electrochemical Water Splitting Coupled with Organic Compound Oxidation:The Role of Active Chlorine Species [J]. J. Phys. Chem. C.,2009,113: 7935-7945.
    [141]Park H., Choo K. H., Park H. S., et al. Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production:Influence of organic and particulate matter [J]. Chem. Eng. J.,2013,215-216:802-810.
    [142]Guo W. L., Li L., Li L., te al. Hydrogen production via electrolysis of aqueous formic acid solutions [J]. Int. J. Hydrogen Enery,2011,36:9415-9419.
    [143]Fikret K., Sinan U. Electro-hydrolysis of cheese whey solution for hydrogen gas production and chemical oxygen demand (COD) removal using photo-voltaic cells (PVC) [J]. Int. J. Hydrogen Energy, 2012,37:15841-15849.
    [144]Fikret K., Ebru C. C. Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal [J]. Int. J. Hydrogen Energy,2011,36:8252-8260.
    [145]Serkan E., Fikret K.. Hydrogen gas production from electrohydrolysis of industrial wastewater organics by using photovoltaic cells (PVC) [J]. Int. J. Hydrogen Energy,2010,35:12761-12766.
    [146]Fikret K., Ebru C. C. Hydrogen gas production from olive mill wastewater by electrohydrolysis with simultaneous COD removal [J]. Int. J. Hydrogen Energy,2011,36:3457-3464.
    [147]Fikret K., Ebru C. C, Sinan U. Hydrogen gas production from waste anaerobic sludge by electrohydrolysis:Effects of applied DC voltage [J]. Int. J. Hydrogen Energy,2011,36:2049-2056.
    [148]Jeremiasse A. W., Bergsma J., Kleijn J. M., et al. Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cess [J]. Int. J. Hydrogen Energy,2011,36:160-166.
    [149]马伟,程子洪,张星,等.一种废水处理同时产氢的装置和方法[P].中国,ZL 201110331982.9[P].2012,11,07.
    [150]胡俊生,郝苓汀,李越,等.物质结构对芳香有机物电催化降解的影响[J].沈阳建筑大学学报(自然科学版),2010,6(3):538-541.
    [151]Atefeh A., Prezemyslaw D., Leonidas A. P., et al. Effect of molecular structure on relative reactivity of naphthenic acids in the UV/H2O2 advanced oxidation process [J]. Environ. Sci. Technol.,2012,46 (19):10727-10734.
    [152]王玉峰,陈克复,莫立焕,等.造纸废水化学需氧量的双波长紫外光谱法测定[J].华南理工大学学报(自然科学版),2012,40(2):156-160.
    [153]应骏,陈国华,黄磊,等.中国近海海水紫外吸收及直接用于测定海水COD[J].中国海洋大学学报,2005,35(2):313-316.
    [154]Han W. Q., Chen Y., Wang L. J., et al. Mechanism and kinetics of electrochemical degradation of isothiazolin-ones using Ti/SnO2-Sn/PbO2 anode [J]. Desalination,2011,276:82-88.
    [155]周明华,吴祖成.含酚模拟废水的电催化降解[J].化工学报,2002,53(1):40-44.
    [156]Maria R., Marta P., Maria A. S. Development of an electrochemical cell for the removal of Reactive Black 5 [J].2011, Desalination,274:39-43.
    [157]沈荣明,竹湘锋,徐新华.Mn2+催化臭氧氧化苯酚废水的初步研究[J].天津化工,2006,6:57-59.
    [158]阳立平,李子燕,宁平.臭氧氧化降解高浓度苯酚废水的研究[J].四川化工,2004,4(7):11-13.
    [159]Comninellis Ch., Pulgarin C. Anodic oxidation of phenol for waste water treatment [J]. J. Appl. Electrochem.,1991,21:703-708.
    [160]Iniesta J., Michaud P. A., Panizza M. G., et al. Electrochemical oxidation of phenol at boron-doped diamond electrode [J]. Electrochim. Acta,2001,46:3573-3578.
    [161]Zhi J. F., Wang H. B., Nakashima T., et al. Electrochemical incineration of prganic pollutants on boron-doped diamond electrode. Evidence for direct electrocemical oxidation pathway [J]. J. Phys. Chem. B,2003,107:13389-13395.
    [162]Martinez-Huitle C. A., Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment:direct and indirect processes [J]. Chem. Soc. Rev.,2006,35:1324-1340.
    [163]Canizarres P., Beteta A., Saze C., et al. Use of electrochemical technology to increase the quality of the effluents of bio-oxidation process [J]. Chemosphere,2008,72:1080-1085.
    [164]Ditzig J., Liu H., Logan B. E. Production of hydrogen from domesticwastewater using a bioelectrochemically assisted microbial reactor (BEAMR) [J]. Int. J. Hydrogen Energy,2007,32: 2296-2304.
    [165]胡娟.粉煤灰的物相与微形貌及对环境的影响[J].贵州师范大学学报(自然科学版),2002,1:46-48.
    [166]王丽华.利用高铝粉煤灰制备聚合氯化铝的实验研究[D].中国地质大学博士学位论文,2005.
    [167]Newwcombe G., Hayes R., Drikas M. Granular activated carbon:importance of surface properties in the adsorption of naturally occurring organics[J]. Colloids Surf., A,1993,78:65-71.
    [168]Langmuir L. The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of American Chemical Society[J].1918,40:1361-1403.
    [169]Freundlich H. Adsorption in solution[J]. Zeitschrift fur Physikalische Chemie,1906,57:384-410.
    [170]Chatter J. S., Lee D. S., Lee M. W., et al. Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide [J]. Bioresour. Technol.,2009,100:2803-2809.
    [171]Dubinin M. M., Radushkevich L. V. Equation of the characteristic curve of activated charcoal [J]. Chem.Zent.1947,1:875.
    [172]Riemam W., Walton H. Ion exchange in analytical chemistry. In:International Series of Monographs in Analytical Chemistry,1970,Pergamon Press Oxford.
    [173]Rafatullah M., Sulaiman O., Hashim R., et al. Adsorption of copper (Ⅱ), Chromium (Ⅲ), nickel (Ⅱ) and lead (Ⅱ) ions from aqueous solutions by meranti sawdust [J]. J. Hazard. Mater., 2009,170:969-977.
    [174]Baroni P., Vieira R. S., Meneghetti E., et al. Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes [J]. J. Hazard. Mater;,2008,152:1155-1163.
    [175]Cao J., Tan Y., Che Y., et al. Novel complex gel beads composed of hydrolyzed polycrylamide and chitosan:an effective adsorbent for the removal of heavy metal from aqueous solution [J]. Biosour. Technol.,2010,101:2558-2561.
    [176]马伟.水固界面化学与吸附技术[M].北京:冶金工业出版社,2011.
    [177]Shen J. C., Duvnjak Z. A reversible surface reaction model with an effectiveness factor and tis application to sorption kinetics of cupric ions on corncob particles [J]. Sep. Purif. Technol.,2005, 44:69-77.
    [178]Walker G. M., Hansen L., Hanna J. A., et al. Kinetics of a reactive dye adsorption onto dolomitic sorbents [J]. Water Res.,2003,37:2081-2089.
    [179]Weber W. J., Morris J. C. Kinetics of adsorption on carbon from solution [J]. J. San. Eng. Div.,1962, 89:31-39.
    [180]Lagergren S. About the theory of so called adsorption of soluble substances [M]. Kungliga Svenska Vetenskapsakademiens,Band 24,Handlingar,1898,1-39.
    [381]Ho Y. S., Ng J. C. Y., McKay G. Kinetics of pollutants sorption by biosorbents:review [J]. Sep. Purif. Methods,2000,29:189-232.
    [182]Singh S., Barick K. C., Bahadur D., Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens [J]. J. Hazard. Mater.,2011,192:1539-1547.
    [183]Farinella N. V., Matos G. D., Arruda M. A. Z. Grape bagasse as a potential biosorbent of metals in effluent treatments [J]. Bioresour. Technol.,2007,98:1940-1946.
    [184]Ahmad M., Rafatullah O., Sulaiman M. H., et al. Dye adsorption on autohydrolyzed pine sawdust in batch and fixed-bed systems [J]. Chem. Eng. J.,2009,170:357-365.
    [185]Rahman M. S., Islam M. R. Effect of pH on isotherms modeling for Cu(Ⅱ) ions adsorption using maple wood sawdust [J]. Chem. Eng. J.,2009,149:273-280.
    [186]Singh S., Barick K. C., Bahadur D. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens [J]. J. Hazard. Mater.,2011,192:1539-1547.
    [187]Zhang L. Y., Zhu X. J., Sun H. W., et al. Control synthesis of magnetic Fe3O4-chitosan nanoparticles under UV irradiation in aqueous system [J]. Curr. Appl. Phys.2010,10:828-833.
    [188]Verbych S., Bryk M., Chornokru G. Removal of Copper(Ⅱ) from aqueous solutions by chitosan adsorption [J].Sep. Sci. Technol.,2005,40:1749-1549.
    [189]Ghaee A., Niassar M. S., Barzin J., et al. Effects of chitosan membrane morphology on copper ion adsorption [J]. Chem. Eng. J.,2010,165:46-55.
    [190]Jana M., Martin P., Maria R., et al. Cobalt and strontium sorption by moss biosorbent:modeling of single and binary metal systems [J]. Desalination,2011,266:134-141.
    [191]Tan T. C., Teo W. K. Combined effect of carbon dosage and initial adsorbate concentration on the adsorption isotherm of heavy metals on activated carbon [J]. Water Res.,1987,21:1183-1188.
    [192]Riemam W, Walton H. Ion exchange in analytical chemistry. In:International Series of Monographs in Analytical Chemistry,1970, Pergamon Press Oxford.
    [193]Rafatullah M, Sulaiman O, Hashim R, et al. Adsorption of copper (Ⅱ), Chromium (Ⅲ), nickel (Ⅱ) and lead (Ⅱ) ions from aqueous solutions by meranti sawdust[J].J. Hazard. Mater.,2009,170:969-977.
    [194]Nightingale E R Jr. Phenomenological theory of ion solvation of effective radii of hydrated ions, J. Phys. Chem.,1959,63:1381-1387.
    [195]杨柳燕,肖琳,周治,等.pH值对有机蒙脱土吸附苯酚的影响[J].环境化学,2004,23(2),183-187.
    [196]高旭.城市污水处理工艺能量平衡分析研究和应用[D].重庆大学博士学位论文,2002.
    [197]蒋楚生,何耀文等.工业节能的热力学基础和应用[B].北京:化学工业出版社,1990.
    [198]Szargut J. International progress in second law analysis [J]. Energy,1980,5:709-718.
    [199]山内繁.化学热力学绪论[J].化学工业(日),1980,3.
    [200]范良政.从热力学角度对化学过程系统的分析与合成(英).华北化工学学院讲义,1981.
    [201]Standard methods for the examination of water and wastewater,14th ed. Washington. D. C: American Public Health Association 1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700