二氧化钛纳米材料的形貌控制及其在能源和环境领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛纳米结构因为其高比表面积,低毒性,高稳定性,在能源和环境领域都有着广泛的应用,比如染料敏化太阳能电池、超级电容器、锂电池和光催化等。1999年,Zwilling和他的合作者发现了在含有氟离子的酸性电解液中,通过阳极氧化可以制备二氧化钛纳米结构。从此这种简便经济的电化学方法来制备高度有序、尺寸均匀二氧化钛纳米阵列得到了广泛的研究和应用。二氧化钛纳米结构的形貌是决定其性能的关键因素,电化学方法制备二氧化钛纳米结构的好处在于可以通过调节电化学参数来灵活地调节二氧化钛纳米结构的形貌但是目前的研究主要集中在调节电化学参数来调节比表面积等。在本论文中采用电化学阳极氧化的方法制备二氧化钛纳米结构,主要通过对衬底的处理,对电化学阳极氧化装置的改进和电化学掺杂的方法来改进新鲜制备的二氧化钛纳米管形貌,增加了比表面积,减小载流子的复合,增加了导电性等,从而改进了这种材料在光催化和超级电容器应用方面的性能。
     本论文主要包含以下六章,第一章主要介绍了用电化学阳极氧化的方法来制备二氧化钛纳米管的发展过程,从第一代的电解液是酸性水溶液中长度只能达到500nm的纳米管到第二代的电解液中加入酸碱缓冲剂的水溶液,可以长到6μm,再到第三代的有机溶剂,长度可以到几百微米。还包含了二氧化钛纳米结构的生成机理的背景知识,以及目前通过引入三价钛离子对二氧化钛纳米管阵列的形貌和电子结构进行调控的研究。同时还介绍了二氧化钛纳米结构的应用领域。在第二到第五章中,介绍了通过不同的手段来优化二氧化钛纳米结构的形貌,从而提高光催化或者超级电容器的效率。第六章总结论文的内容并且展望未来的工作。
     第二章主要描述了增大二氧化钛薄膜比表面积的有效方法。首先在阳极氧化之前,先对衬底进行机械冷加工处理,增大衬底的缺陷密度。当对衬底的做机械功量增大到60%时,腐蚀得到的样品是具有类海绵的纳米结构,大大增大了比表面积,从而可以提高光催化的效率。同时,还发现用冷加工处理过的衬底所制备的样品,在相同的电化学条件下,二氧化钛纳米管生长速度加快,同时管径也更大。
     第三章介绍了用四种不同导电性的电解液和不对称电极的装置(电极放在衬底的一边)来制备管径和长度梯度变化的样品。在一个衬底上生长出具有梯度变化的样品,不对称电极是必要条件,还需要在离电极距离不同的地方,施加在底部密实的氧化物上的电势差有明显的梯度变化。这个跟阳极氧化的时候采用的电压的大小,以及电解液的导电性都有关系。一般来说导电性适中的电解液和足够大的电压是比较理想的条件。
     在第四章中,主要介绍了我们发现的外电场对二氧化钛纳米管光催化效率的调控行为。对于新鲜制备的二氧化钛纳米管,其管壁是由两层结构所组成的,外壁是氢氧化物,内壁是氧化物的结构。在我的研究中发现通过施加横向电场,可将管壁的外层剥离。削掉外壁之后的二氧化钛纳米管,在作为催化剂时,体系中电子与空穴的复合几率变小,从而大幅度提升了二氧化钛纳米管材料的光催化效率。另外,如果延长剥离外层管壁的时间,就会在已经生成的单管壁纳米管的底部形成一层管径很小的纳米管;如果在此基础上,再施加一个纵向电场,在细管的底部又会生成一层管径比较大的纳米管。因此,交替施加纵向和横向电场,提供了一种调节二氧化钛纳米结构的方法,比如说可以得到管壁不同的多层纳米结构。
     第五章包含了我们探索出的电化学自掺杂对二氧化钛纳米管超级电容器和光催化效率的调节行为的研究结果。新鲜制备的二氧化钛纳米管,经退火结晶后,在负电压的作用下,部分四价的钛被还原成三价,产生大量的氧空位。富含氧空位的样品,导电性增强,光电转换效率也提高,同时,由于氧空位可以作为电子的浅施主能级,体系中电子和空穴的复合几率也变小。鉴于以上优点,自掺杂的二氧化钛纳米管在作为超级电容器和催化剂时,效率都得到极大提高。
     第六章,总结论文的内容并且展望未来的工作。
Self-organized TiO2nanostructures that are fabricated by anodizing Ti substrates in fluoride-containing electrolytes exhibit high photocatalytic efficiency and are of particularly practical importance in energy-and environment-related applications, such as dye sensitized solar cells, supercapacitors, and lithium ion batteries. One major advantage of the anodization method for generating nanostructured TiO2lies in its capability of targeting the desired morphology by means of convenient and adjustable experimental parameters. In this dissertation, we mainly focus on the effects that can significantly vary the morphology of the TiO2nanostructures and their impact on the energy-and environment-related applications.
     The first chapter introduces the background of fabricating TiO2nanotubes by anodization and the morphological/electronic control of the resulted TiO2nanotube arrays. A brief overview of their applications is also included. Chapters2-5describe different methods to fabricate or modify the anodic TiO2nanostructures for improved performance as photocatalysts or supercapacitors.
     The second chapter demonstrates that the defect level of the Ti substrates has a strong impact on the morphology of the subsequently generated anodic TiO2nanostructures. By increasing the amount of cold work applied to the Ti foil, the morphology of the subsequently generated anodic TiO2can be converted from self-organized nanotube arrays to an exotic type of nanoporous structure. The interweaving nanoporous TiO2structures achieved by the cold work pretreatment exhibit strong photocatalytic abilities and significantly outperform their nanotubular counterparts.
     In the third chapter, four different electrolytes and the asymmetric electrode configurations were adopted for growing gradient TiO2nanotube arrays with the tube diameters and length gradually changing along the sample plane. The key factor for formation of the gradient TiO2nanotubes lies in the voltage drop over the tube bottom at different locations along the film. Moderate electrolyte conductivities and sufficiently high anodization voltages are suitable for generating TiO2structures with the desired gradient.
     In the fourth chapter, an electronic field is applied parallel to the anodic TiO2nanotubes, resulting in the removal of the outer shells of the nanotubes. Better-separated single-walled TiO2nanotubes were obtained and shown significantly improved photocatalytic efficiency than the non-etched counterparts. Furthermore, the novel approach introduced here offers a new route to adjust the characteristics of anodic TiO2nanotubes, e.g., to generate exotic multilayered structures.
     In the fifth chapter, electrochemical doping of anatase TiO2in an organic electrolyte of ethylene glycol through proton intercalation is proposed. The treated TiO2nanotubes are black to the naked eye and possessed significantly lower bandgap and higher electrical conductivity. Therefore, the treated TiO2displayed remarkably higher photoconversion efficiency (increased from48%to72%in the visible region, and from~0%to7%in the UV region), photocatalytic efficiency, and charge-storage capability (42-fold increase in specific capacitance). More importantly, the doping effects were found to persist for over one year. It should also be pointed out that the doping method reported here is highly suitable for producing novel energy-efficient electrochromatic systems that can stay at the color state for an extremely long time without supply of electrical power.
     Chapter6concludes the dissertation and suggests future work.
引文
[1]D. Choi, G E. Blomgren, P. N. Kumta, Adv. Mater.s 2006,18,1178.
    [2]P. M. Ajayan, O. Stephan, P. Redlich, C. Colliex, Nature 1995,375,564.
    [3]P. Hoyer, Langmuir 1996,12,1411.
    [4]B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, J. Mater. Res.1997,12,604.
    [5]A. Ghicov, P. Schmuki, Chem.Commun.2009,2791.
    [6]J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci.2007,11,3.
    [7]G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energy Mater. Sol. Cells 2006,90,2011.
    [8]K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore, D. Losic, Biomaterials 2010,31,532.
    [9]V. M. Mohan, B. Hu, W. L. Qiu, W. Chen, J. Appl. Electrochem.2009,39,2001.
    [10]Y. Wang, K. Takahashi, H. M. Shang, G. Z. Cao, J. Phys. Chem. B 2005,109, 3085.
    [11]D. V. Bavykin, E. V. Milsom, F. Marken, D. H. Kim, D. H. Marsh, D. J. Riley, F. C. Walsh, K. H. El-Abiary, A. A. Lapkin, Electrochem. Commun.2005,7,1050.
    [12]T. Maiyalagan, B. Viswanathan, U. V. Varadaraju, Bull. Mater. Sci.2006,29, 705.
    [13]X. Quan, S. G. Yang, X. L. Ruan, H. M. Zhao, Environ. Sci.& Technol.2005, 39,3770.
    [14]T. S. Kang, A. P. Smith, B. E. Taylor, M. F. Durstock, Nano Lett.2009,9,601.
    [15]R. Leary, A. Westwood, Carbon 2011,49,741.
    [16]Y. D. Park, K. Anabuki, S. Kim, K. W. Park, D. H. Lee, S. H. Um, J. Kim, J. H. Cho, Macromol.Res.2013,21,636.
    [17]Y. B. Shang, E. Z. Liu, X. Y. Hu, H. Miao, L. Zhang, S. C. Zhan, R. N. Ji, D. K. Zhang, J. Fan, L. M. Xu, Appl. Surf. Sci.2013,273,273.
    [18]W. D. Wang, P. Seip, P. Kalck, J. L. Faria, J. Mol.Catal.A-Chem.2005,235, 194.
    [19]Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue, Chem.Phys. Lett. 2002,365, 427.
    [20]K. R. Moonoosawmy, M. Es-Souni, R. Minch, M. Dietze, Crystengcomm 2012, 14,474.
    [21]J. J. Qiu, W. D. Yu, X. D. Gao, X. M. Li, Nanotechnol.2007,18,295604.
    [22]M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Adv. Mater.2004,16, 2052.
    [23]M. Alexander, K. Pandian, J. Solid State Electrochem.2013,17,1117.
    [24]C. C. Chen, C. H. Cheng, C. K. Lin, Ceram. Int.2013,39,6631.
    [25]X. F. Gao, J. H. Chen, C. Yuan, J. Power Sources 2013,240,503.
    [26]J. Lee, D. H. Kim, S. H. Hong, J. Y. Jho, Sens. and Actuators B-Chem.2011, 160,1494.
    [27]J. J. Qiu, F. W. Zhuge, X. M. Li, X. D. Gao, X. Y. Gan, L. Li, B. B. Weng, Z. S. Shi, Y. H. Hwang, J.Mater. Chem.2012,22,3549.
    [28]W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y. C. Lee, R. G. Yang, Nano Lett.2012,12,655.
    [29]S. S. Kalanur, S. H. Lee, Y. J. Hwang, O. S. Joo, J. Photochem..Photobiol.A-Chem.2013,259,1.
    [30]H. S. V. Minh, N. H. Du, L. T. Hung, N. T. Q. Hoa, Int. J. Nanotechnol.2013, 10,222.
    [31]B. M. Wen, C. Y. Liu, Y. Liu, New J. Chem.2005,29,969.
    [32]B. M. Wen, C. Y. Liu, Y. Liu, J.Phys. Chem. B 2005,109,12372.
    [33]S. P. Albu, A. Ghicov, J. M. Macak, P. Schmuki, Phys. Status Solidi-Rapid Res. Lett.2007,1, R65.
    [34]D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, ACS Nano 2008,2,1113.
    [35]J. M. Macak, P. Schmuki, Electrochim. Acta 2006,52,1258.
    [36]J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci.2007,11,3.
    [37]G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, J.Mater.Res.2003,18,2588.
    [38]H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, J.Phys.Chem.C 2007,111,7235.
    [39]S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, ACS Nano 2010,4,1259.
    [40]L. V. Taveira, J. M. Macak, H. Tsuchiya, L. F. P. Dick, P. Schmuki, J. Electrochem. Soc.2005,152, B405.
    [41]V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier, Surf, and Interface Anal.1999,27,629.
    [42]V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 1999,45, 921.
    [43]R. Beranek, H. Hildebrand, P. Schmuki, Electrochem.. Solid-State Lett.2003,6, B12.
    [44]D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J.Mater.Res.2001,16,3331.
    [45]Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater.Res.2005,20,230.
    [46]Q. Cai, L. Yang, Y. Yu, Thin Solid Films 2006,575,1802.
    [47]J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew.Chem. Int.Ed.2005,44,7463
    [48]F. Liang, L.-B. Luo, C.-K. Tsang, L. Zheng, H. Cheng, Y. Y. Li, Mater.Res.Bull.2012,47,54.
    [49]K. Shankar, G. K. Mor, A. Fitzgerald, C. A. Grimes, J. Phys. Chem. C 2006, 111,21.
    [50]H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, J. Phys. Chem. C 2007,111,7235.
    [51]H. Li, L. Zheng, S. Shu, H. Cheng, Y. Y. Li, J. Electrochem. Soc.2011,158, C346.
    [52]S. Rani, S. C. Roy, M. Paulose, O. K. Varghese, G. K. Mor, S. Kim, S. Yoriya, T. J. LaTempa, C. A. Grimes, Phys.Chem. Chem. Phys.2010,12,2780.
    [53]S. P. Albu, A. Ghicov, J. M. Macak, P. Schmuki, Phys.Status Solidi (RRL)-Rapid Res. Lett.2007,1, R65.
    [54]K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose,O. K. Varghese, C. A. Grimes, Nanotechnol.2007,18,065707.
    [55]M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, C. A. Grimes, J. Phys.Chem.B 2006,110,16179.
    [56]J. M. Macak, S. P. Albu, P. Schmuki, Phys.Status Solidi (RRL)-Rapid Res. Lett.2007,1,181
    [57]Z. Su, W. Zhou, J. Mater. Chem.2011,21,8955.
    [58]L. V. Taveira, J. M. Macak, H. Tsuchiya, L. F. P. Dick, P. Schmuki, J. Electrochem.Soc.2005,152, B405.
    [59]P. Roy, S. Berger, P. Schmuki, Angew. Chem.Int. Ed.2011,50,2904.
    [60]S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G. E. Thompson, J. M. Macak, P. Schmuki, Adv.Mater.2008,20,4135.
    [61]H. Li, J.-W. Cheng, S. Shu, J. Zhang, L. Zheng, C. K. Tsang, H. Cheng, F. Liang, S.-T. Lee, Y. Y. Li, Small 2013,9,37.
    [62]H. El-Sayed, S. Singh, M. T. Greiner, P. Kruse, Nano Lett.2006,6,2995.
    [63]J. E. Houser, K. R. Hebert, J. Electrochem.Soc.2006,153, B566.
    [64]Z. Su, G. Hahner, W. Zhou, J. Mater.Chem.2008,18,5787.
    [65]J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int.Ed.2005,44,2100.
    [66]Z. Su, W. Zhou, Adv. Mater.2008,20,3663.
    [67]Z. Su, W. Zhou, F. Jiang, M. Hong, J. Mater.Chem.2012,22,535.
    [68]A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem.Soc.2012,134,7600.
    [69]M. Salari, K. Konstantinov, H. K. Liu, J.Mater. Chem.2011,21,5128.
    [70]G. Wang, Y. Ling, Y. Li, Nanoscale 2012,4,6682.
    [71]G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett.2011,11,3026.
    [72]B. Chen, J. B. Hou, K. Lu, Langmuir 2013,29,5911.
    [73]C. Xiao-Quan, L. Huan-Bin, G. Guo-Bang, Mater. Chem. Phys.2005,91,317.
    [74]K. Ishibashi, Y. Nosaka, K. Hashimoto, A. Fujishima, J. Phys. Chem. B 1998, 102,2117.
    [75]J. M. Coronado, A. J. Maira, J. C. Conesa, K. L. Yeung, V. Augugliaro, J. Soria, Langmuir 2001,17,5368.
    [76]J. Jun, M. Dhayal, J.-H. Shin, J.-C. Kim, N. Getoff, Radiat.Phys..Chem.2006, 75,583.
    [77]T. Le Mercier, J. M. Mariot, P. Parent, M. F. Fontaine, C. F. Hague, M. Quarton, Appl. Surf. Sci.1995,86,382.
    [78]T.-C. Lu, L.-B. Lin, S.-Y. Wu, C.-P. Zhao, X.-C. Xu, Y.-F. Tian, Nucl. Iustrum. Methods Phys. Res., Sect. B:Beam Interactions with Materials and Atoms 2002,191, 291
    [79]L. B. Xiong, J. L. Li, B.Yang,Y. Yu, J. Nanomater.2012,2012.1.
    [80]F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc. 2010,132,11856.
    [81]Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.-H. Whangbo, Chem.Commun.2012,48,5733.
    [82]X. Chen, C. Burda, J. Am. Chem.Soc.2008,130,5018.
    [83]X. Lu, G Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett.2012,12, 1690.
    [84]L. Deng, S. Wang, D. Liu, B. Zhu, W. Huang, S. Wu, S. Zhang, Catal. Lett. 2009,129,513.
    [85]H. Liu, W. Yang, Y. Ma, Y. Cao, J. Yao, J. Zhang, T. Hu, Langmuir 2003,19, 3001.
    [86]N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen, J.Phys.Chem. C 2007,111, 11836.
    [87]G. Liu, H. G Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G. Q. Lu, H.-M. Cheng, J.Phys.Chem. C2009,113,21784.
    [88]X. Pan, X. Ma, J.Solid State Chem.2004,177,4098.
    [89]H. Zhou, Y. R. Zhang, J.Power Sources 2013,239,128.
    [90]A. Fujishima, K. Honda, Nature 1972,238,37.
    [91]J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 2007,3,300.
    [92]I. Paramasivam, H. Jha, N. Liu, P. Schmuki, Small 2012,8,3073.
    [93]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001,293,269.
    [94]S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002,297,2243.
    [95]G. Armstrong, A. R. Armstrong, J. Canales, P. G Bruce, Electrochem.Solid State Lett.2006,9, A139.
    [96]B. L. He, B. Dong, H. L. Li, Electrochem. Commun.2007,9,425.
    [97]J. H. Kim, K. Zhu, Y. F. Yan, C. L. Perkins, A. J. Frank, Nano Lett.2010,10, 4099.
    [98]J. R. Li, Z. L. Tang, Z. T. Zhang, Electrochem. Commun.2005,7,62.
    [99]G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado, P. Knauth, Chem..Mater.2009,21,63.
    [100]G. F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J. L. Tirado, T. Djenizian, Electrochim. Acta 2009,54,4262.
    [101]P. Pillai, K. S. Raja, M. Misra, J. Power Sources 2006,161,524.
    [102]C. H. Sun, X. H. Yang, J. S. Chen, Z. Li, X. W. Lou, C. Z. Li, S. C. Smith, G. Q. Lu, H. G. Yang, Chem.Commun.2010,46,6129.
    [103]D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay, J. Liu, ACS Nano 2009,3,907.
    [104]Y. G. Wang, X. G. Zhang, J. Electrochem. Soc.2005,152, A671.
    [105]J. W. Xu, C. H. Ha, B. Cao, W. F. Zhang, Electrochim. Acta 2007,52,8044.
    [1]C. R. Martin, Science,266,1961 (1994).
    [2]V. Zwilling, E. D. Ceretti, and A. B. Forveille, Electrochim. Acta,45,921 (1999).
    [3]N. Mukherjee, M. Paulose, O. K. Arghese, G. K. Mor, and C. A. Grimes,J. Mater. Res.,18,2296 (2003).
    [4]R. Poulomi, B. Steffen, and P. Schmuki, Angew. Chem. Int. Ed.,50,2904 (2011).
    [5]S. H. Jeon, and H. S. Hwang, J. Vac. Sci. Technol. A,21, L5 (2003).
    [6]F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc.,100,411 (1953).
    [7]H. Masuda, and K. Fukuda, Science,268,1466 (1995)
    [8]V. Zwilling, E. D. Ceretti, A. B. Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Surf. Interface Anal.,27,629 (1999).
    [9]G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energy Mater, Sol. Cells,90,2011 (2006).
    [10]X. Chen, and S. S. Mao, Chem. Rev.,107,2891 (2007).
    [11]K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano Lett.,7,69 (2006).
    [12]D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin,and M. Gratzel, ACS Nano,2,1113 (2008)
    [13]L. Heng, X. Wang, N. Yang, J. Zhai, M. Wan, and L. Jiang, Adv. Funct. Mater., 20,266(2010).
    [14]O. K. Varghese, M. Paulose,T. J. LaTempa, and C. A. Grimes, Nano Lett.,9,731 (2009).
    [15]A. J. Nozik, Nano Lett.,10,2735 (2010).
    [16]K. Hashimoto, H. Irie, and A. Fujishima, AAPPS Bulletin,17,12 (2007)
    [17]M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, Renewable Sustainable Energy Rev.,11,401 (2007).
    [18]D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, and F.C. Walsh, J. Catal.,235,10(2005).
    [19]S. Yuan, L.Yu, L.Y. Shi, J. Wu, J. H. Fang, and Y. Zhao, Catal. Commun.,10,1188 (2009)
    [20]S. Berger, R. Hahn, P. Roy, and P. Schmuki, Phys. Status Solidi B,247,2424 (2010).
    [21]S. Berger, H. Tsuchiya, and P. Schmuki, Chem. Mater.,20,3245 (2008).
    [22]W. Wei, S. Berger, C. Hauser, K. Meyer, M. Yang, and P. Schmuki, Electrochem. Commun.,12,1184(2010).
    [23]D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, and P. Schmuki, Angew. Chem. Int. Ed.,48,9326 (2009).
    [24]K, Y. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, and P. Schmuki, J. Am. Chem. Soc.,132,147 (2010).
    [25]S. Wu, K. Fan, P. Jiang, and S. Chen, Mater. Sci. Eng., A,527,6917 (2010).
    [26]Y. Z. Zhu, Y. R. Kolobov, G. D. Grabovetskaya, V. V. Stolyarov, N. V. Girsova, and R. Z. Valiev, J. Mater. Res.,18,1011 (2003).
    [27]R. Z. Valiev, K. K. Islangaliev, and I. V. Alexandrov, Prog. Mater. Sci.,45,103 (2000).
    [28]A. Seyeux, S. Berger, D. LeClere, A. Valota, P. Skeldon, G. E. Thompson, J. Kunze, and P. Schmuki,J.Electrochem. Soc.,156, K172 (2009).
    [29]S. A. Morin, M. J. Bierman, J. Tong, and S. Jin, Science,328,476 (2010).
    [30]Q. A. S. Nguyen, Y. V. Bhargava, and T. M. Devine, J. Electrochem. Soc.,156, E55 (2009).
    [31]L. V. Taveira, J. M. Macak, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, J. Electrochem. Soc.,152, B405 (2005).
    [32]P. R. Harvey, R. Rudham, and S. Ward, J. Chem. Soc., Faraday Trans.,79,1381 (1983).
    [33]K. Ikeda, K. Hashimoto, and A. Fujishima, J. Phys. Chem.,101,2617 (1997).
    [1]C. H. Chang, J. A. D. Caballero, H. J. Choi, and G. Barbastathis, Opt. Lett.,2011, 36,2354.
    [2]O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, Biomacromolecules,2008,10,142.
    [3]B. E. Collins, K. P. S. Dancil, G. Abbi, and M. J. Sailor, Adv. Funct. Mater. 2002,12,187.
    [4]N. P. Westcott, B. M. Lamb, and M. N. Yousaf, Anal. Chem.,2009,81,3297.
    [5]H. Cao, J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou, Appl. Phys. Lett,2002,81, 3058.
    [6]T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, Science.2011,331,1587.
    [7]Y. Y. Li, P. Kim, and M. J. Sailor, Phys. Status. Solidi. A,2005,202,1616.
    [8]H. Ren, and S. T. Wu, Appl. Phys. Lett.,2002,81,3537.
    [9]T. C. Ulbrich, D. Makarov, G. Hu, I. L. Guhr, D. Suess, T. Schrefl, and M. Albrecht, Phys. Rev. Lett.,2006,96,077202.
    [10]C. K. Tsang, Z. Xu, and Y. Y. Li, J. Electrochem. Soc.,2009,156, D508.
    [11]X. Chen, and S. S. Mao, Chem. Rev.,2007,107,2891.
    [12]K. S. Mun, S. D. Alvarez, W. Y. Choi, and M. J. Sailor, ACS Nano,2010,4,2070.
    [13]C. Liu, F. Li, L. P. Ma, and H. M. Cheng, Adv. Mater.,2010,22, E28.
    [14]G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, Nano Lett.,2008,8,1906.
    [15]P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Edit.,2011,50,2904.
    [16]H. Li, L. Zheng, S. Shu, H. Cheng, and Y. Y. Li, J. Electrochem. Soc.,2011,158, C346.
    [17]Y. V. Bhargava, Q. A. S. Nguyen, and T. M. Devine, J. Electrochem. Soc.,2009, 156, E62.
    [18]Q. A. S. Nguyen, Y. V. Bhargava, and T. M. Devine,J. Electrochem. Soc.,2009, 156, E55.
    [19]S. Berger, H. Tsuchiya, and P. Schmuki, Chem. Mater.,2008,20,3245.
    [20]K. Shankar, G. K. Mor, A. Fitzgerald, and C. A. Grimes, J. Phys. Chem. C,2006, 111,21.
    [21]S. A. Morin, M. J. Bierman, J. Tong, and S. Jin, Science,2010,328,476.
    [22]M. A. Lukowski, and S. Jin, J. Phys. Chem. C,2011,115,12388.
    [23]A. Ghicov, and P. Schmuki, Chem. Commun.,2009,20,2791.
    [1]G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K.-S. Choi, C. A. Grimes, Nano Lett.2008,8,1906.
    .2005,6,24.
    [3]A. Mazare, I. Paramasivam, K. Lee, P. Schmuki, Electrochem. Commun.2011,13, 1030.
    [4]J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small 2007,3,300.
    [5]S. Yuan, L. Yu, L. Shi, J. Wu, J. Fang, Y. Zhao, Catal. Commun.2009,10,1188.
    [6]K.-S. Mun, S. D. Alvarez, W.-Y. Choi, M. J. Sailor, ACSNano 2010,4,2070.
    [7]Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, X. Zhu, Adv. Mater.2008,20,1044.
    [8]K. S. Brammer, S. Oh, C. J. Cobb, L. M. Bjursten, H. V. D. Heyde, S. Jin, Acta Biomater.2009,5,3215.
    [9]Y.-T. Sul, C. B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, T. Albrektsson, Biomaterials 2002,23,491.
    [10]B.-L. He, B. Dong, H.-L. Li, Electrochem. Commun.2007,9,425.
    [11]C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Adv. Mater.2010,22, E28.
    [12]Z. Wei, Z. Liu, R. Jiang, C. Bian, T. Huang, A. Yu, J. Solid State Electrochem. 2010,14,1045.
    [13]Z. Liu, M. Misra, ACS Nano 2010,4,2196.
    [14]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 2005,6,215.
    [15]K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett.2006,7,69.
    [16]P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, Nanoscale 2010,2,45.
    [17]D. Wang, L. Liu, F. Zhang, K. Tao, E. Pippel, K. Domen, Nano Lett.2011,11, 3649.
    [18]X. Xu, X. Fang, T. Zhai, H. Zeng, B. Liu, X. Hu, Y. Bando, D. Golberg, Small 2011,7,445.
    [19]H. Zhang, P. Liu, X. Liu, S. Zhang, X. Yao, T. An, R. Amal, H. Zhao, Langmuir 2010,26,11226.
    [20]Q. Zheng, H. Kang, J. Yun, J. Lee, J. H. Park, S. Baik, ACS Nano 2011,5, 5088.
    [21]J. Ng, J. H. Pan, D. D. Sun, J. Mater. Chem.2011,21,11844.
    [22]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 2004,5,191.
    [23]P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin, Nanoscale 2012,4,1800.
    [24]X. Chen, S. S. Mao, Chem. Rev.2007,38,2891.
    [25]H. Li, L. Zheng, S. Shu, H. Cheng, Y Y. Li, J. Electrochem. Soc.2011,158, C346.
    [26]P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed.2011,50,2904.
    [27]J. M. Macak, S. Albu, D. H. Kim, I. Paramasivam, S. Aldabergerova, P. Schmuki, Electrochem. Solid-State Lett.2007,10, K28.
    [28]D. Guan, Y. Wang, Nanoscale 2012,4,2968.
    [29]B. Chen, K. Lu, Langmuir 2011,28,2937.
    [30]L. Zheng, H. Cheng, F. Liang, S. Shu, C. K. Tsang, H. Li, S.-T. Lee, Y. Y. Li, J. Phys. Chem. C 2012,116,5509.
    [31]S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G. E. Thompson, J. M. Macak, P. Schmuki, Adv. Mater.2008,20,4135.
    [32]Z. Su, W. Zhou, J. Mater. Chem.2009,19,2301.
    [33]S. E. John, S. K. Mohapatra, M. Misra, Langmnir 2009,25,8240.
    [34]D. Kim, A. Ghicov, P. Schmuki, Electrochem. Commun.2008,10,1835.
    [35]K. Shankar, G. K. Mor, A. Fitzgerald, C. A. Grimes, J. Phys. Chem. C 2006, 111,21.
    [36]S. Berger, R. Hahn, P. Roy, P. Schmuki, Phys. Status Solidi B 2010,247, 2424.
    [37]Q. A. S. Nguyen, Y. V. Bhargava, T. M. Devine, J. Electrochem. Soc.2009, 156, E55.
    [38]L.V.Taveira, J. M. Macak, H. Tsuchiya, L. F. P. Dick, P. Schmuki, J. Electrochem. Soc.2005,152, B405.
    [39]H. Habazaki, K. Fushimi, K. Shimizu, P. Skeldon, G. E. Thompson, Electrochem. Commun.2007,9,1222.
    [40]K. Ikeda, H. Sakai, R. Baba, K. Hashimoto, A. Fujishima, J. Phys. Chem. B 1997,101,2617.
    [41]J. Yu, H. Yu, B. Cheng, C. Trapalis, J. Mol. Catal. A:Chemical,2006,249, 135.
    [42]J. Yu, M. Zhou, Nanotech.2008,19,045606.
    [43]R. N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett.1994, 72,416.
    [44]Y. Kayanuma, Phys.Rev. B 1988,38,9797.
    [45]H. Li, J. Zhang, J.-W Cheng, Z. H. Chen, F. Liang, C. K.Tsang, H. Cheng, L. Zheng, S. T. Lee, Y. Y. Li, ECS J. Solid State Sci. Technol.2012,1, M1.
    [46]N. K. Allam, F. Alamgir, M. A. El-Sayed, ACS Nano 2010,4,5819.
    [47]H. Cheng, L. Zheng, C. K. Tsang, J. Zhang, H. E. Wang, Y. Dong, H. Li, F. Liang, J. A. Zapien, Y. Y. Li, Electrochem. Commun.2012,20,178.
    [48]K. Yasuda, P. Schmuki, Electrochimi. Acta 2007,52,4053.
    [1]X. Chen, S. S. Mao, Chem. Rev.2007,107,2891.
    [2]P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed.2011,50,2904.
    [3]A. Fujishima, K. Honda, Nature 1972,238,37.
    [4]I. Paramasivam, H. Jha, N. Liu, P. Schmuki, Small 2012,8,3073.
    [5]A. Ghicov, P. Schmuki, Chem.Commun.2009,2791.
    [6]M. Salari, K. Konstantinov, H. K. Liu, J. Mater. Chem.2011,21,5128.
    [7]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001,293, 269.
    [8]X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011,331,746.
    [9]F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc. 2010,132,11856.
    [10]G. Liu, H. G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G. Q. Lu, H.-M. Cheng, J. Phys.Chem. C 2009,113,21784.
    [11]A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc.2012,134,7600.
    [12]R. P. Vitiello, J. M. Macak, A. Ghicov, H. Tsuchiya, L. F. P. Dick, P. Schmuki, Electrochem. Commun.2006,8,544.
    [13]X. Chen, C. Burda, J. Am. Chem. Soc.2008,130,5018.
    [14]J. M. Macak, A. Ghicov, R. Hahn, H. Tsuchiya, P. Schmuki, J. Mater. Res. 2006,21,2824.
    [15]G. Wang, Y. Ling, Y. Li, Nanoscale 2012,4,6682.
    [16]J. M. Macak, B. G. Gong, M. Hueppe, P. Schmuki, Adv. Mater.2007,19, 3027.
    [17]Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.-H. Whangbo, Chem. Commun.2012,48,5733.
    [18]X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett.2012, 12,1690.
    [19]G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett.2011,11,3026.
    [20]F. Fabregat-Santiago, E. M. Barea, J. Bisquert, G. K. Mor, K. Shankar, C. A. Grimes,J. Am. Chem. Soc.2008,130,11312.
    [21]B. H. Meekins, P. V. Kamat, ACS Nano 2009,3,3437.
    [22]J. Idigoras, T. Berger, J. A. Anta, J. Phys. Chem.C 2012,117,1561.
    [23]W. Song, H. Luo, K. Hanson, J. J. Concepcion, M. K. Brennaman, T. J. Meyer, Energy & Environ. Sci.2013,6,1240.
    [24]H. Li, L. Zheng, S. Shu, H. Cheng, Y. Y. Li, J. Electrochem. Soc.2011,158, C346.
    [25]J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci.2007,11,3.
    [26]V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 1999,45, 921.
    [27]H. Li, J. Zhang, J.-W. Cheng, Z. H. Chen, F. Liang, C. K. Tsang, H. Cheng, L. Zheng, S.-T. Lee, Y. Y. Li, ECS J. Solid State Sci. Technol.2012,1, M6.
    [28]G. K. Mor, O. K. Varghesc, M. Paulose, K. Shankar, C. A. Grimes, Sol. Energy Mater. Sol. Cells 2006,90,2011.
    [29]H. Li, J.-W. Cheng, S. Shu, J. Zhang, L. Zheng, C. K. Tsang, H. Cheng, F. Liang, S.-T. Lee, Y. Y. Li, Small 2013,9,37.
    [30]J. Yu, H. Yu, B. Cheng, C. Trapalis, J. Mol, Catal. A:Chem.2006,249,135.
    [31]L. Deng, S. Wang, D. Liu, B. Zhu, W. Huang, S. Wu, S. Zhang, Catal. Lett. 2009,129,513.
    [32]J. S. Dalton, P. A. Janes, N. G. Jones, J. A. Nicholson, K. R. Hallam, G. C. Allen, Environ. Pollut.2002,120,415.
    [33]K. E. Healy, P. Ducheyne, Biomaterials 1992,13,553.
    [34]A. Ghicov, H. Tsuchiya, R. Hahn, J. M. Macak, A. G. Munoz, P. Schmuki, Electrochem. Commun.2006,8,528.
    [35]A. Ghicov, M. Yamamoto, P. Schmuki, Angew. Chem. Int. Ed.2008,47, 7934.
    [36]D. Kim, A. Ghicov, P. Schmuki, Electrochem. Commun.2008,10,1835.
    [37]L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett.2004,84,2433.
    [38]A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, C. G. Van de Walle, Phys. Rev. B 2010,81,085212.
    [39]Z. Chen, W. Peng, K. Zhang, J. Zhang, M. Yanagida, L. Han, Nanoscale 2012,4,7690.
    [40]S. Zhang, X. Yang, Y. Numata, L. Han, Energy & Environ. Sci.2013,6, 1443.
    [41]Y. H. Hu, Angew. Chem. Int. Ed.2012,51,12410.
    [42]M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995,95,69.
    [43]J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Adv. Mater.2012,24, 5166.
    [44]A. L. M. Reddy, S. Ramaprabhu, J. Phys. Chem. C 2007,111,7727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700