层间模板法制备柱撑蒙脱石材料及其结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柱撑粘土材料(简称为PILC)是一种具有类分子筛结构的新型多孔材料,可作为催化剂、吸附剂等功能材料,而广泛应用于石油化工、环境治理等诸多领域。然而,常规PILC的孔分布以微孔为主、且热稳定性在300~400℃内,在很大程度上限制了其进一步的推广应用。随着SiO2柱撑粘土材料(简称为SPC)的成功合成,为上述问题的解决提供了新途径。SPC材料具有孔道结构规整、孔径分布在超大微孔和介孔范围内、比表面积大、耐高温以及材料的可设计性强等突出优点,正受到越来越多科研工作者的重视。但SPC层间柱体为纯SiO2,自身的酸活性位有限、催化活性低;作为PILC领域的一个年轻分支,关于SPC的改性和修饰方面的研究也非常有限。因此,开展具有介孔结构的功能性PILC的研究具有重要的理论意义和巨大的应用价值。
     本文针对现有PILC材料发展的趋势、SPC材料的合成特点以及催化领域对PILC材料的要求,提出“层间模板法制备柱撑蒙脱石材料及其结构与性能”的研究。以层间模板法技术为核心,设计、制备了一系列的新型柱撑蒙脱石材料,考察基质粘土、柱撑化合物的种类以及金属、非金属原子掺杂改性对材料结构与性能的影响,构建材料结构与性能的关系,以期获得具有规整的介孔结构和优异的热稳定性、水热稳定性的柱撑蒙脱石材料,并能够满足某些有机反应体系对其催化性能的要求。具体的研究工作包括以下五个方面。
     首先,分别以内蒙古钙钠基蒙脱石和浙江钠基蒙脱石为原料,通过层间模板法合成了两种SPC材料(简称为SPC-NM和SPC-ZJ),系统研究了不同基质蒙脱石对SPC材料结构与性能的影响。研究结果表明,两种SPC材料都具有规整的介孔结构和典型的平板狭缝状孔道结构,但SPC-ZJ中存在蒙脱石片层结构部分剥离的现象,并存在一定数量的外露的介孔SiO2结构,导致其水热稳定性劣于SPC-NM材料;两种SPC材料都具有优良的热稳定性,在重油催化裂化反应中,SPC-ZJ体系具有更高的转化率,但汽油的选择性和循环使用性能不如SPC-NM。
     其次,建立了高铁含量掺杂改性SPC材料(Fe-SPC)的新方法,该方法以乙醇-水的混合体系为溶剂,有效地改善了Fe3+在硅溶胶中的分散状态,并有利于提高材料中Fe原子的掺杂量(Fe2O3含量可达27.03wt.%)。在此基础上,系统研究了铁源添加量对Fe-SPC材料的结构与性能的影响。研究结果表明,Fe-SPC具有规整的介孔结构,比表面积、孔径分布和孔容等与铁源的添加量有关;Fe原子主要以四面体形式掺杂于层间域SiO2柱体中(骨架铁),并伴有一定量的非骨架铁(八面体型)生成;该材料具有良好的水热稳定性,但热稳定性较差;其对模拟油和焦化苯的氧化脱硫反应体系具有优异的催化活性和循环使用性能,特别是焦化苯的氧化脱硫反应。
     第三,针对Fe-SPC材料中非骨架铁易团聚的问题,设计合成了一种铁原子高度掺杂的(Fe,Si)-PILC材料,并系统研究了该材料的结构与性能。研究结果表明,铁原子以四面体骨架铁的形式掺杂在SiO2骨架内,未发现非骨架铁的存在;(Fe,Si)-PILC具有类似SPC的片层结构和规整的介孔结构,SiO2骨架内铁原子的掺入也会造成其孔结构发生了一定的变化,但变化的幅度明显小于上述Fe-SPC材料;(Fe,Si)-PILC具有优异的热稳定性(优于Fe-SPC)和水热稳定性。(Fe,Si)-PILC对苯酚羟基化反应(对四面体铁敏感)具有较好的催化活性和循环使用性能。
     第四,设计合成了一种具有规整介孔结构的TiO2柱撑蒙脱石材料(Ti-PILC),避免了传统工艺中采用强酸的合成条件,并深入探讨了阳离子表面活性剂种类对Ti-PILC材料的结构与性能的影响。研究结果表明,Ti-PILC材料具有类似SPC的规整的介孔结构,有机模板剂的种类与材料孔结构的关系紧密,特别是材料的平均孔径;Ti-PILC材料的层间域TiO2柱体属于锐钛矿型,具有优越的紫外光催化降解亚甲基蓝的性能和循环使用性能,反应速率与催化剂的用量、材料的结构特性有关。
     最后,针对Ti-PILC材料在可见光下活性弱的问题,制备了一种氮原子掺杂的(Ti,N)-PILC材料,并系统研究了氮的掺杂对(Ti,N)-PILC材料的结构与性能的影响。研究结果表明,氮原子掺杂改性对材料的结构的影响不明显;氮原子的掺杂增强了层间域TiO2柱体对可见光的吸收能力,使得(Ti,N)-PILC在可见光照射条件下对亚甲基蓝的降解反应也具备了一定的催化活性。
Pillared interlayered clays (coded as PILCs), a family of porous materials withzeolite-like structure, could be used as catalysts and adsorbents in many fields, such aspetrochemistry, enviromental protection and so on. However, the microporous structureand relatively low thermal stabilty (300~400℃) restrict their development and application.Recently, a new type of PILCs called silica pillared clays (coded as SPCs) was sucessfullysynthesized, which provides some enlightenment on solving above problems. SPCs haveordered porous structure, pore size distribution between super-micropore and mesopore,bigger special surface area, good thermal stabilty and designable structure, and thus havereceived more and more attentions. But the intra-gallery pillar of SPCs is pure silica, whichhas weak surface acidity and low catalytic performance. As a young branch of PILCs, thestudy on modification of SPCs is very limited. Therefore, functionalization of SPCs is oneissue with great importance in both theory and application.
     According to the development of present PILCs, the synthesis characteristics of SPCs,and the new requirements of catalysts, this thesis focuses on the study of mesoporousPILCs synthesized by an intra-gallery templating method (coded as IGT) and their catalyticperformances. Here, a series of new PILCs were designed and prepared by IGT, and theinfluence facors, such as basic clay, pillaring agent, modification with metal or non-metalelement, on the structure and properties of these PILCs were investigated Finally, it isexpected to obtain new types of PILCs with ordered gallery mesoporous structure,excellent thermal stabilty and hydrothermal stability as well as good catalytic performancein some reactions. The specific researeches included five aspects as follows.
     First, two kinds of montmorillonites from Inner Mongolia Province and ZhejiangProvince, were used to synthesize SPC-NM and SPC-ZJ by IGT. The effect of the natureof basic clays on their structure and properties were systematically investigated. Resultsindicate that two SPCs have order gallery mesoporous structure and open slit-shaped pore. Both of them have excellent thermal stability, but SPC-ZJ shows worse hydrothermalstability than SPC-NM because there are part of montmorillonite delamination and theformation of some mesoporous SiO2formed out of gallery regions in the structure ofSPC-ZJ. Compared with SPC-NM, SPC-ZJ shows higher conversion in catalysis crackingof heavy oil, but lower selectivion of gasoline and worse reusability.
     Second, a facile method was developed to synthesize Fe-doped SPC (deneted asFe-SPC) with various content of Fe2O3. A mixture of ethanol and water was used as thesolvent, which improves the dispersion of Fe3+in silica sol and high content of Fe2O3(upto27.03wt.%). Then, the effects of additive amount of Fe3+on their structure andproperties were systematically investigated. The results indicate that, Fe-SPC has orderedmesoporous structure, which is related to the usage of Fe(NO3)3. Fe ions were incorporatedinto the SiO2framework as tetrahedral coordination, meanwhile octahedral Fe species orFe2O3were formed out of the framework. Fe-SPC has good hydrothermal stability but badthermal stability. All Fe-SPCs show excellent catalytic performance and reusability inoxidative desulfurizations of coking benzene and model oil, especially in the former.
     Third, as octahedral Fe species in Fe-SPC trend to agglomerate, a new method was setup to synthesize Fe-incorpated SPC (deneted as (Fe,Si)-PILC) with high concentration ofFe. Moreover, their structure and properties were systematically investigated. The resultsshow that all iron species are tetrahedrally coordinated with the gallery silica nano-pillarsand no octahedral Fe species or Fe2O3are formed out of the framework.(Fe,Si)-PILC has asimilar structure as SPC, but the porous structure of the former is different from the laterowing to the incorporation of Fe. However this change is less than that in above Fe-SPC.(Fe,Si)-PILC has outstanding hydrothermal stability (better than Fe-SPC) and thermalstability. They also show good catalytic performance and reuseablity in phenolhydroxylation, which is supposed to be very sensitive to the framework iron species.
     Forth, a new kind of TiO2pillared monmorillonite (denoted as Ti-PILC) wassynthesized under a non-acidic condition by the IGT method, which was different fromtraditonal method. Furthermore, the effect of surfactants on their structure and propertieswere systematically investigated. Ti-PILC has ordered gallery mesoporous structure, whichis similar as SPC. The used surfactant will affect the porous structure, especially foraverage pore size. Because intra-gallery TiO2pillar belongs to anatase, Ti-PILC showsgood catalytic performance and reuseablity in the photolysis of methylene blue. The reactivity is influenced by the usage of catalyst and porous structure.
     Finally, to overcome the bad catalytic activity under visable light of Ti-PILC, a newkind of N-doped Ti-PILC (denoted as (Ti,N)-PILC) was synthesized, and the effects ofnitrogen atom on their structure and properties were also investigated. The nitrogen dopingdoes not obviously change the structure of Ti-PILC, but the absorption of gallery TiO2tovisable light is enhanced, which makes (Ti,N)-PILC show some catalytic performance inthe photolysis of methylene blue under visable light.
引文
[1] ejka J, Corma A, Zones S. Zeolites and catalysis: Synthesis, reactions andapplications [M]. Wiley,2010.
    [2] Kubota Y, Ikeya H, Sugi Y, Yamada T, Tatsumi T. Organic-inorganic hybrid catalystsbased on ordered porous structures for Michael reaction[J]. Mol Catal A-Chem,2006,249(1-2):181-190.
    [3]张佳楠.无机多孔材料的功能化、组装及应用.博士学位论文,吉林大学,2010.
    [4] Bouzerara F, Harabi A, Achour S, Larbot A. Porous ceramic supports for membranesprepared from kaolin and doloma mixtures [J]. J Eur Ceram Soc,200626(9):1663-1671.
    [5] Gil A, Korili SA, Trujillano R, Vicente MA. Pillared clays and related catalysts [M].Springer,2010.
    [6]郑淑琴,韩勇,戴亚丽等.黏土类矿物合成多孔分子筛的研究进展[J].现代化工,2009,29(7):18-23.
    [7] Ding Z, Kloprogge JT, Frost RL, Lu GQ, Zhu HY. Porous clays and pillaredclays-based catalysts. Part2: A review of the catalytic and molecular sieveapplications [J]. J Porous Mater,2001,8(4):273-293.
    [8] Tomul F, Balci S. Characterization of Al, Cr-pillared clays and CO oxidation [J]. ApplClay Sci,2009,43(1):13-20.
    [9] Letaief S, Casal B, Aranda P, Martin-Luengo MA, Ruiz-Hitzky E. Fe-containingpillared clays as catalysts for phenol hydroxylation [J]. Appl Clay Sci,2003,22(6):263-277.
    [10] Galeano LA, Gil A, Vicente MA. Effect of the atomic active metal ratio in Al/Fe-,Al/Cu-and Al/(Fe-Cu)-intercalating solutions on the physicochemical properties andcatalytic activity of pillared clays in the CWPO of methyl orange [J]. Appl CatalB-Environ,2010,100(1-2):271-281.
    [11] Faghihian H, Mohammadi MH. Surface properties of pillared acid-activated bentoniteas catalyst for selective production of linear alkylbenzene [J]. Appl Surf Sci,2013,264:492-499.
    [12] Rezala H, Khalaf H, Valverde JL, Romero A, Molinari A, Maldotti A. Photocatalysiswith Ti-pillared clays for the oxofunctionalization of alkylaromatics by O2[J]. ApplCatal A-Gen,2009,352(1-2):234-242.
    [13]梁凯.钛柱撑蒙脱石光催化降解甲基橙的性能研究[J].化学与生物工程,2012,29(11):1672-5425.
    [14] Valverde JL, Romero A, Romero R, Garcia PB, Sanchez ML, Asencio I. Preparationand characterization of Fe-PILC. Influence of the synthesis parameters [J]. Clay ClayMiner,2005,53(6):613-621.
    [15] Dorado F, Garcia PB, Lucas A de, Ramos MJ, Romero A. Hydrocarbon selectivecatalytic reduction of NO over Cu/Fe-pillared clays: Diffuse reflectance infraredspectroscopy studies [J]. J Mol Catal A-Chem,2010,332(1-2):45-52.
    [16] Tomul F. Adsorption and catalytic properties of Fe/Cr-pillared bentonites [J]. ChemEng J,2012,185-186:380-390.
    [17] Catrinescu C, Arsene D, Teodosiu C. Catalytic wet hydrogen peroxide oxidation ofpara-chlorophenol over Al/Fe pillared clays (AlFe-PILC) prepared from different hostclays [J]. Appl Catal B-Environ,2011,101(3-4):451-460.
    [18] Timofeeva MN, Khankhasaeva ST, Chesalov YA, Tsybulya SV, Panchenko VN,Dashinamzhilova ET. Synthesis of Fe, Al-pillared clays starting from theAl,Fe-polymeric precursor: Effect of synthesis parameters on textural and catalyticproperties [J]. Appl Catal B-Environ,2009,88(1-2):127-134.
    [19] Li XY, Lu G, Qu ZP, Zhang DK, Liu SM. The role of titania pillar in copper-ionexchanged titania pillared clays for the selective catalytic reduction of NO bypropylene [J]. Appl Catal A-Gen,2011,398(1-2):82-87.
    [20] Gil A, Montes M. Effect of thermal treatment on microporous accessibility inaluminium pillared clays [J]. J Mater Chem,1994,4(9):1491-1496.
    [21] Gil A, Korili SA, Vicente MA. Recent advances in the control and characterization ofthe porous structure of pillared clay catalysts [J]. Catal Rev,2008,50(2):153-221.
    [22] Bergaya F, Theng BKG, Lagaly G. Handbook of clay Science, Volume5:Developments in clay science [M]. Elsevier,2011.
    [23] Mnasri S, Frini-Srasra N. Evolution of Br nsted and Lewis acidity of single andmixed pillared bentonite [J]. Infrared Phys Techn,2013,58:15-20.
    [24]黄世明,肖金凯,刘灵燕.层状粘土研究的现状与进展[J].岩石矿物学杂志,2002,21(1):76-88.
    [25]朱建喜.有机膨润土对水中有机污染物吸附的构效关系.博士后学位论文,浙江大学,2005.
    [26] Meunier A. Clays [M]. Springer,2005.
    [27]彭杨伟,孙燕.国内外膨润土的资源特点及市场现状[J].金属矿山,2012,(4):95-100.
    [28]吴平霄.污染物与蒙脱石层间域的界面反应及其环境意义[J].环境污染治理技术与设备,2003,4(5):37-41,65.
    [29] Yariv S, Cross H. Organo-clay complexes and interactions [M]. Marcel Dekker Inc,2002.
    [30] Li Q, Yue QY, Sun HJ, Su Y, Gao BY. A comparative study on the properties,mechanisms and process designs for the adsorption of non-ionic or anionic dyes ontocationic-polymer/bentonite [J]. J Environ Manage,2010,91(7):1601-1611.
    [31] He HP, Ma YH, Zhu JX, Yuan P, Qing YH. Organoclays prepared frommontmorillonites with different cation exchange capacity and surfactant configuration[J]. Appl Clay Sci,2010,48(1-2):67-72.
    [32]马月红,何宏平,朱建喜,袁鹏,周琴,梁晓亮,卿艳红.阳离子交换容量和烷基链链数对有机蒙脱石性能的影响[J].矿物学报,2010,30(1):9-17.
    [33]冯波,章永化,袭克成.蒙脱石-有机化合物的相互作用[J].化学通报,2002,65(7):440-444.
    [34] Erkan I, Alp I, elik MS. Characterization of organo-bentonites obtained fromdifferent linear-chain quaternary alkylammonium salts [J]. Clay Clay Miner,2010,56(6):792-802.
    [35] MarguIies L, Rozen H, Nir S. Model for competitive adsorption of organic cations onclay [J]. Clays Clay Miner.1988,36:270-276.
    [36] Zhu JX, He HP, Guo JG, Yang D, Xie XD. Arrangement models of alkylammoniumcations in the interlayer of HDTMA+pillared montmorillonites [J]. Chinese Sci Bull,2003,48(4):368-372.
    [37] Heinz H, Vaia RA, Krishnamoorti R, Farmer BL. Self-assembly of alkylammoniumchains on montmorillonite: Effect of chain length, head group structure, and cationexchange capacity [J]. Chem Mater,2007,19(1):59-68.
    [38] Zhu L, Zhu R, Xu L, Ruan X. Influence of clay charge densities and surfactantloading amount on the microstructure of CTMA-montmorillonite hybrids [J]. ColloidSurf A,2007,304(l-3):41-48.
    [39] Lagaly G. Characterization of clays by organic compounds [J]. Clay Miner,1981,16:1-21.
    [40]朱建喜,何宏平,郭九皋等. HDTMA+柱撑蒙脱石层间有机离子的排布模式及演化[J].科学通报,2003,48:302-306.
    [41]李栋藩,姜贤,郑禄彬.铝交联蒙脱上合成条件的研究[J].催化学报,1997,18(l):75-78.
    [42]曾秀琼.柱撑蒙脱石的制备、表征及其在废水处理中的应用,博士学位论文,浙江大学,2003.
    [43] Cheng LS, Yang RT, Chen N. Iron oxide and chromia supported on titania-pillaredclay for selective catalytic reduction of nitric oxide with ammonia [J]. J Catal A,1996,164(1):70-81.
    [44]陈捷. TiO2柱撑膨润土的合成及其吸附光催化性能研究,博士学位论文,大连海事大学,2008.
    [45] Zhang GK, Ding XM, He FS, Yu XY, Zhou J, Hu YJ, Xie JW. Low-temperaturesynthesis and photocatalytic activity of TiO2pillared montmorillonite [J]. Langmuir,2008,24(3):1026-1030.
    [46]李鹏波.铁基柱撑蒙脱石的研究进展[J].现代矿业,2012,9:81-84.
    [47] León MAD, Castiglioni J, Bussi J, Sergio M. Catalytic activity of an iron-pillaredmontmorillonitic clay mineral in heterogeneous photo-Fenton process [J]. Catal Today,2008,133-135:600-605.
    [48] Yuan P, He HP, Bergaya F, Wu DQ, Zhou Q, Zhu JX. Synthesis and characterizationof delaminated iron-pillared clay with meso–microporous structure [J]. MicroporMesopor Mater,2006,88(1-3):8-15.
    [49] Michell IV. Pillared layered structures: current trends and applications [M]. Springer,1990.
    [50]蒋月秀. ST/Al-PILC催化剂的制备、结构表征及催化性能研究,博士学位论文,广西大学,2004.
    [51]程俊,于少明.层柱粘土的制备、表征及应用研究进展.中国化工学会无机盐学术年会,2004,165-169.
    [52] Mojovi Z, Bankovi P, Milutinovi-Nikoli A, Dostanic J, Jovic-Jovicic N,Jovanovic D. Al,Cu-pillared clays as catalysts in environmental protection [J]. ChemEng J,2009,154(1-3):149-155.
    [53] Ksontini N, Najjar W, Ghorbel A. Al–Fe pillared clays: Synthesis, characterization andcatalytic wet air oxidation activity [J]. J Phys Chem Solids,2008,69(5-6):1112-1115.
    [54] Lin QC, Hao JM, Li JH, Ma ZF, Lin WM. Copper-impregnated Al-Ce-pillared clayfor selective catalytic reduction of NO by C3H6[J]. Catal Today,2007,126(3-4):351-358.
    [55] Albertazzi S, Baraldini I, Busca G, Finocchio E, Lenarda M, Storaro L, Talon A,Vaccari A. Noble metal containing Al/Ce/Mg pillared montmorillonite clay ascatalysts in the hydrotreating of LCO fractions [J]. Appl Clay Sci,2005,29(3-4):224-234.
    [56] Guo Q, Greer JR. Compressive properties of interface-containing Cu-Fe nano-pillars[J]. Scripta Mater,2012,66(5):272-275.
    [57] Boudali LK, Ghorbel A, Grange P. SCR of NO by NH3over V2O5supported sulfatedTi-pillared clay: Reactivity and reducibility of catalysts [J]. Appl Catal A-Gen,2006,305(1):7-14.
    [58]夏茂盛.柱撑型介孔蒙脱石的制备及负载光催化剂的性能研究,博士学位论文,吉林大学,2010.
    [59] Papachristodoulou CA, Assimakopoulos PA, Gangas NJ. Strontium adsorptionproperties of an aluminum-pillared montmorillonite carrying carboxylate functionalgroups [J]. J Colloid Interf Sci,2002,245(1):32-39.
    [60] Stefanis AD, Cafarelli P, Gallese F, Borsella E, Nana A, Perez G. Catalytic pyrolysis ofpolyethylene: A comparison between pillaredand restructured clays [J]. J Anal ApplPyrol,2013,104:479-484.
    [61] Brandt KB, Kydd RA. The effect of framework substitution and pillar composition onthe cracking activities of montmorillonite and beidellite [J]. Appl Catal A-Gen,1997,165(1-2):327-333.
    [62] Gyftopoulou ME, Millan M, Bridgwater AV, Dugwell D, Kandiyoti R, Hriljac JA.Pillared clays as catalysts for hydrocracking of heavy liquid fuels [J]. Appl CatalA-Gen,2005,282(1-2):205-214.
    [63] Bodman SD, McWhinnie WR, Begon V, Millan M, Suelves I, Lazaro MJ, Herod AA,Kandiyoti R. Metal-ion pillared clays as hydrocracking catalysts (II): Effect of contacttime on products from coal extracts and petroleum distillation residues [J]. Fuel,2003,82(18):2309-2321.
    [64] Kloprogge JT, Duong LV, Frost RL. A review of the synthesis and characterisation ofpillared clays and related porous materials for cracking of vegetable oils to producebiofuels [J]. Environ Geol,2005,47:967-981.
    [65] Mao HH, Li BS, Li X, Liu ZX, Ma W. Mesoporous nickel containing silica-pillaredclays (Ni-SPC): Synthesis, characterization and catalytic behavior for cracking ofplant asphalt [J]. Catal Commun,2009,10(6):975-980.
    [66] Ouidri S, Guillard C, Caps V, Khalaf H. Epoxidation of olefins on photoirradiatedTiO2-pillared clays [J]. Appl Clay Sci,2010,48(3):431-437.
    [67] Manju K, Sugunan S. Pillared clays as efficient catalysts for cyclohexanol oxidation[J]. React Kinet Catal L,2005,85(1):37-44.
    [68] Carriazo JG, Centeno MA, Odriozola JA, Moreno S, Molina R. Effect of Fe and Ce onAl-pillared bentonite and their performance in catalytic oxidation reactions [J]. ApplCatal A-Gen,2007,317(1):120-128.
    [69] Jagtap N, Ramaswamy V. Oxidation of aniline over titania pillared montmorilloniteclays [J]. Appl Clay Sci,2006,33(2):89-98.
    [70] Belaroui LS, Sorokin AB, Figueras F, Bengueddach A, Millet JMM. ComparativeBaeyer-Villiger oxidation of cyclohexanone on Fe-pillared clays and irontetrasulfophthalocyanine covalently supported on silica [J]. CR Chim,2010,13(4):466-472.
    [71] Na P, Zhao BL, Gu LY, Liu J, Na JY. Deep desulfurization of model gasoline overphotoirradiated titanium-pillared montmorillonite [J]. J Phys Chem Solids,2009,70(12):1465-1470.
    [72]陈晓萍,陈爱平,刘伟,赵少云,李春忠.交联粘土用于催化裂化汽油吸附脱硫[J].机械工程材料,2005,29(8):62-64.
    [73] Kurian M, Sugunan S. tert-Butylation of phenol catalysed by metal exchanged ironpillared montmorillonites [J]. Catal Commun,2006,7(6):417-421.
    [74] Belkhadem F, Clacens JM, Bengueddach A, Figueras F. Acidity and catalyticproperties for the alkylation of aromatics of PILC with mixed oxide pillars preparedfrom two different bentonites [J]. Appl Catal A-Gen,2006,298(10):188-193.
    [75] Sugunan S, Rahna KS. Surface acidity and catalytic activity of mixed Fe-Al and Cr-Alpillared montmorillonites [J]. Indian J Chem,2002,41:1355-1362.
    [76] Su HQ, Zeng SH, Dong H, Du Y, Zhang YL, Hu RS. Pillared montmorillonitesupported cobalt catalysts for the Fischer-Tropsch reaction [J]. Appl Clay Sci,2009,46(3):325-329.
    [77] Jerónimo D, Guil JM, Corbella BM, Vasques H, Miranda A, Silva JM, Lobato A, PiresJ, Carvalho AP. Acidity characterization of pillared clays through microcalorimetricmeasurements and catalytic ethylbenzene test reaction [J]. Appl Catal A-Gen,2007,330:89-95.
    [78] Pan JX, Wang C, Guo SP, Li JH, Yang ZY. Cu supported over Al-pillared interlayerclays catalysts for direct hydroxylation of benzene to phenol [J]. Catal Commun,2008,9(1):176-181.
    [79] Kurian M, Joy M, Raj D. Hydroxylation of phenol over rare earth exchanged ironpillared montmorillonites [J]. J Porous Mater,2012,19(5):633-640.
    [80] Fatimah I. Preparation of ZrO2/Al2O3-montmorillonite composite as catalyst forphenol hydroxylation [J]. J Adv Res,2013, in press.
    [81] Marin-Astorga N, Alvez-Manoli G, Reyes P. Stereoselective hydrogenation of phenylalkyl acetylenes on pillared clays supported palladium catalysts [J]. J Mol CatalA-Chem,2005,226(1):81-88.
    [82] Figueiredo FCA, Jordao E, Carvalho WA. Adipic ester hydrogenation catalyzed byplatinum supported in alumina, titania and pillared clays [J]. Appl Catal A-Gen,2008,351(2):259-266.
    [83] Figueiredo FCA, Jord o E, Landers R, Carvalho WA. Acidity control of rutheniumpillared clay and its application as a catalyst in hydrogenation reactions [J]. ApplCatal A-Gen,2009,371(1-2):131-141.
    [84] León MAD, Santos CDL, Latrónica L, Cesio AM, Volzone C, Castiglioni J, Sergio M.High catalytic activity at low temperature in oxidative dehydrogenation of propanewith Cr-Al pillared clay [J]. Chem Eng J,2013, in press.
    [85] Kurian M, Sugunan S. Characterisation of the acid-base properties of pillaredmontmorillonites [J]. Micropor Mesopor Mater,2005,83(1-3):25-34.
    [86] Bergaya F, Theng BKG, Lagaly G. Handbook of Clay Science, Volume1:Developments in clay science [M]. Elsevier,2006.
    [87] Kooli F, Jones W. Al and Zr pillared acid-activated saponite clays: characterizationand properties [J]. J Mater Chem,1998,8:2119-2124.
    [88] Binitha NN, Sugunan S. Preparation,characterization and catalytic activity of titaniapillared montmorillonite clays [J]. Micropor Mesopor Mater,2006,93(1-3):82-89.
    [89]李海花,涂华民.交联粘土催化剂的研究进展[J].河北师范大学学报,2003,27(5):503-507.
    [90]戴劲草,萧子敬,叶玲,黄继泰.多孔粘土材料研究与进展[J].硅酸盐通报,1999,4:64-70.
    [91] Sanchez-Martin MJ, Rodriguez-Cruz MS, Andrades MS, Sanchez-Camazano M.Efficiency of different clay minerals modified with a cationic surfactant inthe adsorption of pesticides: influence of clay type and pesticide hydrophobicity [J].Appl Clay Sci,2006,31(3-4):216-228.
    [92] Yilmaz N, Yapar S. Adsorption properties of tetradecyl-and hexadecyltrimethylammonium bentonites [J]. Appl Clay Sci,2004,27(3-4):223-228.
    [93] Zeng XQ, Liu WP. Adsorption of Direct Green B on mixed hydroxy-Fe-Al pillaredmontmorillonite with large basal spacing [J]. J Environ Sci-China,2005,17:159–162.
    [94]晁吉福,吴耀国,陈培榕.柱撑黏土吸附剂在芳香类有机污染物处理中的应用[J].现代化工,2010,30(4):31-36.
    [95] Carbrera-Lafaurie WA, Román FR, Hemnández-Maldonado AJ. Transition metalmodified and partially calcined inorganic–organic pillared clays for the adsorption ofsalicylic acid, clofibric acid, carbamazepine, and caffeine from water [J]. J ColloidInterf Sci,2012,386(1):381-391.
    [96] Bouras O, Bollinger JC, Baudu M, Khalaf H. Adsorption of diuron and its degradationproducts from aqueous solution by surfactant-mod ified pillared clays [J]. Appl ClaySci,2007,37(3-4):240-250.
    [97] Zhu LZ, Zhu RL. Simultaneous sorption of organic compounds and phosphate toinorganic-organic bentonites from water [J]. Sep Purif Technol,2007,54(1):71-76.
    [98] Akpan UG, Hameed BH. Parameters affecting the photocatalytic degradation of dyesusing TiO2-based photocatalysts: A review [J]. J Hazard Mater,2009,170(2-3):520-529.
    [99] Li YM, Lu YQ, Zhu XL. Photo-Fenton discoloration of the azo dye X-3Bover pillared bentonites containing iron [J]. J Hazard Mater,2006,132(2-3):196-201.
    [100] Mei JG, Yu SM, Cheng J. Heterogeneous catalytic wet peroxide oxidation of phenolover delaminated Fe–Ti-PILC employing microwave irradiation [J]. Catal Commun,2004,5(8):437-440.
    [101] Manohar DM, Noeline BF, Anirudhan TS. Adsorption performance of Al-pillaredbentonite clay for the removal of cobalt(II) from aqueous phase [J]. Appl Clay Sci,2006,31(3-4):194-206.
    [102]俞建波,王东田,康琴琴.蒙脱石的内源柱撑及其对重金属的吸附性能研究[J].苏州科技学院学报(自然科学版),2011,28(3):40-44.
    [103]孙洪良.复合改性膨润土对水中有机物和重金属的协同吸附研究,博士学位论文,浙江大学,2010.
    [104] Lenoble V, Bouras O, Deluchat V, Serpaud B, Bollinger JC. Arsenic adsorption ontopillared clays and iron oxides [J]. J Colloid Interf Sci,2002,255(1):52-58.
    [105] Ramesh A, Hasegawa H, Maki T, Ueda K. Adsorption of inorganic and arsenic fromaqueous solutions by polymeric Al/Fe modified montmorillonite [J]. Sep PurifTechnol,2007,56(1):90-100.
    [106] Yan LG, Xu YY, Yu HQ, Xin XD, Wei Q, Du B. Adsorption of phosphate fromaqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminumpillared bentonites [J]. J Hazard Mater,2010,179(1-3):244-250.
    [107]肖峰.一种改性柱撑蒙脱石的制备及其对废水中SO42-吸附效率研究[J].环境科学与管理,2008,33(10):88-90.
    [108] Yang ZQ, Xiao O, Chen B, Zhang LX, Zhang HG, Niu XJ, Zhou SQ. Perchlorateadsorption from aqueous solution on inorganic-pillared bentonites [J]. Chem Eng J,2013,223(1):31-39.
    [109]龙敏,唐艳葵,童张法,梁达文.改性铝锆柱撑膨润土去除水中氟离子[J].过程工程学报,2011,11(1):44-49.
    [110] Long H, Wu PX, Zhu NW. Evaluation of Cs+removal from aqueous solution byadsorption on ethylamine-modified montmorillonite [J]. Chem Eng J,2013,225:237-244.
    [111] Karamanis D, Assimakopoulos PA. Efficiency of aluminum-pillared montmorilloniteon the removal of cesium and copper from aqueous solutions [J]. Water Res,2007,41(9):1897-1906.
    [112] Pires J, Carvalho A, Carvalho MB de. Adsorption of volatile organic compounds in Yzeolites and pillared clays [J]. Micropor Mesopor Mater,2001,43(3):277-287.
    [113] Li WZ, Che YL, Liu ZY, Zhang D. Molecular simulation of the adsorption of linearalkane mixtures in pillared layered materials [J]. J Zhejiang Univ Sci A,2007,8(2):331-334.
    [114] Oliveira LCA, Lago RM, Fabris JD, Sapag K. Catalytic oxidation of aromatic VOCswith Cr or Pd-impregnated Al-pillared bentonite: Byproduct formation anddeactivation studies [J]. Appl Clay Sci,2008,39(3-4):218-222.
    [115] Valverde JL, Lucas A, Sánchez P, Dorado F, Romero A. Cation exchanged andimpregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Appl Catal B-Environ,2003,43(1):43-56.
    [116] Long RQ, Yang RT, Zammit KD. Superior pillared clay catalysts for selectivecatalytic reduction of nitrogen oxides for power plant emission control [J]. J Air WasteManage,2000,50(3):436-442.
    [117] Chae HJ, Nam IS, Kim YG, Yang HS, Choi HC, Song SL. Characteristics ofV2O5/Ti-PILC catalyst for the reduction of NO by NH3[J]. Stud Surf Sci Catal,1999,125:595-602.
    [118] Long RQ, Yang RT. Selective catalytic reduction of NO with ammonia over V2O5doped TiO2pillared clay catalysts [J]. Appl Catal B-Environ,2000,24(1):13-21.
    [119] Valverde JL, Lucas A, Dorado F, Romero A, Garc a PB. Influence of the operatingparameters on the selective catalytic reduction of NO with hydrocarbons usingCu-ionexchanged titanium-pillared interlayer clays (Ti-PILC)[J]. Ind Eng Chem Res,2005,44(9):2955-2965.
    [120] Arfaoui J,Khalfallah BL, Ghorbel A, Delahay G. Vanadium supported on sulfatedTi-pillared clay catalysts: Effect of the amount of vanadium on SCR-NO by NH3activity [J]. Stud Surf Sci Catal,2008,174:1263-1266
    [121] Xu XF, Pan YF, Cui XY, Suo ZH. Catalytic combustion of methane over Ti-pillaredclay supported copper catalysts [J]. J Nat Gas Chem,2004,13(4):204-208.
    [122]孙成高.介孔材料的定性设计合成及其催化应用,博士学位论文,湖南大学,2009.
    [123] Song MK, No KT. Substitution effect of carbon with group13,14, and15elementson lithium intercalation in graphite [J]. J Electrochem Soc,2004,151(10):1696-1701.
    [124] Zhao DY, Wan Y, Zhou WZ. Order mesoporous materials.[M]. Wiley,2013.
    [125]王晓方.无机多孔材料的制备及功能化研究,博士学位论文,吉林大学,2012
    [126]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [127] Kruk M. Access to ultralarge-pore ordered mesoporous materials through selectionof surfactant/swelling-agent micellar templates [J]. Accounts Chem Res,2012,45(10):1678-1687.
    [128] Wei J, Yue Q, Sun ZK, Deng YH, Zhao DY. Synthesis of dual-mesoporous silicausing non-ionic diblock copolymer and cationic surfactant as co-templates [J]. AngewChem Int Edit,2012,51(25):6149-6153.
    [129] Chen DH, Li Z, Wan Y, Tu XJ, Shi YF, Chen ZX, Shen W, Yu CZ, Tu B, Zhao DY.Anionic siirfactanl induced mesophase transformation to synthesize highly orderedlarge-pore mesoporous silica structures [J]. J Mater Chem,2006,16:1511-1519.
    [130] Zhao W, Kong LD, Luo YF, Li QZ. Study of the influence factors on the synthesis ofFe-MCM-48with binary mixed cationic and anionic siirfactants [J]. MicroporMesopor Mater,2007,100(1-3):111-117.
    [131] Schüth F, Sing KSW, Weitkamp J. Handbook of porous solids [M]. Wiley,2002.
    [132] Hoffmann F, Cornelius M, Morell J. Froba M. Silica-based mesoporousorganic-inorganic hybrid materials [J]. Angew Chem Int Edit,2006,45(20):3216-3251.
    [133] Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW,Olson DH, Sheppard EW. A new family of mesoporous molecular sieves preparedwith liquid crystal templates [J]. J Am Chem Soc,1992,114(27):10834-10843.
    [134]刘奎.以特种阴离子表面活性剂为模板的介孔材料的合成、表征与应用,博士学位论文,江南大学,2011.
    [135] Chen CY, Burkett SL, Li HX, Davis ME. Studies on mesoporous materials II.Synthesis mechanism of MCM-41[J]. Micropo Mater,1993,2(1):27-34.
    [136] Stucky GD, Huo QS, Firouzi A, Chmelka BF. Directed synthesis of organic/inorganic composite structures [J]. Stud Surf Sci Catal,1997,105:3-28.
    [137]杜春芳.层状硅酸盐矿物制备多孔材料的应用基础研究,博士学位论文,中南大学,2009.
    [138] Eswaramoorthi I, Dalai AK. Synthesis, characterisation and catalytic performance ofboron substituted SBA-15molecular sieves [J]. Micropor Mesopor Mater,2006,93(1-3):1-11.
    [139] Liopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas AA,Triantafyllidis KS. Catalytic conversion of biomass pyrolysis produets by mesoporousmaterials: Effect of steam stability and acidity of Al-MCM-41catalysts [J]. Chem EngJ,2007,134(l-3):51-57.
    [140] Zioleka M, Nowaka I, Kilosa B, Sobczak I, Decyk P, Trejda M, Volta JC. Templatesynthesis and charaeterisation of MCM-41mesoporous molecular sieves containingvarious transition metal elements-TME (Cu, Fe, Nb, V, Mo)[J]. J Phys Chem Solids,2004,65(2-3):571-581.
    [141]Ying Z, Li ZH, Yong Z, Xiaonv S, Lin LX. Synthesis and charaeterization ofFe-Ce-MCM-41[J]. Mater Lett,2006,60(27):3221-3223.
    [142] Jiang TS, Tang YJ, Zhao Q, Yin HB. Effect of Ni-doping on the pore structure ofpure silica MCM-41mesoporous molecular sieve under micro-wave irradiation [J].Colliod Surface A,2008,315(1-3):299-303.
    [143] Baehari K, Cherifi O. Benzylation of benzene and other aromatics by benzyl chlorideover copper-mesoporous molecular sieves materials [J]. Catal Commun,2006,7(12):926-930.
    [144] Wang XY, Dai QG, Zheng Y. Low-temperature catalytic combustion oftrichloroethylene over La, Ce, and Pt catalysts supported on MCM-41[J]. Chinese JCatal,2006,27(6):468-470.
    [145] Ramanathan A, Archipov T, Maheswari R, Hanefeld U, Roduner E, Glaser R.Synthesis, characterization and catalytic properties of the novel manganese-containingamorphous mesoporous material MnTUD-1[J]. J Phys Chem C,2008,112(19):7468-7476.
    [146] Ikeda K, Kawamura Y, Yamamoto T, Lwamoto M. Effectiveness of the template-ionexchange method for appearance of catalytic activity of Ni–MCM-41for the ethene topropene reaction [J]. Catal Commun,2008,9(1):106-110.
    [147] Zhang YH, Drake LJ, Bell AT. Characterization of Cu-ZSM-5prepared by solid-stateion exchange of H-ZSM-5with CuCl [J]. Chem Mater,2006,18(9):2347-2356.
    [148] Hussain M, Song SK, Lee JH, Ihm SK. Characteristics of CoMo catalysts supportedon modified MCM-41and MCM-48materials for thiophene hydrodesulfurization [J].Ind Eng Chem Res,2006,45(2):536-543.
    [149] Wu CF, Wang LZ, Williams PT, Shi J, Huang J. Hydrogen production from biomassgasification with Ni/MCM-41catalysts: Influence of Ni content [J]. Appl CatalB-Environ,2011,108-109:6-13.
    [150] Dias AS, Pillinger M, Valente AA. Mesoporous silica-supported12-tungstophosphoric acid catalysts for the liquid phase dehydration of d-xylose [J].Micropor Mesopor Mater,2006,94(1-3):214-225.
    [151] Ren YH, Yue B, Gu M, He HY. Progress of the applicationof mesoporous silica-supported heteropolyacids in heterogeneous catalysis andpreparation of nanostructured metal oxides [J]. Materials,2010,3(2):764-785.
    [152] Dhara K, Sarkar K, Srimani D, Saha SK, Chattopadhyay P, Bhaumik A. A newfunctionalized mesoporous matrix supported Pd (II)-Schiff base complex: an efficientcatalyst for the Suzuki-Miyaura coupling reaction [J]. Dalton T,2010,39:6395-6402.
    [153] Qu FY, Zhu GS, Huang SY, Li SG, Qiu SL. Effective controlled release of captoprilby silylation of mesoporous MCM-41[J]. Chemphyschem,2006,7(2):400-406.
    [154] M ller K, Kobler J, Bein T. Colloidal suspensions of mercapto-functionalizednanosized mesoporous silica [J]. J Mater Chem,2007,17:624-631.
    [155] Demel J, Sujandi, Park SE, ejka J, těpni ka P. Preparation of heterogeneouscatalysts supported on mesoporous molecular sieves modified with various N-groupsand their use in the Heck reaction [J]. J Mol Catal A-Chem,2009,302(1-2):28-35.
    [156] Villa de P AL, Alarcón E, Correa CM. Synthesis of nopol over MCM-41catalysts [J].Chem Commun,2002,22:2654-2655.
    [157] Galarneau A, Barodawalla A, Pinnavaia TJ. Porous clay heterostructure formed bygallery-templated synthesis [J]. Nature,1994,374,529-531.
    [158] Polverejan M, Liu Y, Pinnavaia TJ, Aluminated derivatives of porous clayheterostructures (PCH) assembled from synthetic saponite clay: properties assupermicroporous to small sesoporous acid catalysts [J]. Chem Mater,2002,14(5):2283-2288.
    [159] Polverejan M, Pauly TR, Pinnavaia TJ. Acidic porous clay heterostructures (PCH):intragallery assembly of mesoporous silica in synthetic saponite clays [J]. ChemMater,2000,12(9):2698-2704.
    [160] Ahenach J, Cool P, Vansant EF. Enhanced bronsted acidity created upon Al-graftingof porous clay heterostructures via aluminium acetylacetonate adsorption [J]. PhysChem Chem Phys,2000,2(24):5750-5755.
    [161] Chmielarz L, Kustrowski P, Piwowarska Z, Dudek B, Gil B, Michalik M.Montmorillonite, vermiculite and saponite based porous clay heterostructuresmodified with transition metals as catalysts for the DeNOx process [J]. Appl CatalB-Environ,2009,88(3-4):331-340.
    [162] Martens JA, Benazzi E, Brendlé J, Lacombe S, Dred RL. Catalytic performances ofpillared beidellites compared to ultrastable Y zeolites in hydrocracking andhydroisomerisation reactions [J]. Stud Surf Sci Catal,2000,130:293-298.
    [163] Wei LM, Tang T, Huang BT. Novel acidic porous clay heterostructure with highlyordered organic–inorganic hybrid structure: one-pot synthesis of mesoporousorganosilica in the galleries of clay [J]. Micropor Mesopor Mater,2004,67(2-3):175-179.
    [164] Mao HH, Li BS, Li X, Liu ZX, Ma W. Synthesis of silica-pillared clay (SPC) withordered mesoporous structure by one-step method without preswelling process [J].Appl Surf Sci,2009,255(9):4787-4791.
    [165] Li BS, Mao HH, Li X, Ma W, Liu ZX. Synthesis of mesoporous silica-pillared clayby intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using quaternaryammonium surfactants as gallery templates [J]. J Colloid Interf Sci,2009,336(1):244-249.
    [166] Chmielarz L, Ku trowski P, Drozdek M, Dziembaj R, Cool P, Vansant EF. Selectivecatalytic oxidation of ammonia into nitrogen over PCH modified with copper and ironspecies [J]. Catalysis today,2006,114(2-3):319-325.
    [167] Pichowicz M, Mokaya R. Porous clay heterostructures with enhanced acidityobtained from acid-activated clays [J]. Chem Commun,2001,20:2100-2101.
    [168] Kooli F, Hian PC, Weirong Q, Alshahateet SF, Chen FX. Effect of the acid-activatedclays on the properties of porous clay heterostructure [J]. J Porous Mater,2006,13(3-4):319-324.
    [169] Zimowska M, Pálková H, Madejová J, Dula R, Pamin K, Olejniczak Z, Gil B,Serwicka EM. Laponite-derived porous clay heterostructures: III. The effect ofalumination [J]. Micropor Mesopor Mater,2013,175:67-75.
    [170] Chmielarz L, Piwowarska Z, Ku trowski P, W grzyn A, Gil B, Kowalczyk A, DudekB, Dziembaj R, Michalik M. Comparison study of titania pillared interlayered claysand porous clay heterostructures modified with copper and iron as catalysts of theDeNOx process [J]. Appl Clay Sci,2011,53:164-173.
    [171] Nguyen-Thanh D, Bandosz TJ. Metal-loaded carbonaceous adsorbents templatedfrom porous clay heterostructures[J]. Micropor Mesopor Mater,2006,92(1-3):47-55.
    [172] Chmielarz L, Kustrowski P, Dziembaj R, Cool P, Vansant EF, Selective catalyticreduction of NO with ammonia over porous clay heterostructures modified withcopper and iron species[J]. Catalysis Today2007,119,181-186.
    [173] Chmielarz L, Piwowarska Z, Kustrowski P, Gil B, Adamski A, Dudek B, Michalik M.Porous clay heterostructures (PCH) intercalated with silica-titania pillars andmodified with transition metals as catalysts for the DeNOx process [J]. Appl CatalB-Environ,2009,91(1-2):449-459.
    [174] Mao HH, Li BS, Yue LW, Wang LY, Yang JH, Gao XX. Aluminated mesoporoussilica-pillared montmorillonite as acidic catalyst for catalytic cracking [J]. Appl ClaySci,2011,53(4):676-683.
    [175] Chmielarz L, Gil B, Ku trowski P, Piwowarska Z, Dudek B, Michalik M.Montmorillonite-based porous clay heterostructures (PCH) intercalated withsilica-titania pillars-synthesis and characterization [J]. J Solid State Chem,2009,182(5):1094-1104.
    [176] Cecilia JA, García-Sancho C, Franco F. Montmorillonite based porous clayheterostructures: Influence of Zr in the structure and acidic properties [J]. MicroporMesopor Mater,2013,176:95-102.
    [177] Qu F, Zhu LZ, Yang K. Adsorption behaviors of volatile organic compounds (VOCs)on porous clay heterostructures (PCH)[J]. J Hazard Mater,2009,170(1):7-12.
    [178] Kooli F. Porous clay heterostructures (PCH) from Al13-intercalated and Al13-pillaredmontmorillonites: Properties and heptane hydro-isomerization catalytic activity [J].Micropor Mesopor Mater,2014,184:184-192.
    [179] Ku niarska-biernacka I, Silva AR, Carvalho AP, Pires J, Freire C. Anchoring ofchiral mgnganese (III) salen complex onto organo clay and porous clayheterostructure and catalytic activity in alkene epoxidation [J]. Catal Lett,2010,134:63-71.
    [180] Paixao V, Santos C, Nunes R, Silva JM, Pires J, Carvalho AP, Martins A. n-Hexanehydroisomerization over composite catalysts based on BEA zeolite and mesoporousmaterials [J]. Catal Lett,2009,129(3-4):331-335.
    [181] Benjelloun M, Cool P, Linssen T, Vansant EF. Acidity porous clay heterostructures:study of their cation exchange capacity [J]. Micropor Mesopor Mater,2001,49(1-3):83-94.
    [182] Hao QQ, Liu ZW, Zhang BS, Wang GW, Ma CY, Frandsen W, Li JJ, Liu ZT, Hao ZP,Su DS. Porous montmorillonite heterostructures directed by a single alkyl ammoniumtemplate for controlling the product distribution of Fischer–Tropsch synthesis overcobalt [J]. Chem Mater,2012,24(6):972-974.
    [183] Pires J, Francisco J, Carvalho A, Carvalho MB, Silva AR, Freire C, Castro B.Development of novel pillared clays for the encapsulation of inorganic complexes [J].Langmuir,2004,20(7):2861-2866.
    [184] Tchinda AJ, Ngamenib E, Walcarius A. Thiol-functionalized porous clayheterostructures (PCH) deposited as thin films on carbon electrode: Towardsmercury(II) sensing [J]. Sensor Actuat B-Chem,2007,121(1):113-123.
    [185] Santos C, Andrade M, Vieira AL, Martins A, Pires J, Freire C, Carvalho AP.Templated synthesis of carbon materials mediated by porous clay heterostructures [J].Carbon,2010,48(14):4049-4056.
    [186] Wang Z, Meng XY, Li JZ, Du XH, Li SY, Jiang ZW, Tang T. A simple method forpreparing carbon nanotubes/clay hybrids in water [J]. J Phys Chem C,2009,113(19):8058–8064.
    [187] Xia MS, Jiang YS, Zhao L, Li FF, Xue B, Sun MM, Liu DR, Zhang XG. Wetgrinding of montmorillonite and its effect on the properties of mesoporousmontmorillonite [J]. Colloid Surface A,2010,356(1-3):1-9.
    [188]苗春省. X-射线衍射快速划分膨润土类型的方法[J].矿物学报,1984,(1):88-91.
    [189] Zhang JP, Wang L, Wang AQ. Preparation and properties of chitosan-g-poly(acrylicacid)/montmorillonite superabsorbent nanocomposite via in situ intercalativepolymerization [J]. Ind Eng Chem Res,2007,46(8):2497-2502.
    [190] Park KW, Jung JH, Kim JD, Kim SK, Kwon OY. Preparation of mesoporoussilica-pillared H+-titanosilicates [J]. Micropor Mesopor Mater,2009,118(1-3):100-105.
    [191] Bergamini RBM, Azevedo EB, Araújo LRR. Heterogeneous photocatalyticdegradation of reactive dyes in aqueous TiO2suspensions: Decolorization kinetics [J].Chem Eng J,2009,149(1-3):215-220.
    [192] Brunauer S, Deming LS, Deming WE, Teller E. On a theory of the van der waalsadsorption of gases [J]. J Am Chem Soc,1940,62(7):1723-1732..
    [193] Yang XY, Li Y, Tendeloo GV, Xiao FS, Su BL. One-pot synthesis of catalyticallystable and active nanoreactors: Encapsulation of size-controlled nanoparticles within ahierarchically macroporous core@ordered mesoporous shell System [J]. Adv Mater,2009,21(13):1368-1372.
    [194] Park JH, Yang JH, Yoon JB, Hwang SJ, Choy JH. Intracrystalline structure andphysicochemical properties of mixed SiO2-TiO2sol-pillared aluminosilicate [J]. JPhys Chem B,2006,110(4):1592-1598.
    [195] Choy JH, Jung H, Han YS, Yoon JB, Shul YG, Kim HJ. New CoO SiO2-sol pillaredclays as catalysts for NOx conversion [J]. Chem Mater,2002,14:3823-3828.
    [196] Zou L, Xiang X, Wei M, Yang L, Li F, Evans DG. A facile and green synthesis routeto mesoporous spinel-type Zn-Al complex oxide [J]. Ind Eng Chem Res,2008,47(5):1495-1500.
    [197] Song CS, Ma XL. New Design Approaches to ultra-clean diesel fuels by deepdesulfurization and deep dearomatization [J]. Appl Catal B-Environ,2003,41(1-2):207-238.
    [198] Jin CZ, Li G, Wang XS, Wang Y, Zhao LX, Sun DW. A titanium containingmicro/mesoporous composite and its catalytic performance in oxidativedesulfurization [J]. Micropor Mesopor Mater,2008,111(1-3):236-242.
    [199] Garcia-Gutierrez JL, Fuentes GA, Hernandez-Teran ME, Garcia P, Murrieta-GuevaraF, Jimenez-Cruz F. Ultra-deep oxidative desulfurization of diesel fuel by theMo/Al2O3-H2O2system: the effect of system parameters on catalytic activity [J]. ApplCatal A-Gen,2008,334:366-373.
    [200] Shiraishi Y, Hirai T, Komasawa I. Oxidative desulfurization process for light oilusing titanium silicate molecular sieve catalysts [J]. J Chem Eng Jpn,2002,35(12):1305-1311.
    [201] W c aw A, Nowińska K, Schwieger W. Benzene to phenol oxidation over ironexchanged zeolite ZSM-5[J]. Appl Catal A-Gen,2004,270(1-2):151-156.
    [202] Knops-Gerrits PP, Verberckmoes A, Schoonheydt R, Ichikawa M, Jacobs PA.Alkane oxidation by dinuclear iron complexes in hexagonal mesoporous solids [J].Micropor Mesopor Mater,1998,21(4-6):475-486.
    [203] Guo J, Al-Dahhan M. Catalytic wet oxidation of phenol by hydrogen peroxide overpillared clay catalyst [J]. Ind Eng Chem Res,2003,42(12):2450-2460.
    [204] Li BS, Wu K, Yuan TH, Han CY, Xu JQ, Pang XM. Synthesis, characterization andcatalytic performance of high iron content mesoporous Fe-MCM-41[J]. MicroporMesopor Mater,2012,151:277-281.
    [205] Sampieri A, Fetter G, Bosch P, Bulbulian S. Washing effect on the synthesis ofsilica-pillared clays [J]. J Porous Mater,2004,11(3):157-162.
    [206] Mao HH, Li BS, Li X, Yue LW, Xu JQ, Ding B, Gao XH, Zhou ZY. Facile synthesisand catalytic properties of titanium containing silica-pillared clay derivatives withordered mesoporous structure through a novel intra-gallery templating method [J].Micropor Mesopor Mater,2010,130(1-3):314-321.
    [207] Gardner E, Huntoon KM, Pinnavaia TJ. Direct Synthesis of alkoxide-intercalatedderivatives of hydrotalcite-like layered double hydroxides: Precursors for theformation of colloidal layered double hydroxide suspensions and transparent thinfilms [J]. Adv Mater,2001,13(16):1263-1266.
    [208] Li BS, Xu JQ, Liu JJ, Zuo SL, Pan ZY, Wu ZY. Preparation of mesoporousferrisilicate with high content of framework iron by pH-modification method and itscatalytic performance [J]. J Colloid Interf Sci,2012,366(1):114-119.
    [209] Li BS, Mao HH, Li X, Ma W, Liu ZX. Synthesis of mesoporous silica-pillared clayby intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using quaternaryammonium surfactants as gallery templates [J]. J Colloid Interf Sci,2009,336(1):244-249.
    [210] Gao XX, Mao HH, Lu MH, Yang JH, Li BS. Facile Aynthesis Route to NiO-SiO2intercalated clay with ordered porous structure: Intragallery interfacially controlledfunctionalization using nickel–ammonia complex for deep desulfurization [J].Micropor Mesopor Mater,2012,148(1):25-33.
    [211] Wei LM, Tang T, Huang BT. Novel acidic porous clay heterostructure with highlyordered organic–inorganic hybrid structure: One-pot synthesis of mesoporousorganosilica in the galleries of clay [J]. Micropor Mesopor Mater,2004,67(2-3):175-179.
    [212] Zhang H, Pan DK, Zou K, He J, Duan X. A novel core-shell structured magneticorganic-inorganic nanohybrid involving drug-intercalated layered double hydroxidescoated on a magnesium ferrite core for magnetically controlled drug release [J]. JMater Chem,2009,19:3069-3077.
    [213] Araujo AS, Jaroniec M. Determination of the surface area and mesopore volume forlanthanide-incorporated MCM-41materials by using high resolutionthermogravimetry [J]. Thermochim Acta,2000,345(2):173-177.
    [214] Wu C, Kong Y, Gao F, Wu Y, Lu YN, Wang J, Dong L. Synthesis, characterizationand catalytic performance for phenol hydroxylation of Fe-MCM-41with high ironcontent [J]. Micropor Mesopor Mater,2008,113:163-170.
    [215] Jiang SY, Kong Y, Wang J, Ren XQ, Yan QJ. Synthesis, characterization ofbimetallic Sn-Zn-MCM-41and its catalytic performance in the hydroxylation ofphenol [J]. J Porous Mater,2006,13(3-4):341-346.
    [216] Takahashi R, Sato S, Sodesawa T, Kawakita M, Ogura K. High surface-area silicawith controlled pore size prepared from nanocomposite of silica and citric acid [J]. JPhys Chem B,2000,104(51):12184-12191.
    [217] Kong Y, Jiang SY, Wang J, Wang SS, Yan QJ, Lu YN. Synthesis and characterizationof Cu-Ti-MCM41[J]. Micropor Mesopor Mater,2005,86(1-3):191-197.
    [218] Park KW, Jung JH, Seo HJ, Kwon OY. Mesoporous silica-pillared kenyaite andmagadiite as catalytic support for partial oxidation of methane [J]. Micropor MesoporMater,2009,121(1-3):219-225.
    [219] Kumar MS, Schwidder M, Gr net W, Br ckner A. On the nature of different ironsites and their catalytic role in Fe-ZSM-5DeNOx catalysts: new insights by acombined EPR and UV/Vis spectroscopic approach [J]. J Catal,2004,227(2):384-397.
    [220] Pérez-Ramirez J, Kumar MS, Br ckner A. Reduction of N2O with CO over FeMFIzeolites: Influence of the preparation method on the iron species and catalyticbehavior [J]. J Catal,2004,223(1):13-27.
    [221] Stefanis AD, Kaciulis S, Pandolfi L. Preparation and characterization of Fe-MCM-41catalysts employed in the degradation of plastic materials [J]. Micropor MesoporMater,2007,99(1-2):140-148.
    [222] Zhao XS, Lu GQ, Millar GJ. Advances in mesoporous molecular sieve MCM-41[J].Ind Eng Chem Res,1996,35(7):2075-2090.
    [223] Sun YY, Walspurger S, Tessonnier JP, Louis B, Sommer J. Highly dispersed ironoxide nanoclusters supported on ordered mesoporous SBA-15: A very active catalystfor Friedel–Crafts alkylations [J]. Appl Catal A-Gen,2006,300(1):1-7.
    [224] Xu TY, Liu Y, Ge F, Liu L, Quyang YT. Application of response surfacemethodology for optimization of azocarmine B removal by heterogeneousphoto-Fenton process using hydroxy-iron-aluminum pillared bentonite [J]. Appl SurfSci,2013,280:926-932.
    [225] Huerta L, Meyer A, Choren E. Synthesis, characterization and catalytic applicationfor ethylbenzene dehydrogenation of an iron pillared clay [J]. Micropor Mesopor Mat,2003,57(3):219-227.
    [226] Lan BY, Huang RH, Li LS, Yan HH, Liao GZ, Wang X, Zhang QY. Catalyticozonation of p-chlorobenzoic acid in aqueous solution using Fe-MCM-41as catalyst[J]. Chem Eng J,2013,219:346-354.
    [227] Elias VR, Oliva MI, Vaschetto EG, Urreta SE, Eimer GA, Silvetti SP. Magneticproperties of iron loaded MCM-48molecular sieves [J]. J Magn Magn Mater,2010,322(21):3438-3442.
    [228] Galarneau A, Barodawalla A, Pinnavaia TJ. Porous clay heterostructure formed bygallery-templated synthesis [J]. Nature,1994,374:529-531.
    [229] Mao HH, Li BS, Li X, Liu ZX, Ma W. Mesoporous nickel (or cobolt)-dopedsilica-pillared clay: Synthesis and characterization studies [J]. Mater Res Bull,2009,44(7):1569-1575.
    [230] Yang SJ, Liang GZ, Gu AJ, Mao HH. Facile synthesis and catalytic performance ofFe-containing silica-pillared clay derivatives with ordered interlayer mesoporousstructure [J]. Ind Eng Chem Res,2012,51(48):15593-15600.
    [231] Villa AL, Caro CA, Correa CM. Cu-and Fe-ZSM-5as catalysts for phenolhydroxylation [J]. J Mol Catal A-Chem,2005,228(1-2):233-240.
    [232] Park JN, Wang J, Choi KY, Dong WY, Hong SI, Lee CW. Hydroxylation of phenolwith H2O2over Fe2+and/or Co2+ion-exchanged NaY catalyst in the fixed-bed flowreactor [J]. J Mol Catal A-Chem,2006,247(1-2):73-79.
    [233] Tang HL, Ren Y, Yue B, Yan SR, He HY. Cu-incorporated mesoporous materials:Synthesis, characterization and catalytic activity in phenol hydroxylation [J]. J MolCatal A-Chem,2006,260(1-2):121-127.
    [234] Mao HH, Gao XX, Yang JH, Li BS. A novel one-step synthesis of mesostructuredsilica-pillared clay with highly ordered gallery organic-inorganic hybrid frame [J].Appl Surf Sci,2011,257(10):4655-4662.
    [235] Zhang H, Pan DK, Duan X. Synthesis, characterization, and magnetically controlledrelease behavior of novel core-shell structural magnetic ibuprofen intercalated LDHnanohybrids [J]. J Phys Chem C,2009,113(28):12140-12148.
    [236] Gardner E, Huntoon K.M, Pinnavaia TJ. Direct synthesis of alkoxide-intercalatedderivatives of hydrotalcite-like layered double hydroxides: Precursors for theformation of colloidal layered double hydroxide suspensions andtransparent thin films[J]. Adv Mater,2001,13(16):1263-1266.
    [237] Zuo SF, Zhou RX. Influence of synthesis condition on pore structure of Al pillaredclays and supported Pd catalysts for deep oxidation of benzene [J]. Micropor MesoporMater,2008,113(1-3):472-480.
    [238] Polverejan M, Liu Y, Pinnavaia TJ. Aluminated derivatives of porous clayheterostructures (PCH) assembled from synthetic saponite Clay: Properties assupermicroporous to small mesoporous acid catalysts [J]. Chem Mater,2002,14(5):283-2288.
    [239] Li BS, Xu JQ, Liu JJ, Pan ZY, Wu ZY, Zhou ZY, Pang XM. Preparation ofmesoporous ferrisilicate: Incorporation of iron onto mesoporous silica network by anovel route [J]. Mater Lett,2012,78:147-149.
    [240] He NY, Cao JM, Bao SL, Xu QH. Room-temperature synthesis of an Fe-containingmesoporous molecular sieve [J]. Mater Lett,1997,31(1):133-136.
    [241] apek L, Kreibich V, D de ek J, Grygar T, Wichterlová B, Sobalík Z, Martens JA,Brosius R, Tokarová V. Analysis of Fe species in zeolites by UV–Vis–NIR, IR spectraand voltammetry. Effect of preparation, Fe loading and zeolite type [J]. MicroporMesopor Mater,2005,80(1):279-289.
    [242] Suzuki S, Takahashi Y, Kamimura T, Miyuki H, Shinoda K, Tohji K, Waseda Y.Influence of chromium on the local structure and morphology of ferric oxyhydroxides[J]. Corros Sci,2007,46(7):1751-1763.
    [243] Westre TE, Kennepohl P, Dewitte JG, Hedman B, Hodgson KO, Solomon EI. Amultiplet analysis of Fe K-edge1s→3d pre-edge features of iron complexes [J]. J AmChem Soc,1997,119(27):6297-6314.
    [244] Aritani H, Nishimura S, Tamai M, Yamamoto T, Tanaka T, Nakahira A. Localstructure of framework iron in Fe-substituted Al-mordenites by Fe K edge XAFS [J].Chem Mater,2002,14(2):562-567.
    [245] Wang Y, Zhang Q, Shishido T, Takehira K. Characterizations of iron-containingMCM-41and its catalytic properties in epoxidation of styrene with hydrogen peroxide[J]. J Catal,2002,209(1):186-196.
    [246] Matsubayashi N, Shimada H, Imamura M, Sato T, Okabe K, Yoshimura Y, NishijimaA. Determination of Fe-substituted sites in the MFI structure by Fe K-edg EXAFS [J].Catal Today,1996,29(1):273-277.
    [247] Choy JH, Yoon JB, Kim DK, Hwang SH. Application of X-ray absorptionspectroscopy in determining the crystal structure of low-dimensional compounds. Ironoxychloride and its alkoxy substituents [J]. Inorg Chem,1995,34(26):6524-6531.
    [248] Stockenhuber M, Hudson MJ, Joyner RW. Preparation, characterization, and unusualreactivity of Fe-MCM-41[J]. J Phys Chem B,2000,104(14):3370-3374.
    [249] Shishido T, Zhang Q, Wang Y, Tanaka T, Takehira K. XAFS study on active ironsites in MCM-41as a catalyst for liquid phase oxidation [J]. Phys Scr,2005,T115:762-764.
    [250] Bourlinos AB, Karakassides MA, Petridis D. Synthesis and characterization ofironcontaining MCM-41porous silica by the exchange method of the template [J]. JPhys Chem B,2000,104(18):4375-4380.
    [251] Choi JS, Yoon SS, Jang SH, Ahn WS. Phenol hydroxylation using Fe-MCM-41catalysts [J]. Catal Today,2006,111(3):280-287.
    [252] Zhang H, Tang C, Lv Y, Sun C, Gao F, Dong L, Chen Y. Synthesis, characterization,and catalytic performance of copper-containing SBA-15in the phenol hydroxylation[J]. J Colloid Interf Sci,2012,380(1)16-24.
    [253] Adam F, Andas J, Rahman IA. A study on the oxidation of phenol by heterogeneousiron silica catalyst [J]. Chem Eng J,2010,165(2):658-667.
    [254] Jiang Y, Lin K, Zhang Y, Liu J, Li G, Sun J. Fe-MCM-41nanoparticles as versatilecatalysts for phenol hydroxylation and for Friedel-Crafts alkylation [J]. Appl CatalA-Gen,2012,445-446:172-179.
    [255] Timofeeva MN, Malyshev ME, Panchenko VN, Shmakov AN, Potapov AG,Mel’gunov MS. FeAl12-Keggin type cation as an active site source for Fe, Al-silicamesoporous catalysts [J]. Appl Catal B-Environ,2010,95(1-2):110-119.
    [256] Kitano M, Matsuoka M, Ueshima M, Anpo M, Recent developments in titaniumoxide-based photocatalysts [J]. Appl Catal A,2007,325(1):1-14.
    [257] Ménesi J, K r si L, Bazsó é, Z llmer V, Richardt A, Dékány I. Photocatalyticoxidation of organic pollutants on titania-clay composites [J]. Chemosphere,2008,70(3):538-542.
    [258] da Costa E, Zarbin AJG, Zamora PP. Novel TiO2/C nanocomposites: Synthesis,characterization, and application as a photocatalyst for the degradation of organicpollutants [J]. Mater Res Bull,2012,368(1):121-127.
    [259] Reddy PAK, Srinivas B, Kala P, Kumari VD, Subrahmanyam M. Preparation andcharacterization of Bi-doped TiO2and its solar photocatalytic activity for thedegradation of isoproturon herbicide [J]. Mater Res Bull,2011,46(11):1766-1771.
    [260] Rossetto E, Petkowicz DI, dos Santos JHZ, Pergher SBC, Penha FG. Bentonitesimpregnated with TiO2for photodegradation of methylene blue [J]. Appl Clay Sci,2010,48(4):602-606.
    [261] Kaneko T, Shimotsuma H, Kajikawa M, Hatamachi T, Kodama T, Kitayama Y.Synthesis and photocatalytic activity of titania pillared clays [J]. J Porous Mater,2001,8(4):295-301.
    [262] Ooka C, Yoshida H, Suzuki K, Hattori T. Effect of surface hydrophobicity ofTiO2-pillared clay on adsorption and photocatalysis of gaseous molecules in air [J].Appl Catal A,2004,260(1):47-51.
    [263] Venz PA, Kloprogge JT, Frost RL. Chemically modified titania hydrolysates:Physical properties [J]. Langmuir,2000,16(11):4962-4968.
    [264] Zhang Q, Gao L, Xie H. Analysis of the structure of titanium tetrachloride derivedprecipitates [J]. Mater Sci Eng A,2003,343(1):22-27.
    [265] Yang S, Liu Y, Guo Y, Zhao J, Xu H, Wang Z. Preparation of rutile titaniananocrystals by liquid method at room temperature [J]. Mater Chem Phys,2003,77(2):501-506.
    [266] Kun R, Mogyorósi K, Dékány I. Synthesis and structural and photocatalyticproperties of TiO2/montmorillonite nanocomposites [J]. Appl Clay Sci,2006,32(1):99-110.
    [267] Romero A, Dorado F, Asencio I, García PB, Valverde JL. Ti-pillared clays: synthesisand general characterization [J]. Clay Clay Miner,2006,54(6):737-747.
    [268] Liu J, Li X, Zuo S, Yu Y. Preparation and photocatalytic activity of silver and TiO2nanoparticles/montmorillonite composites [J]. App Clay Sci,2007,37(3):355-359.
    [269] Karickhoff S W, Bailey G W. Optical absorption spectra of clay minerals [J]. ClaysClay Miner,1973,21:59-70.
    [270] Yan X, He J, Evans DG, Duan X, Zhu Y. Preparation, characterization andphotocatalytic activity of Si-doped and rare earth-doped TiO2from mesoporousprecursors [J]. Appl Catal B-Environ,2005,55(4):243-252.
    [271] Ding Z, Lu GQ, Greenfield PF. Role of the crystallite phase of TiO2in heterogeneousphotocatalysis for phenol oxidation in water [J]. J Phys Chem B,2000,104(19):4815-4820.
    [272] Tanev PT, Pinnavaia TJ. Mesoporous silica molecular sieves prepared by ionic andneutral surfactant templating: A comparison of physical properties [J]. Chem Mater,1996,8(8):2068-2079.
    [273] Guo G, Hu Y, Jiang S, Wei C. Photocatalytic oxidation of NOx over TiO2/HZSM-5catalysts in the presence of water vapor: Effect of hydrophobicity of zeolites [J]. JHazard Mater,2012,223-224:39-45.
    [274] Zhu HY, Ding Z, Barry JC. Porous solids from layered clays by combined pillaringand templating approaches [J]. J Phys Chem B,2002,106(44):11420-11429.
    [275] Chen D, Zhu Q, Zhou F, Deng X, Li F. Synthesis and photocatalytic performances ofthe TiO2pillared montmorillonite [J]. J Hazard Mater,2012,235-236:186-193.
    [276] Ooka C, Yoshida H, Horio M, Suzuki K, Hattori T. Adsorptive and photocatalyticperformance of TiO2pillared montmorillonite in degradation of endocrine disruptorshaving different hydrophobicity [J]. Appl Catal B-Environ,2003,41(3):313-321.
    [277] Cheng XW, Yu XJ, Xing ZX, Wan JF. Enhanced photocatalytic activity of nitrogendoped TiO2anatase nano-particle under simulated sunlight irradiation [J]. EnergyProcedia,2012,16:598-605.
    [278] Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM,Hamiltion JWJ, Byrne JA, O′Shea K, Entezari MH, Dionysiou DD. A review on thevisible light active titanium dioxide photocatalysts for environmental applications [J].Appl Catal B-Environ,2012,125:331-349.
    [279] Yang M C, Yang T S, Wong M S. Nitrogen-doped titanium oxide films as visiblelight photocatalyst by vapor deposition [J]. Thin Solid Films,2004,469-470:1-5.
    [280] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis innitrogen-doped titanium oxides [J]. Science,2001,293(5528):269-271.
    [281] Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL. Enhanced nitrogen doping inTiO2nanoparticles [J]. Nano Lett,2003,3(8):1049-1051.
    [282] Tachikawa T, Tojo S, Kawai K, Endo M, Fujituka M, Ohno T, Nishijima K,Miyamoto Z, Majima T. Photocatlaytic oxidation reactivity of holes in the surfur-andcarbon-doped TiO2powders studies by time-resolved diffuse reflectance spectroscopy[J]. J Phys Chem B,2004,108(50):19299-19306.
    [283] Park H, Choi W. Effects of TiO2Surface fluorination on photocatalytic reactions andphotoelectrochemical behaviors [J]. J Phys Chem B,2004,108(13):4086-4093.
    [284] Abe R. Recent progress on photocatalytic and photoelectrochemical water splittingunder visible light irradiation [J]. J Photoch Photobio C,2010,11(4):179-209.
    [285] Takeshi M, Ryoji A, Takeshi O, Koyu A, Yasunori T. Band-gap narrowing oftitanium dioxide by nitrogen doping [J]. Jpn J Appl Phys,2001,40(6A):561-563.
    [286] Hu C, Wang YZ. Decolorization and biodegrability of photocatalytic treated AZOdyes and wool textile wastewater [J]. Chemosphere,1999,39(12):2107-2115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700