高压下几种典型氢化物结构和性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢是最轻的元素,其在宇宙中的含量最大,约占宇宙质量的75%。由于氢可用于工业原料也可以作为一种不可替代的清洁能源,因此成为人们一直重点关注的对象。氢的研究主要集中于两个方面,一个是高温超导性质的研究,另一个是如何储氢的研究。早在1935年,E.Winger和H. Huntington提出了高压能够导致绝缘态的氢固体转化为金属态。尽管理论预测347GPa下,氢的超导转变温度大约为107K,但是实验室条件下,直到342GPa仍没有看到金属化现象,所以人们将目光转移到含氢化合物,致力于借助所谓的化学预压在更低压力下实现金属化。同时,储氢手段的探索也需要人们对氢化物高压下的结构和性质进行研究。
     本文的第一个研究内容为高压下BaH2新相的第一原理预测。在金属-氢体系中,第II主族金属氢化物比较简单,是有应用前景的储氢材料之一。碱土金属氢化物(MgH2, CaH2, SrH2, BaH2)在高压下的结构相变更是引起科学家广泛的关注。在常压条件下,MgH2呈现出金红石(Rutile)结构,接下来的高压相为CaCl2结构,在更高压力下会相变为“cotunnite”结构,其空间群为Pnma。碱土金属氢化物CaH2和SrH2的基态结构被证实具有“cotunnite”结构,并且在高压下相变为Ni2In结构(空间群为P63/mmc)。Smith等人通过室温下的X射线衍射和拉曼光谱实验确定了BaH2具有和CaH2,SrH2相同的基态结构,随着压力增加到1.6GPa,结构变为Ni2In结构,该相变为一级结构相变。K Kinoshita等利用粉末X射线衍射实验方法证实BaH2由“cotunnite”结构到Ni2In结构的一级相变发生在2.5GPa, Ni2In结构一直保持到50GPa,新的高压相变从50GPa开始直到65GPa才完成,实验证实新的高压相具有AlB2结构(空间群为P6/mmm)。在此实验结果基础之上, Li等人从理论上也预测了CaH2在高压下由Ni2In结构相变到AlB2结构。然而,到目前为止,对BaH2的高压相的研究却很少,而且更高压下是否具有新的结构也未见报道。本文利用第一原理方法,研究了BaH2在高压下的结构相变并且进一步探讨了高压结构相变机制。我们的结果显示出由cotunnite→Ni2In的相变发生在2.3GPa,这与实验测量非常吻合,压力达到34GPa时,发生Ni2In→AlB2相变,此相变压力点比实验结果略低。从布居分析可知cotunnite→Ni2In→AlB2相变过程,是由Ba s→d和Ba s→H s电子转移引起的。高压下AlB2结构变得不稳定,相变为YbZn2结构,此相变为二级相变且由L点的横声学支声子振动模式软化导致的,YbZn2结构是动力学和力学稳定的并且具有金属特性。
     本文第二个研究内容为高压下MH2(M=V, Nb)的结构相变。后期过渡族金属(例如:Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au)的电负性比氢大,其氢化物在常压下很难形成,只有在高压下才能够形成。然而,对于电负性较小的前期过渡族金属(Zr, Ti, V, Hf, Nb)在常压下就能形成氢化物,在常温常压下,前期过渡族金属氢化物为CaF2类型的结构。最近,X射线衍射实验证实,在压力达到0.6GPa时,TiH2立方的Fm-3m结构相变为四方的I4/mmm结构,第一原理方法也预测了在高压63GPa时,I4/mmm结构相变为P4/nmm结构。而在低温下,TiH2、 ZrH2,和HfH2的CaF2Fm-3m结构变得不稳定,并且相变为四方的I4/mmm结构。而VH2,和NbH2不论是在室温还是在低温下,Fm-3m结构都是最稳定的,但是其高压下的结构研究还没有报道,因此其高压结构的探索是非常重要的。研究发现,在常压下立方的Fm-3m MH2是最稳定的,这和实验结果一致。压力达到50GPa和45GPa时,Fm-3m VH2和Fm-3m NbH2分别相变为Pnma VH2和P63mcNbH2,此两种结构相变均为一级结构相变。为了验证高压结构的稳定性,分别计算了声子谱和弹性常数,从而证明了两种结构是稳定的,并且一直持续到100GPa。能带结构和电子态密度结果证实两种结构均具有金属特性, Pnma VH2的超导转变温度最高,能达到4K。
     本文的第三个研究内容是高压下BHn(n=1-5)结构和超导电性研究。富氢化合物被认为是非常具有潜力的高温超导体。最近科学工作者发现了第三主族化合物AlH3和GaH3在较低的压力下实现金属化,并且具有超导电性。硼,作为第三主族最轻的元素,和氢原子能够形成传统的化合物BH3(硼烷)。在一个大气压下,硼烷具有单斜结构(空间群为P21/c),在这个结构中两个BH3分子形成具有B2H6的环。压力达到4GPa时,硼烷形成了三聚的B3H9,其结构对称性为P-1。压力达到36GPa时,BH3分子形成多聚的化合物(空间群为P21/c),该结构在100GPa以下是能够稳定存在的。Ashcroft等人理论预测BH3在100GPa~350GPa之间是不稳定的,350GPa以上能够再一次形成正交结构(空间群为Pbcn),而且该结构具有较高的超导温度100K。因此探索100GPa~350GPa之间硼氢化合物的结构和性质是非常必要的。通过研究发现,压力在50GPa~104GPa区间,P21/c BH3一直是最稳定的结构,而压力高于104GPa时,BH3会分解成BH和H2, IbamBH在104GPa~170GPa区间是最稳定的,压力高于170GPa时,P6/mmm BH是最稳定的,一直保持到所研究的压力点350GPa, C2/cBH2在压力250GPa以上作为亚稳相存在。在整个压力范围内,BH4和BH5是不能稳定存在的。压力在170GPa时, P6/mmm BH超导温度达到21K,亚稳相C2/c BH2具有更强的电-声子耦合,超导温度在250GPa时达到90K。
Hydrogen, as the lightest atom, is the most in the universe,accounting for about75%of the mass of the universe. Hydrogen can beused as the resources in the industry and is the irreplaceable clean energy.Therefore, hydrogen is always being focused on by the people. Thestudies of hydrogen have mainly two aspects, one is the superconductivity,and the other is the storage of hydrogen. As early as1935, E. Winger andH. Huntington promoted that hydrogen molecule decomposed andconverted into the metallic state. The theory have predicted thesuperconducting transition temperature of hydrogen can reach about107K at347GPa, however the experimental works can’t find thesuperconductivity until342GPa, so people shift attentions to thehydrogen-containing compound, trying their best to achieve metallizationat lower pressures. In addition, the storage of hydrogen also requires thepeople understand the structures and physical properties of the hydridesunder high pressure.
     The first topic of this paper is “new phase of BaH2predicted by thefirst principles”. In metal-hydrogen systems, the main group II hydridesare very simple and have broad application as the hydrogen storage materials. High pressure structural phase transition of the alkaline earthhydrides (MgH2CaH2, SrH2, and BaH2) have been focused on by thescientists. Under the ambient conditions, MgH2has rutile structure. Withthe pressure increasing, two high pressure phases are CaCl2and cotunnitestructures (space group Pnma). The ground states of CaH2and SrH2areconfirmed as cotunnite structure, which transforms to Ni2In structure(space group P63/mmc). Smith et al. confirmed BaH2shared the sameground state structure with CaH2and SrH2,and transformed to Ni2Instructure at1.6GPa, which is the first phase transition through X-raydiffraction and Raman scattering experiments. K. Kinoshita et al.identified the first phase transiton from cotunnite structure to Ni2Instructure occurs at2.5GPa, and Ni2In structure existed until50GPa,meanwhile, a new high pressure phase transition commenced at pressuresaround50GPa and completed at65GPa through powder X-raydiffraction experiment,which has AlB2structure (space group P6/mmm).On the basis of the experiment, YiWei Li et al. predicted the phasetransiton of CaH2from Ni2In structure to AlB2structure under highpressures. To the best of our knowledge, phase transition of BaH2fromNi2In-type to AlB2-type structure hasn’t been identified theoretically.Moreover, there is no experimental and theoretical research report on postAlB2-type structure under higher pressure. In the present work, we havestudied the high pressure structural phase transition of BaH2by using ab initio calculations. The results indicate that the phase transition fromcotunnite to Ni2In occurs at2.5GPa, which is consistent with theexperiment. Ni2In structure transforms to AlB2structure at34GPa, whichis lower than the results of the experiment. The Mulliken populationanalysis indicates Ba s→d and Ba s→H s charge transfers might beresponsible for the phase transformations from cotunnite to InNi2, and toAlB2phases. Under higher pressure, the AlB2phase is unstable andtransforms to a phase predicted to be YbZn2–type structure. The phasetransition is driven by the softening of transverse acoustic phonon modeat the L point, which is considered as a second-order phase transition.YbZn2–type structure is dynamical and mechanical stability and ismetallic.
     The second topic of this work is “pressure induced phase transitionin MH2(M=V, Nb)”. Late transition metal has a biggerelectronegativity than hydrogen, which can’t form hydrides underambient conditions. However, early transition metal has a smallerelectronegativity than hydrogen, which promotes early transition-metalhydrides can be synthesized under ambient conditions such as TiH2, ZrH2,HfH2, VH2, and NbH2, etc. At ambient conditions, the typical structure ofthe early transition-metal dihydrides is the CaF2(Fm-3m space group)crystal structure. Recent synchrotron X-ray diffraction (XRD)experiments of TiH2at room temperature and high pressure revealed a phase transition from fcc to I4/mmm at0.6GPa and a further transitionfrom I4/mmm to P4/nmm occurs at63GPa predicted by the firstprinciples. At lower temperature, the Fm-3m structures of TiH2, ZrH2,and HfH2aren’t stable, and transform to tetragonal I4/mmm structure, butthe Fm-3m structures of VH2and NbH2is stability at low temperature.Therefore, exploring of high–pressure structures of the earlytransition-metal dihydrides such as MH2(M=V, Nb) is essential. In thestructures predicted, Fm-3m MH2is most stable at ambient pressure,which is consistent with the other works. Fm-3m VH2transforms to Pnmaphase at50GPa and Fm-3m NbH2changes to P63mc phase at45Gpa,respectively. The two phase transitions are identified as the first orderphase transitions by volume reductions. The calculations of the phononcurves and the elastic constants indicate the two structures are stable till100GPa. Calculated DOS and band structure real that the Pnma VH2andP63mc NbH2are metallic. The Tcof Pnma VH2can reach4K by theelectron-phonon calculations.
     The third tropic of the work is “the structures and properties ofBHn(n=1-5) under high pressures”。 Recently, it has been proposed thatgroup III hydrides (e.g. AlH3and GaH3) also become metallic at lowerpressures and present a high superconducting critical temperature. Boron,the lightest element in group III, with hydrogen can form the traditionalcompound BH3. At1atm, BH3tend to be monoclinic structure with P21/c, in which, two BH3molecules form the ring of B2H6. At4GPa, amolecular crystal is built of trimer B3H9which has the structure with thegroup P-1. At36GPa, BH3becomes the polymeric compounds (spacegroup P21/c), which is the stable till100GPa. Kazutaka Abe and N. W.Ashcroft predicted BH3wasn’t the stable between100GPa and350GPa,and above350GPa, Pbcn BH3formed again, which has a highsuperconducting transition temperature of100K at350GPa. Therefore,exploring the structures and properties of boron hydrides becomesessential between100GPa and350GPa. It is found that BH3compoundis the most stable at50-104GPa. Under higher pressure, BH3becomesunstable and dissociates into the mixtures of BH and H2. Ibam BH is themost stable at104-170GPa, and transforms to P6/mmm BH at170GPa,which keep up to350GPa. C2/c BH2is found to be meta-stable above250GPa. In the range of pressure considered, BH4and BH5can’t form.The superconducting critical temperatures of P6/mmm BH reach21K at170GPa. The meta-stable C2/c BH2has more stronger electron-phononcoupling. The superconducting critical temperature of the C2/c BH2reaches90K at250GPa.
引文
1.张令通,计算机在材料模拟计算与设计中的应用.大理学院学报,2002(1): p.25-28.
    2.吴兴惠和项金钟,现代材料计算与设计教程.电子工业出版社,2002.
    3. Honig, J. and L. Zandt, The metal-insulator transition in selectedoxides. Annual Review of Materials Science,1975.5(1): p.225-278.
    4. Shukla, A., et al., Charge transfer at very high pressure in NiO.Physical Review B,2003.67(8): p.081101.
    5. Feng, X. and N. Harrison, Magnetic coupling constants from ahybrid density functional with Hartree-Fock exchange. PhysicalReview B,2004.70(9): p.092402.
    6. French, M., et al., Equation of state and phase diagram of water atultrahigh pressures as in planetary interiors. Physical Review B,2009.79(5): p.054107.
    7. French, M., T.R. Mattsson, and R. Redmer, Diffusion and electricalconductivity in water at ultrahigh pressures. Physical Review B,2010.82(17): p.174108.
    8. Cavazzoni, C., et al., Superionic and metallic states of water andammonia at giant planet conditions. Science,1999.283(5398): p.44-46.
    9. Wang, Y., et al., High pressure partially ionic phase of water ice.Nature Communications,2011.2: p.563.
    10. Militzer, B. and H.F. Wilson, New phases of water ice predicted atmegabar pressures. Physical review letters,2010.105(19): p.195701.
    11. Benoit, M., et al., New high-pressure phase of ice. Physical reviewletters,1996.76(16): p.2934.
    12. Salzmann, C.G., et al., Ice XV: a new thermodynamically stablephase of ice. Physical review letters,2009.103(10): p.105701.
    13. Goncharenko, I., O. Makarova, and L. Ulivi, Direct determinationof the magnetic structure of the delta phase of oxygen. Physicalreview letters,2004.93(5): p.055502.
    14. Gorelli, F.A., et al., Crystal structure of solid oxygen at highpressure and low temperature. Physical Review B,2002.65(17): p.172106.
    15. Meier, R. and R. Helmholdt, Neutron-diffraction study of α-andβ-oxygen. Physical Review B,1984.29(3): p.1387.
    16. LeSar, R. and R. Etters, Character of the α-β phase transition insolid oxygen. Physical Review B,1988.37(10): p.5364.
    17. Zhu, L., et al., Spiral chain O4form of dense oxygen. Proceedingsof the National Academy of Sciences,2012.109(3): p.751-753.
    18. Duan, D., et al., The crystal structure and superconductingproperties of monatomic bromine. Journal of Physics: CondensedMatter,2010.22(1): p.015702.
    19. Duan, D., et al., Effect of nonhydrostatic pressure onsuperconductivity of monatomic iodine: An ab initio study. PhysicalReview B,2009.79(6): p.064518.
    20. Duan, D., et al., Ab initio studies of solid bromine under highpressure. Physical Review B,2007.76(10): p.104113.
    21. Fujihisa, H., et al., Structural aspects of dense solid halogens underhigh pressure studied by x-ray diffraction—Molecular dissociationand metallization. Journal of Physics and Chemistry of Solids,1995.56(10): p.1439-1444.
    22. Rousseau, B., et al., Exotic high pressure behavior of light alkalimetals, lithium and sodium. The European Physical Journal B,2011.81(1): p.1-14.
    23. Ma, Y., et al., Transparent dense sodium. Nature,2009.458(7235):p.182-185.
    24. Olinger, B. and J. Shaner, Lithium, compression and high-pressurestructure. Science,1983.219(4588): p.1071-1072.
    25. Lv, J., et al., Predicted novel high-pressure phases of lithium.Physical review letters,2011.106(1): p.015503.
    26. Hanfland, M., et al., New high-pressure phases of lithium. Nature,2000.408(6809): p.174-178.
    27. Gao, G., et al., Dissociation of methane under high pressure. TheJournal of chemical physics,2010.133: p.144508.
    28. Nellis, W., Metallization of fluid hydrogen at140GPa (1.4Mbar):implications for Jupiter. Planetary and Space Science,2000.48(7):p.671-677.
    29. Babaev, E., A. Sudb, and N. Ashcroft, A superconductor tosuperfluid phase transition in liquid metallic hydrogen. Nature,2004.431(7009): p.666-668.
    30. Cudazzo, P., et al., Ab initio description of high-temperaturesuperconductivity in dense molecular hydrogen. Physical reviewletters,2008.100(25): p.257001.
    31. McMahon, J.M. and D.M. Ceperley, High-temperaturesuperconductivity in atomic metallic hydrogen. Physical Review B,2011.84(14): p.144515.
    32. Mao, W.L., et al., Hydrogen clusters in clathrate hydrate. Science,2002.297(5590): p.2247-2249.
    33. Hemley, R. and H. Mao, Phase transition in solid molecularhydrogen at ultrahigh pressures. Physical review letters,1988.61(7): p.857.
    34. Loubeyre, P., et al., X-ray diffraction and equation of state ofhydrogen at megabar pressures. Nature,1996.383(6602): p.702-704.
    35. Chen, N.H., E. Sterer, and I.F. Silvera, Extended infrared studies ofhigh pressure hydrogen. Physical review letters,1996.76(10): p.1663.
    36. Mazin, I., et al., Quantum and classical orientational ordering insolid hydrogen. Physical review letters,1997.78(6): p.1066.
    37. Hemley, R., et al., Vibron effective charges in dense hydrogen. EPL(Europhysics Letters),1997.37(6): p.403.
    38. Mazin, I. and R.E. Cohen, Insulator-metal transition in solidhydrogen: Implication of electronic-structure calculations forrecent experiments. Physical Review B,1995.52(12): p. R8597.
    39. Kohanoff, J., et al., Dipole-quadrupole interactions and the natureof phase III of compressed hydrogen. Physical review letters,1999.83(20): p.4097.
    40. Pickard, C.J. and R.J. Needs, Structure of phase III of solidhydrogen. Nature Physics,2007.3(7): p.473-476.
    41. Nellis, W., S. Weir, and A. Mitchell, Minimum metallic conductivityof fluid hydrogen at140GPa (1.4Mbar). Physical Review B,1999.59(5): p.3434.
    42. Fortov, V., et al., Phase transition in a strongly nonideal deuteriumplasma generated by quasi-isentropical compression at megabarpressures. Physical review letters,2007.99(18): p.185001.
    43. Narayana, C., et al., Solid hydrogen at342GPa: no evidence for analkali metal. Nature,1998.393(6680): p.46-49.
    44. Ashcroft, N., Hydrogen dominant metallic alloys: high temperaturesuperconductors? Physical review letters,2004.92(18): p.187002.
    45. Eremets, M., et al., Superconductivity in hydrogen dominantmaterials: Silane. Science,2008.319(5869): p.1506-1509.
    46. Jin, X., et al., Superconducting high-pressure phases of disilane.Proceedings of the National Academy of Sciences,2010.107(22):p.9969-9973.
    47. Zhou, D., et al., Ab initio study revealing a layered structure inhydrogen-rich KH_{6} under high pressure. Physical Review B,2012.86(1): p.014118.
    48. Gao, G., et al., Superconducting high pressure phase of germane.Physical review letters,2008.101(10): p.107002.
    49. Gao, G., et al., High-pressure crystal structures andsuperconductivity of Stannane (SnH4). Proceedings of the NationalAcademy of Sciences,2010.107(4): p.1317-1320.
    50. Li, Y., et al., Superconductivity at~100K in dense SiH4(H2)2predicted by first principles. Proceedings of the National Academyof Sciences,2010.107(36): p.15708-15711.
    51. Brendel, G., E. Marlett, and L. Niebylski, Crystalline berylliumhydride. Inorganic Chemistry,1978.17(12): p.3589-3592.
    52. Smith, G.S., et al., The crystal and molecular structure of berylliumhydride. Solid state communications,1988.67(5): p.491-494.
    53. Yu, R., P.K. Lam, and J. Head, Lattice dynamics of crystallineberyllium hydride. Solid state communications,1989.70(11): p.1043-1046.
    54. Lebègue, S., et al., Quasiparticle and optical properties of BeH2.Journal of Physics: Condensed Matter,2007.19(3): p.036223.
    55. Vajeeston, P., et al., Structural stability of equation BeH2at highpressures. Applied physics letters,2004.84(1): p.34-36.
    56. Wang, B.-T., et al., Mechanical and chemical bonding properties ofground state BeH2. The European Physical Journal B,2010.74(3):p.303-308.
    57. Johnson, S.R., et al., Chemical activation of MgH2; a new route tosuperior hydrogen storage materials. Chemical communications,2005(22): p.2823-2825.
    58. Bastide, J.-P., et al., Polymorphisme de l'hydrure de magnesiumsous haute pression. Materials Research Bulletin,1980.15(12): p.1779-1787.
    59. Zachariasen, W., C. Holley, and J. Stamper, Neutron diffractionstudy of magnesium deuteride. Acta Crystallographica,1963.16(5):p.352-353.
    60. Kingma, K.J., et al., Transformation of stishovite to a denser phaseat lower-mantle pressures. Nature,1995.374(6519): p.243-245.
    61. Bolzan, A.A., et al., Structural studies of rutile-type metal dioxides.Acta Crystallographica Section B: Structural Science,1997.53(3):p.373-380.
    62. Haines, J. and J. Leger, X-ray diffraction study of the phasetransitions and structural evolution of tin dioxide at high pressure:ffRelationships between structure types and implications for otherrutile-type dioxides. Physical Review B,1997.55(17): p.11144.
    63. Bortz, M., et al., Structure of the high pressure phase γ-MgH2byneutron powder diffraction. Journal of alloys and compounds,1999.287(1): p. L4-L6.
    64. Vajeeston, P., et al., Structural stability and pressure-induced phasetransitions in MgH2. Physical Review B,2006.73(22): p.224102.
    65. Moriwaki, T., et al., Structural phase transition of rutile-typeMgH2at high pressures. Journal of the Physical Society of Japan,2006.75(7): p.4603.
    66. Vajeeston, P., et al., Pressure-Induced Structural Transitions inMgH2. Physical review letters,2002.89(17): p.175506.
    67. Zhang, L., et al., CaCl2-type high-pressure phase of magnesiumhydride predicted by ab initio phonon calculations. PhysicalReview B,2007.75(14): p.144109.
    68. Song, Y. and Z. Guo, Metastable MgH2phase predicted by firstprinciples calculations. Applied physics letters,2006.89(11): p.111911-111911-3.
    69. Bergsma, J. and B.O. Loopstra, The crystal structure of calciumhydride. Acta Crystallographica,1962.15(1): p.92-93.
    70. Wu, H., et al., Structure and vibrational spectra of calcium hydrideand deuteride. Journal of alloys and compounds,2007.436(1): p.51-55.
    71. Andresen, A., A. Maeland, and D. Slotfeldt-Ellingsen, Calciumhydride and deuteride studied by neutron diffraction and NMR.Journal of Solid State Chemistry,1977.20(1): p.93-101.
    72. Zintl, E. and A. Harder, Constitution of alkaline earth hydrides. Z.Elektrochem,1935.41: p.33.
    73. Tse, J., et al., Structural phase transition in CaH_{2} at highpressures. Physical Review B,2007.75(13): p.134108.
    74. Smith, J.S., et al., High-density strontium hydride: An experimentaland theoretical study. Solid state communications,2009.149(21): p.830-834.
    75. Verbraeken, M.C., E. Suard, and J.T. Irvine, Structural andelectrical properties of calcium and strontium hydrides. Journal ofMaterials Chemistry,2009.19(18): p.2766-2770.
    76. Sichla, T. and H. Jacobs, Single-crystal X-ray structuredeterminations on calcium and strontium deuteride, CaD2andSrD2. European journal of solid state and inorganic chemistry,1996.33(5): p.453-461.
    77. Luo, W. and R. Ahuja, Ab initio prediction of high-pressurestructural phase transition in BaH2. Journal of alloys andcompounds,2007.446: p.405-408.
    78. Smith, J.S., et al., High-pressure phase transition observed inbarium hydride. Journal of Applied Physics,2007.102(4): p.043520-043520-8.
    79. Kinoshita, K., et al., Pressure-induced phase transition of BaH2:Post Ni2In phase. Solid state communications,2007.141(2): p.69-72.
    80. Degtyareva, O., et al., Formation of transition metal hydrides athigh pressures. Solid state communications,2009.149(39): p.1583-1586.
    81. Gao, G., et al., Pressure-Induced Formation of Noble MetalHydrides. The Journal of Physical Chemistry C,2012.116(2): p.1995-2000.
    82. Antonov, V., Phase transformations, crystal and magneticstructures of high-pressure hydrides of d metals. Journal of alloysand compounds,2002.330: p.110-116.
    83. Somenkov, V., et al., Crystal structure and volume effects in thehydrides of d metals. Journal of the Less Common Metals,1987.129: p.171-180.
    84. Scheler, T., et al., Synthesis and properties of platinum hydride.Physical Review B,2011.83(21): p.214106.
    85. Zhou, X.-F., et al., Superconducting high-pressure phase ofplatinum hydride from first principles. Physical Review B,2011.84(5): p.054543.
    86. Miwa, K. and A. Fukumoto, First-principles study on3dtransition-metal dihydrides. Physical Review B,2002.65(15): p.155114.
    87. Rundle, R., Electron Deficient Compounds. The Journal of PhysicalChemistry,1957.61(1): p.45-50.
    88. Pimentel, G.C., The bonding of trihalide and bifluoride ions by themolecular orbital method. The Journal of chemical physics,1951.19: p.446.
    89. Pitzer, K.S., Electron deficient molecules. I. The principles ofhydroboron structures. Journal of the American Chemical Society,1945.67(7): p.1126-1132.
    90. Kulkarni, S.A., Dihydrogen bonding in main group elements: an abinitio study. The Journal of Physical Chemistry A,1998.102(39): p.7704-7711.
    91. Blum, E. and G. Herzberg, On the Ultra-violet AbsorptionSpectrum of Diborane. Journal of Physical Chemistry,1937.41(1):p.91-95.
    92. Price, W., The Absorption Spectrum of Diborane. The Journal ofchemical physics,1948.16: p.894.
    93. Anderson, W.E. and E. Barker, The Infra‐Red AbsorptionSpectrum of Diborane.1950.
    94. Price, W., The Structure of Diborane. The Journal of chemicalphysics,1947.15(8): p.614-614.
    95. Song, Y., C. Murli, and Z. Liu, In situ high-pressure study ofdiborane by infrared spectroscopy. The Journal of chemical physics,2009.131: p.174506.
    96. Murli, C. and Y. Song, Pressure-Induced Transformations inDiborane: A Raman Spectroscopic Study. The Journal of PhysicalChemistry B,2009.113(41): p.13509-13515.
    97. Torabi, A., Y. Song, and V.N. Staroverov, Pressure-InducedPolymorphic Transitions in Crystalline Diborane Deduced byComparison of Simulated and Experimental Vibrational Spectra.The Journal of Physical Chemistry C,2013.117(5): p.2210-2215.
    98. Barbee III, T., et al., High-pressure boron hydride phases. PhysicalReview B,1997.56(9): p.5148.
    99. Bolz, L., F. Mauer, and H. Peiser, Exploratory Study, by Low‐Temperature X‐Ray Diffraction Techniques, of Diborane and theProducts of a Microwave Discharge in Diborane. The Journal ofchemical physics,1959.31: p.1005.
    100. Smith, H.W. and W.N. Lipscomb, Single‐Crystal X‐RayDiffraction Study of β‐Diborane. The Journal of chemicalphysics,1965.43: p.1060.
    101. Yao, Y. and R. Hoffmann, BH3under Pressure: Leaving theMolecular Diborane Motif. Journal of the American ChemicalSociety,2011.133(51): p.21002-21009.
    102. Abe, K. and N. Ashcroft, Crystalline diborane at high pressures.Physical Review B,2011.84(10): p.104118.
    103. Kohn, W., Nobel lecture: Electronic structure of matter-wavefunctions and density functionals. Reviews of Modern Physics,1999.71(5): p.1253-1266.
    104. Sherrill, C.D., The Born-OppenheimerApproximation. http://vergil.chemistry.gatech.edu/notes/bo/bo.pdf,2005.
    105.谢希德和陆栋,固体能带理论.复旦大学出版社,1998.
    106.李正中著,《固体理论》第二版,高等教育出版社2002.
    107.黄昆和韩汝琦著,固体物理学.第一版,高等教育出版社,1988.
    108.吴代鸣著,固体物理基础.第一版,吉林教育出版社,2003.
    109. Born, M. and R. Oppenheimer, Zur quantentheorie der molekeln.Annalen der Physik,1927.389(20): p.457-484.
    110. Thomas, L.H. The calculation of atomic fields. in MathematicalProceedings of the Cambridge Philosophical Society.1927.Cambridge Univ Press.
    111. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. PhysicalReview,1964.136(3B): p. B864.
    112. Kohn, W. and L.J. Sham, Self-consistent equations includingexchange and correlation effects. Physical Review,1965.140(4A):p. A1133.
    113. Perdew, J.P. and W. Yue, Accurate and simple density functional forthe electronic exchange energy: Generalized gradientapproximation. Physical Review B,1986.33(12): p.8800.
    114. Andersson, Y., D.C. Langreth, and B.I. Lundqvist, van der WaalsInteractions in Density-Functional Theory. Physical ReviewLetters,1996.76(1): p.102.
    115. Kohn, W., Y. Meir, and D.E. Makarov, van der Waals Energies inDensity Functional Theory. Physical Review Letters,1998.80(19):p.4153.
    116. Perdew, J., K. Burke, and M. Ernzerhof, Generalized gradientapproximation made simple. Physical Review Letters,1996.77(18):p.3865-3868.
    117. Perdew, J. and Y. Wang, Pair-distribution function and itscoupling-constant average for the spin-polarized electron gas.Physical Review B,1992.46(20): p.12947-12954.
    118. Hammer, B., L.B. Hansen, and J.K. Norskov, Improved adsorptionenergetics within density-functional theory using revisedPerdew-Burke-Ernzerhof functionals. Physical Review B,1999.59(11): p.7413.
    119. Wu, Z. and R.E. Cohen, More accurate generalized gradientapproximation for solids. Physical Review B,2006.73(23): p.235116.
    120. Payne, M.C., et al., Iterative minimization techniques for ab initiototal-energy calculations: molecular dynamics and conjugategradients. Reviews of Modern Physics,1992.64(4): p.1045-1097.
    121. Ihm, J., A. Zunger, and M.L. Cohen, Momentum-space formalismfor the total energy of solids. Journal of Physics C: Solid StatePhysics,1979.12(21): p.4409.
    122. Sj stedt, E., L. Nordstr m, and D. Singh, An alternative way oflinearizing the augmented plane-wave method. Solid statecommunications,2000.114(1): p.15-20.
    123. Madsen, G.K., et al., Efficient linearization of the augmentedplane-wave method. Physical Review B,2001.64(19): p.195134.
    124. Huheey, J.E., et al., Inorganic chemistry: principles of structureand reactivity1983: Harper&Row New York.
    125.张跃等,计算材料学基础.北京航空航天大学出版社,2007.
    126. Cohen, M.L. and V. Heine, The fitting of pseudopotentials toexperimental data and their subsequent application. Solid statephysics,1970.24: p.37-248.
    127. Herring, C., A new method for calculating wave functions incrystals. Physical Review,1940.57(12): p.1169.
    128. Herring, C. and A. Hill, The theoretical constitution of metallicberyllium. Physical Review,1940.58(2): p.132.
    129. Hamann, D., M. Schlüter, and C. Chiang, Norm-conservingpseudopotentials. Physical review letters,1979.43: p.1494-1497.
    130. Bachelet, G., D. Hamann, and M. Schlüter, Pseudopotentials thatwork: From H to Pu. Physical Review B,1982.26(8): p.4199.
    131. Vanderbilt, D., Soft self-consistent pseudopotentials in ageneralized eigenvalue formalism. Physical Review B,1990.41(11): p.7892.
    132. Bl chl, P.E., Generalized separable potentials forelectronic-structure calculations. Physical Review B,1990.41(8):p.5414.
    133. Bl chl, P.E., Projector augmented-wave method. Physical ReviewB,1994.50(24): p.17953.
    134. Holzwarth, N., et al., Comparison of the projector augmented-wave,pseudopotential, and linearized augmented-plane-wave formalismsfor density-functional calculations of solids. Physical Review B,1997.55(4): p.2005.
    135. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to theprojector augmented-wave method. Physical Review B,1999.59(3): p.1758.
    136. Slater, J., An augmented plane wave method for the periodicpotential problem. Physical Review,1953.92(3): p.603.
    137. Huang, M.B.a.K., Dynamical Theory of Crystal Lattices. OxfordUniversity Press,1998.
    138. Giannozzi, P., et al., Ab initio calculation of phonon dispersions insemiconductors. Physical Review B,1991.43(9): p.7231.
    139. Gonze, X., First-principles responses of solids to atomicdisplacements and homogeneous electric fields: Implementation ofa conjugate-gradient algorithm. Physical Review B,1997.55(16):p.10337.
    140. Baroni, S., et al., Phonons and related crystal properties fromdensity-functional perturbation theory. Reviews of Modern Physics,2001.73(2): p.515.
    141. Nagamatsu, J., et al., Superconductivity at39K in magnesiumdiboride. Nature,2001.410(6824): p.63-64.
    142. Ekimov, E.A., et al., Superconductivity in diamond Nature,2004.428: p.542.
    143. Emery, N., et al., Superconductivity of Bulk CaC6. Physical ReviewLetters,2005.95(8): p.087003.
    144.张裕恒,《超导物理》:.中国科学技术大学出版社,1997.
    145. JR, S., Theory of Superconductivity: Perseus Books Group.1999.
    146. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Microscopic theoryof superconductivity. Physical Review,1957.106(1): p.162-164.
    147. Allen, P. and B. Mitrovic, Theory of superconducting Tc. SolidState Physics,1983.37: p.1-92.
    148. Grimvall, G., The electron-phonon interaction in metals1981:North-Holland Amsterdam, The Netherlands.
    149. Allen, P. and R. Dynes, Transition temperature of strong-coupledsuperconductors reanalyzed. Physical Review B,1975.12(3): p.905-922.
    150. El Gridani, A., R. Drissi El Bouzaidi, and M. El Mouhtadi, Elastic,electronic and crystal structure of BaH2: a pseudopotential study.Journal of Molecular Structure: THEOCHEM,2002.577(2): p.161-175.
    151. Segall, M., et al., First-principles simulation: ideas, illustrationsand the CASTEP code. Journal of Physics: Condensed Matter,2002.14(11): p.2717.
    152. Rappe, A.M., et al., Optimized pseudopotentials. Physical ReviewB,1990.41(2): p.1227.
    153. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation forexchange and correlation. Physical Review B,1992.46(11): p.6671.
    154. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zoneintegrations. Physical Review B,1976.13(12): p.5188-5192.
    155. Pfrommer, B.G., et al., Relaxation of crystals with thequasi-Newton method. Journal of Computational Physics,1997.131(1): p.233-240.
    156. Hsueh, H., et al., Vibrational properties of the layeredsemiconductor germanium sulfide under hydrostatic pressure:Theory and experiment. Physical Review B,1996.53(22): p.14806.
    157. Ma, Y., S.T. John, and D.D. Klug, First-principles study of themechanisms for the pressure-induced phase transitions inzinc-blende CuBr and CuI. Physical Review B,2004.69(6): p.064102.
    158. Li, Z., et al., Tetragonal high-pressure phase of ZnO predicted fromfirst principles. Physical Review B,2009.79(19): p.193201.
    159. Michel, D. and E. Ryba, The crystal structure of YbZn2. ActaCrystallographica,1965.19(4): p.687-688.
    160. Born M, a.H.K., Dynamical Theory of CrystalLattices (Clarendon,Oxford).1956.
    161. Decker, B. and J. Kasper, The crystal structure of a simplerhombohedral form of boron. Acta Crystallographica,1959.12(7):p.503-506.
    162. Oganov, A.R., et al., Ionic high-pressure form of elemental boron.Nature,2009.457(7231): p.863-867.
    163. H ussermann, U., et al., Metal-nonmetal transition in the borongroup elements. Physical review letters,2003.90(6): p.065701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700