氨解制氢催化剂的设计、制备、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机的全球化和环境污染的加剧,新型高效、环境友好的能源开发是我们面临的迫切问题。燃料电池因具有效率高、质量轻、污染小等优点,在可移动发电机、汽车、小型电动摩托车、便携式电子产品以及军事、太空等许多领域有潜在的应用前景。然而,燃料电池的商业化进程面临着氢的生产、存储、运输和成本等问题。解决这些问题的最有效的方法是选择合适的具有高能量密度的液体燃料催化转化在线产氢。氨作为一种富氢化合物,不含碳元素、能量密度高、价格低廉、携带方便、制造技术成熟,作为燃料电池燃料特别是可移动车载燃料具有很大的发展潜力。然而,氨解反应的研究尚处于初级阶段,氨解催化剂的制氢效率不能满足车载燃料电池,因此,设计和合成高效稳定的氨解催化剂具有重要的意义。
     本文首先研究了负载型钌基催化剂的氨解反应活性,考察了以介孔碳分子筛和多孔碳黑为载体的钌基催化剂的氨解反应性能,并比较了不同碳载体负载的钌基催化剂的氨分解性能,借用各种表征手段分析了载体和钌催化剂的结构,详细的研究了载体性质(孔结构、表面性能和石墨化程度)对钌基催化剂的金属分布状态及氨分解催化性能的影响以及金属粒子大小对氨解催化活性的影响,初步讨论了纯氨分解反应机理。其次,在上述氨解反应研究的基础上,选用介孔氧化铬为催化剂考察其氨分解性能。采用固相热分解方法成功的合成了介孔氧化铬材料,考察了反应的温度、反应时间、前驱体和表面活性剂配比以及表面活性剂的种类等制备条件对纳米介孔氧化铬材料结构性能的影响。采用各种表征手段表征了纳米介孔氧化铬材料的物理化学性质和结构,并与催化活性关联,初步探讨了氧化铬的结构和氨解催化活性之间的相互关系。
     研究的结果表明,用硬模板法制备的CMK-3介孔碳分子筛载体的比表面、孔分布和表面性能对活性组分钌的分散度有重要影响。高比表面和合适孔径分布有利于活性组分在载体上的充分分散。酸碱表面修饰对介孔碳分子筛的孔结构、载体的表面性质有较大的影响,同时影响了活性组分在载体上的分散。对介孔碳分子筛负载的钌催化剂的氨解活性研究发现,Ru的聚集状态、颗粒大小、载体的酸碱性和表面性能是影响催化剂的氨解催化活性的重要因素。
     用化学气相沉积法合成了高比表面多孔结构碳黑材料,反应温度和催化剂的组成等制备条件对碳黑材料的结构都要较大的影响。以碳黑为载体的钌催化剂的氨分解活性明显高于CMK-3介孔碳分子筛负载的钌催化剂,不同的制备条件得到的碳黑载体的钌催化剂的氨解性能也有明显的差别,本文引入了Vnano参数来描述碳黑样品的晶粒大小,用来解释碳黑的结构对氧化反应活性和氨解催化性能影响并建立了较好的定量关系。
     在以上研究的基础上,进一步考察了不同碳载体负载钌催化剂的氨解性能发现,载体的孔结构影响活性组分的分散度和颗粒大小,对氨解活性的影响无规律;载体的电子效应对氨解活性有较大的影响,这主要是因为载体的导电性越强,越有利于电子在载体和活性组分间的迁移。控制合适的活性组分颗粒大小对于氨解反应至关重要,合适的钌颗粒大小为3.0-5.0nm。
     分别用柠檬酸、十六烷基三甲基溴化铵和P123表面活性剂为导向剂,采用固相热分解的方法成功地合成了纳米介孔氧化铬材料。通过控制反应的温度、时间和原料配比得到具有微孔-介孔复合结构的纳米氧化铬。不同的表面活性剂所得的纳米介孔氧化铬材料的结构和性能差异较大。将氧化铬材料用于氨分解反应,发现氧化铬具有一定的氨解活性,在氨分解过程中,催化剂的组成发生了变化,氧化物部分氮化,氨解性能并没有明显的变化,表明氮化铬是氨解反应的活性中心。
In the context of globalization of energy crisis and severity of environmental pollution, the development of new efficient environment-friendly energy sources is of great importance and high emergency. Due to high efficiency, low weight and pollution, fuel cells have good potential application in many fields such as mobile generators, automobiles, mini electric motors, portable electronics, and military, aerospace, etc. Nevertheless, the biggest obstacles to commercial fuel cells are hydrogen production, storage, transportation and cost. The most effective way to solve these problems is on-board hydrogen generation by liquid fuels with high hydrogen density. Due to free COx, high energy density and hydrogen capacity, catalytic ammonia decomposition is promising as pure hydrogen carrier for fuel cells. However, the catalytic activity of ammonia decomposition is still low and could not meet the demand of on-board fuel cells. Therefore, the design and synthesis of highly efficient and stable ammonia catalyst is of great significance.
     In this paper, the activities of Ru catalysts supported on different carbons were studied. The relationship between the nature of carbon supports (including pore structure, surface property, and graphitization) and Ru dispersion on the supports was investigated. And the influence of properties of carbon supports as well as metal particle size on catalytic performance was studied in detail. The mechanism of ammonia decomposition was discussed primarily. On the basis of results above mentioned, mesoporous metal oxides were applied for catalytic decomposition of ammonia. A novel mesoporous chromium oxide was synthesized by solid thermal decomposition. The synthesis conditions of temperature, time, ratio of precursors and surfactants as well as surfactant species were studied for their influence on structure of the mesoporous chromium oxides. In addition, the catalytic activities of ammonia decomposition on Cr2O3 catalysts were discussed primarily.
     It is showed that the properties of CMK-3 mesoporous carbon molecular sieve synthesized by hard template method have great influence on Ru dispersion. Higher specific surface area and appropriate pore size distribution is advantageous for sufficient dispersion of Ru on the supports. The chemical treatment of carbon support produces significant changes in carbon surface chemistry and these in turn can have dramatic effects on both catalyst dispersion and catalytic activity. In conclusion, Ru state and particle size, as well as acid-base properties and surface properties of the supports are important factors for ammonia decomposition.
     Alternately, high surface area porous carbon blacks were synthesized by chemical vapor decomposition (CVD). The conditions such as reaction temperature and catalyst composition are crucial to the structure of the carbon blacks. Ru catalysts supported on carbon blacks showed distinctly higher activities of ammonia decomposition compared with the one supported on CMK-3. And different structure of carbon blacks as Ru supports showed obviously different catalytic activities for ammonia decomposition. And a parameter, Vnano, was introduced in this paper for characterization of the size of carbon crystallite, which explained quantitatively the influence of the structure of the carbon blacks on oxidation and ammonia decomposition activity.
     Further studies on the performance of Ru catalysts loaded on different carbons showed that pore structure of supports has influence on Ru dispersion and particle size, and has no evident influence on catalytic activities of ammonia decomposition. The electronic effect of supports and Ru particle size has notable influence on catalytic activity. The proper Ru particle size is 3.0-5.0nm.
     Mesoporous chromium oxides were successfully synthesized by solid thermal decomposition with citric acid, CTAB and P123 as structure directing agent. The pore structure and size can be tuned by the synthesis condition. The results of catalytic performance showed that chromium oxide has certain ammonia decomposition activity. The composition of catalyst changed to chromium nitride with ammonia decomposition, but the performance of catalyst showed no significant reduction, which means chromium nitride also is the active site of ammonia decomposition.
引文
[1] Applrby AJ,Foulkes FR,Fuel Cell Handbook,Van Nostrand Reinhold,New York,1989:1-10.
    [2] Palo DR,Holladay JD,Rozmiarek RT,et al. Development of a soldier- portable fuel cell power system Part I: A bread-board methanol fuel processor,J. Power Sources,2002;108:28-.
    [3] Dyer CK,Fuel cells for portable applications,J. Power Sources,2002;106:28-.
    [4] Hu J,Wang Y,VanderWiel D,et al. Fuel processing for portable power applications,Chem. Eng. J.,2003;93:55.
    [5] 徐维正,直接甲醇燃料电池进入实用阶段,精细与专用化学品,2006;14(1):26-28.
    [6] 顾约伦,IEA 谈氢和燃料电池的未来发展,高桥石化,2005;20(3):55-55.
    [7] 邵庆龙,质子交换膜燃料电池的建模与鲁棒控制,上海交通大学博士论文,2004:6-6.
    [8] Lee SM,Park SK,Choi YC,et al. Hydrogen adsorption and sorage in carbonnanotubes,Syn. Metals,2000;113:209-216.
    [9] Das L M,Hydrogen-oxygen reaction mechanism and implication to hydrogen engine combustion,Int. J. Hydrogen Energy,1996;21(9):789-800.
    [10] 胡子龙,贮氢材料,北京:化学工业出版社,2000.
    [11] Zhao HZ , Effects of particle size on the electrochemical properties of Mm(NiCoMnAl) alloy,J. Alloys Comp.,1998;270(1-2):L7-L9.
    [12] Kazuhide T,Improvement of hydrogen storage properties of melt-spun Mg-Ni-RE alloys by nanocrystallization, J. Alloys Comp.,1999;293-295:521-525.
    [13] Jung HW,Electrochemical characteristics of nanocrystalline ZrCr2 and Mg2Ni type metal hydrides prepared by mechanical alloying,J. Alloys Comp.,1999;293-295:556-563.
    [14] Zaluska A,Nanocrystalline Magnesium for hydrogen storage,J. Alloys Comp.,1999;288(1-2):217-225.
    [15] 刘少文,吴广义,制氢技术现状及发展,贵州化工,2003;28(5):4-9.
    [16] 邵玉艳,尹鸽平,高云智,氢经济面临的机遇和挑战,电源技术,2005;29(6):410-415.
    [17] Grant AW,Larsen JH,Perez CA,Methanol decomposition on Pt/ZnO-Zn model catalysts,J. Phys. Chem. B,2001;105(38):9273-9279.
    [18] Moon DJ,Ryu JW,Partial oxidation reforming catalyst for fuel cell powered vehicles applications,Catal. Lett.,2003;89(3):207-212.
    [19] Trimm DL,Adesina AA,Cant PNW,The conversion of gasoline to hydrogen for on-board vehicle application,Catal. Today,2004;93-95:17-22.
    [20] Levent M,Gunn DJ,Bousiffi MA,Production of hydrogen rich gas from steam reforming of methane in an automatic catalytic microreactor,Int. J. Hydrogen Energy,2003;28(7):945-959.
    [21] Chan SH,Goh SK,Jiang SP,A mathematical model of polymer electrolyte fuel cell with anode CO kinetics,Electrochimica Acta.,2003;48(13):1905-1919.
    [22] Baschuk JJ,Li XG,Carbon monoxide poisoning of proton exchange membrane fuel cells,Int. J. Energy Res.,2001;25(8):695-713.
    [23] Qi ZG,He CZ,Kaufman A,Effect of CO in the anode fuel on the performance of PEM fuel cell cathode,2002;J. Power Scources,2002;111:239-247.
    [24] 毛宗强,刘志华,中国氢能发展战略思考,电池,2002;32(3):150-152.
    [25] Devillers C , European integrated hydrogen project contact , 2000 ;JOE3-CT97-0188.
    [26] 质疑氢经济,科学,2004;7:34-41.
    [27] 江茂修,左丽华,用于车用燃料电池的车载制氢技术,汽车工艺与材料,2001;(4):1-6.
    [28] 张翔宇,李振花,甲烷部分氧化制合成气催化剂的研究进展,化工进展,2002;21(12):903-907.
    [29] 莫若飞,蒋毅,郑林等,催化裂解甲烷制氢研究进展,天然气化工,2002;27(3):43-47.
    [30] Choudhary TV,Goodman DW,CO-free fuel processing for fuel cell applications, Catal. Today,2002;65-78.
    [31] 罗晖,蔡荣海,《氢经济—机遇、成本、障碍和研发需求》报告评述,软科学动态,2006;2:155-157.
    [32] 陈兵,董新法,林维明,甲醇燃料电池电动车上制氢方法研究进展,2000;25(1):47-50.
    [33] 亓爱笃,王树东,付桂芝等,甲醇水蒸气、氧气重整制氢研究进展—质子交换膜燃料电池氢源的开发,石油与天然气化工,1999;28(2):82-85.
    [34] Steinberg M,Cheng H,Modern and prospective technologies for hydrogen production fix an fossil fuels,Int. J Hydrogen Energy,1989;14:797-820.
    [35] 王毅波,21 世纪理想的能源—氢能,能源研究与信息,2003;19(2):63-68.
    [36] 吴创之,马隆龙,生物质能现代化利用技术,化学工业出版社,北京,2003.
    [37] Choudhary TV , Svadinaragana C , Goodman DW , Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications,Catal. Lett.,2001;72(3-4):197-201.
    [38] Goetsch DA,Schmit SJ,WO Patent,0187770,2001.
    [39] Yin SF,Zhang QH, Xu BQ,et al. Investigation on the catalysis of COx-free hydrogen generation from ammonia,J. Catal.,2004;224(2):384-396.
    [40] Papapolymerou G,Bontozoglou V,Decomposition of NH3 on Pd and Ir- Comparison with Pt and Rh,J. Mol. Catal. A: Chem.,1997;120(1-3):165-171.
    [41] Bradford MCJ,Fanning PE,Vannice MA,J. Catal.,1997;172:479
    [42] Sheu SP , Karge HG , Schlogl R , Characterization of activated states of ruthenium-containing zeolite NaHY,J. Catal.,1997;168(2):278-291.
    [43] Chellappa AS,Fischer CM,Thomson WJ,Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications,Appl. Catal. A,2002;227(1-2):231-240.
    [44] Kordesch K,Hacker V,Fankhauset R,et al. WO Patent 0208117,2002.
    [45] Itoh M,Masuda M,Machida K-I,Hydrogen generation by ammonia cracking withiron metal-rare earth oxide composite catalyst,Mater. Trans,2002;43(11):2763-2767.
    [46] Choi JG,The influence of surface properties on catalytic activities of tantalum carbides,Appl. Catal. A,1999;184(2):189-201.
    [47] Choi JG,Ammonia decomposition over vanadium carbide catalysts,J. Catal.,1999;182(1):104-116.
    [48] Liang CH,Li WZ,Xin Q,Li C,Catalytic decomposition of ammonia over nitrided MoNx/α-Al2O3 and NiMoNy/Al2O3 catalysts,Ind. Eng. Chem. Res.,2000;39(10):3694-3697.
    [49] Arabczyk W,Narkiewicz U,A new method for in situ determination of number of active sites in iron catalysts for ammonia synthesis and decomposition,4th International Symposium effects of Surface Hetrogeneity in Adsorption and Catalysis on Solids (ISSHAC IV),2001;196(1-4):423-428.
    [50] Hendershot RJ,Vijay R,Feist BJ,et al. Multivariate and univariate analysis of infrared imaging data for high-throughput studies of NH3 decomposition and NOx storage and reduction catalysts,Meas. Sci. Tech.,2005;16(1):302-308.
    [51] Ganley JC,Thomas FS,Seebauer EG,A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia,Catal. Lett.,2004;96(3-4):117-122.
    [52] 潘履让,固体催化剂的设计与制备,南开大学出版社,1993:24.
    [53] Yin SE,Xu BQ,Zhou XP,Au CT,A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications,Appl. Catal. A,2004;277(1-2):1-9.
    [54] Kinoshita K,Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolyte,J. Electrochem. Soc.,1990;137(3):845-848.
    [55] Rarog-Pilecka W,Szmigiel D,Komornicki A,et al. Catalytic properties of small ruthenium particles deposited on carbon: Ammonia decomposition studies,Carbon,2003;41(3):579-625.
    [56] Dumesic JA,Boudart M,Catalytic synthesis and decomposition of ammonia,Catal Chem of Nitrogen Oxides,Symp,Proc,1974:95-117.
    [57] Mhadeshwar AB,Kitchin JR,Barteau MA,et al. The role of adsorbate-adsorbate interactions in the rate controlling step and the most abundant reaction intermediate of NH3 decomposition on Ru,Catal. Lett.,2004;96(1-2):13-22.
    [58] Yin SF,Xu BQ,Zhu WX,Carbon nanotubes-supported Ru catalyst for the generation of COx-free hydrogen from ammonia,Catal. Today,2004;93-95:27-38.
    [59] Djéga-Marodadssou J,Shin CH,Bugli G,Tamaru’s model for ammonia decomposition over titanium oxynitride,J. Mol. Catal. A,1999;144:263-267.
    [60] Choi JG,Ha J,Hong JW,Synthesis and catalytic properties of vanadium interstitial compounds,Appl. Catal. A,1998;168:47-56.
    [61] Arabczyk W, Zamlynny J,Study of the ammonia decomposition over iron catalysts,Catal. Lett.,1999;60:167-171.
    [62] Willey RJ,Fox MF,II. Ammonia decomposition over 430ss etched metal catalysts,J. Catal.,1988;112:590.
    [63] Junichi Y,Kotato T,Tatsuo S,Decomposition of ammonia and manufacture of hydrogen,JP05,1993;330:802.
    [64] Wang SJ,Yin SF,Li L,et al. Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia,Appl. Catal. B,2004;52:287-299.
    [65] Jedynak A,Kowalczyk Z,Szmigiel D,et al. Ammonia decomposition over the carbon-based iron catalyst prompted with potassium,Appl. Catal. A,2002;237(1-2):223-226.
    [66] Love KS,Brunauer S,The effect of alkali promoter concentration on the decomposition of ammonia over doubly promoted iron catalysts,1942;64:745-751.
    [67] Elofson RM,Gadallah FF,US Patent 4142993,1979.
    [68] McCarroll JJ,Tennison SR,Wilkinson NP,US Patent 4600571,1986.
    [69] Kowalczyk Z,Krukowski M,Rarg-Pilecka W,et al. Carbon-based ruthenium catalyst for ammonia synthesis: Role of the barium and cesium promoters and carbon support,Appl. Catal. A,2003;248(102):67-73.
    [70] Kowalczyk Z,Jodzis S,Rarog W,et al. Carbon-supported ruthenium catalyst for the synthesis of ammonia. The effect of the carbon support and barium promoter on the performance,Appl. Catal. A,1999;184(1):95-102.
    [71] Cisneros MD,Lunsford JH,Characterization and ammonia-synthesis activity of ruthenium zeolite catalysts,J. Catal.,1993,141(1):191-205.
    [72] Zhang J,Xu HY,Li WZ,Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect,Appl. Catal. A,2005;296:257-267.
    [73] Yin SF,Xu BQ,Ng CF,et al. Nano Ru/CNTs: a highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition,Appl. Catal. B,2004;48:237-241.
    [74] Yin SF,Xu BQ,Wang SJ,et al. Catal. Lett.,2004;96:113.
    [75] Zhang J,Xu HY,Jin XL,et al.,Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La–Al2O3 catalysts for NH3 decomposition,Appl. Catal. A,2005;290:87-96.
    [76] Zhang J , Xu HY , Ge QJ , Highly efficient Ru/MgO catalysts for NH3 decomposition:Synthesis,characterization and promoter effect,Catal. Comm.,2006;7:148-152.
    [77] Yin SF,Xu BQ,Wang SJ,et al. Nanosize Ru on high-surface-area superbasic ZrO2-KOH for efficient generation of hydrogen via ammonia decomposition,Appl. Catal. A,2006;301:202-210.
    [78] Li XK,Ji WJ,Zhao J,et al. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15,J. Catal.,2005;236:181-189.
    [79] Santra AK,Min BK,Yi CW,et al. J. Phys. Chem. B,2002;106:340.
    [80] Davidson DF,Kohse-Hoinghaus K,Chang AY,Pyrolysis Mechanism forammonia,Int. J. Chem. Kinetics,1990;22(5):513-535.
    [81] Dietrich H,Geng P,Jacobi K,et al. J. Chem. Phys.,1996;104:375.
    [82] Tsai W,Weinberg WH,J. Phys. Chem.,1987;91:5307.
    [83] Egawa C,Nishida T,Naito S,et al. Ammonia decomposition on (1110) and (001) surfaces of ruthenium,J. Chem. Soc. Faraday Trans. I,1984;80:1595-1604.
    [84] Jacobi K,Wang Y,Fan CY,et al. Adsorption and thermal dehydrogenation of ammonia on Ru(1121),J. Chem. Phys.,2001:115:4306
    [85] Hagedom CJ,Weiss MJ,Weinberg WH,Ammonia decomposition on Ru(001) using gas-phase atomic hydrogen,J. Vac. Sci. Technol. A,1998;16:984-989.
    [86] Tamaru K,A new general mechanism of ammonia synthesis and decomposition on transition metals,Ace. Chem. Res.,1988;21:88-94.
    [87] Mortensen H,Diekh?ner L,Baurichter A,et al. Dynamics of ammonia decomposition on Ru(0001),J. Chem. Phys.,2000;113(16):6882-6886.
    [88] Stolbov S,Rahman TS,First-principles study of some factors controlling the rate of ammonia decomposition on Ni and Pd surfaces,J. Chem. Phys.,2005;123( 204716):1-5.
    [89] Chellappa AS,Fischer CM,Thomson WJ,Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications,Appl. Catal. A,2002;227:231-240.
    [90] Rosowshi F,Hinrichsen O,Muhler M,et al. The TPD of N2 from a Ru/MgO catalyst used for ammonia synthesis,Catal. Lett.,1996;36:229.
    [91] Kowalczyk WRZ,Sentek J,Skladanowski D,et al. Decomposition of ammonia over potassium promoted ruthenium catalyst supported on carbon,Appl. Catal. A,2001;208:213-216.
    [92] Bradford MCJ,Fanning PE,Vannice MA,Kinetics of NH3 decomposition over well dispersed Ru,J. Catal.,1997;172:479.
    [93] Sang HJ,Seong JC,Hwhan O,et al. Ordered nano-porous arrays of carbon supporting high dispersion of platinum nanoparticles,Nature,2001;412:169-173.
    [94] Xing W,Bai P,Li ZF,et al. Synthesis of ordered nanoporous carbon and itsapplication in Li-ion battery,Electrochimica. Acta.,2006;51(22):4626-4633.
    [95] Xing W,Qiao SZ,Ding RG,et al. Superior electric double layer capacitors using ordered mesoporous carbons,Carbon,2006;44(2):216-224.
    [96] Jang JH,Han S,Hyeon T et al. Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes,J. Power Scources,2003;123(1):79-85
    [97] Ferdi S,Non-siliceous mesostructured and mesoporous materials,Chem. Mater.,2001;13 (10):3184-3795.
    [98] Kruk M,Jaroniec M,Ryoo R,et al. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates,J. Phys. Chem. B, 2000;104(33):7960-7968.
    [99] Lu AH,Schmidt W,Taguchi A,et al. Taking nanocasting one step further: Replicating CMK-3 as a silica material,Angew. Chem. Int. Ed.,2002;41 (18):3489-3492.
    [100] Lu AH,Li WC,Schmidt W,et al. Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure,Carbon,2004;42(14):2939-2948.
    [101] Zhao DY,Feng JL,Stucky GD,et al. Science,1998;279(23):548-552.
    [102] Boehm HP,Some aspects of the surface chemistry of carbon blacks and other carbons,Carbon,1994;32(5):759-769.
    [103] Zhu ZH,Radovic LR,Lu GQ,Effect of acid treatment of carbon on N2O and NO reduction by carbon-supported copper catalysts,Carbon,2000;38: 451-464.
    [104] Jacobsen CJH,Dahl S,Hansen PL,et al. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis,J. Mol. Catal A,2000;163(1–2):19–26.
    [105] Tsagaropoulos G,Eisenberg A,Dynamic mechanical study of the factors affecting the 2 glass-transition behavior of filled polymers-similarities and differences with random ionomers,Macromolecules,1995;28(18):6067-77.
    [106] Kraus G,Reinforcement of elastomers by carbon-black,Rubber Chem. Technol.,1978;51(2):297-321.
    [107] Mironi-Harpaz I , Narkis M , Thermoelectric behavior (PTC) of carbon black-containing TPX/UHMWPE and TPX/XL-UHMWPE blends,J. Polym. Sci. B,2001;39(12):1415-28.
    [108] Breuer O,Tchoudakov R,Narkis M,et al. The interrelation between morphology, resistivity, and flow properties of carbon black-containing HIPS EVA blends,J. Appl. Polym. Sci.,1999;73(9):1655-68.
    [109] Kaufman S,Slichter WP,Davis DD,Nuclear magnetic resonance study of rubber-carbon black interactions,J. Polym. Sci. B,1971;9(5):829.
    [110] Calahorra A,Investigation of electrical resistivity-pigment volume concentration relationship in carbon-black filled conductive paint,J. Coat Technol.,1988;60(757):25-30.
    [111] Fransson L,Eriksson,Edstrom K,et al. Influence of carbon black and binder on Li-ion batteries,J. Power Sources,2001;101(1):1-9.
    [112] Horita K,Nishibori Y,Ohshima T,Surface modification of carbon black by anodic oxidation and electrochemical characterization,Carbon,1996; 34(2):217-22.
    [113] Faubert G , Lalande G , Cote R , et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells,Electrochim. Acta.,1996;41(10):1689-701.
    [114] Hills CW,Nashner MS,Frenkel AI,et al. Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursor,Langmuir,1999;15(3):690-700.
    [115] Auer E,Freund A,Pietsch J,et al. Carbons as supports for industrial precious metal catalysts,Appl. Catal. A,1998;173(2):259-271.
    [116] 雷忠利,聚乙烯/碳黑导电复合材料的 PTC 特性及老化行为的研究,吉林大学博士论文,2002;p6-9.
    [117] Biscoe J,Warren BE,An X-Ray Study of Carbon Black,J. Appl. Phys.,1942;13(6):364-371.
    [118] 李军容,碳黑/聚苯乙烯类导电复合材料的气敏性能研究,中山大学博士论文,2004;p2-3.
    [119] Bregazzi M,Acetylene black,Electrochem. Technol.,1967;5(11-1):507.
    [120] Mantell CL,Carbon and graphite handbook,Intersience,New York,1968:76.
    [121] Je JH,Lee JY,A new process of isotropic pyrolytic carbon deposition,Carbon,1984;22(2):230-236.
    [122] Sorensen RZ,Nielsen LJE,Jensen S,et al. Catalytic ammonia decomposition: miniaturized production of COx-free hydrogen for fuel cells,Catal. Commun.,2005;6(3):229-32.
    [123] Deshmukh SR, Mhadeshwar AB, Vlachos DG. Microreactor modeling for hydrogen production from ammonia decomposition on ruthenium. Ind Eng Chem Res 2004; 43(12):2986-99.
    [124] Choudhary TV, Santra AK, Sivadinarayana C, Min BK, Yi CW, Davis K, Goodman DW. Ammonia decomposition on Ir(100): from ultrahigh vacuum to elevated pressures. Catal Lett 2001; 77(1-3):1-5.
    [125] Soneda Y,Duclaux L,Bsguin F,Synthesis of high quality multi-walled carbon nanotubes from the decomposition of acetylene on iron-group metal catalysts supported on MgO,Carbon,2002;40:955-971.
    [126] Jeong HJ,An KH,Lim SC,et al. Narrow diameter distribution of single walled carbon nanotubes grown on Ni–MgO by thermal chemical vapor deposition,Chem. Phys. Lett.,2003;380(3-4):263-268.
    [127] Reshetenko TV,Avdeeva LB,Ismagilov ZR,et al. Catalytic filamentous carbon: Structural and textural properties,Carbon,2003;41(8):1605-15.
    [128] Pierson HO,Handbook of carbon diamond and fullerenes,Park Ridge NJ,Noyes,1993:87-94.
    [129] Donnet JB,Bansal RC,Wang MJ,Carbon Black,New York,1993:91-93.
    [130] Grisdale RO,J. Appl. Phys.,1953;24:1288.
    [131] Robert S,Ggeorg SD,Eugen U et al. J. Phys. Chem. B,2004;108:1888.
    [132] Haynes BS,Wangner HG,Soot formation,Progress in Energy and Combustion Science,1981;7:229-273.
    [133] 钟北京,刘晓飞,碳黑颗粒生长模型的初步研究,工程热物理学报,2005;25(5):894-896.
    [134] Henning GR,Proceeding of the fifth conference in carbon,Vol. 1,Pergamon Press,New York,1962;p123.
    [135] Auer E,Freund A,Pietsch J,et al. Carbon as supports for industrial precious metal catalysts,Appl. Catal. A,1998;173:259-271.
    [136] Rodriguez-Reinoso F,Porosity in carbons: Characterization and applications,(Patrick J W Ed),Edward Arnold,London,1995:253.
    [137] Rodriguez-Reinoso F,The role of carbon materials in heterogeneous catalysis,Carbon, 1998;36(3):159-175.
    [138] Cavani F,Koutyrev M,Trifiro F,et al. Chemical and physical characterization of alumina-supported chromia-based catalysts and their activity in dehydrogenation of isobutene,J. Catal.,1996;158(1):236-250.
    [139] Hogan JP,Ethylene polymerization catalysis over chromium oxide,J. Poly. Sci. Part A: Poly. Chem.,1970;8(9):2637.
    [140] Uhm JH,Shin MY, Dong JZ,et al. Selective oxidation of H2S to elemental sulfur over chromium oxide catalysts,Appl. Catal. B,1999;22(4):293-303.
    [141] 腾飞,宁桂玲,魏国等,微乳纳米反应器制备单分散性球形氧化铬超细粉的研究,中国粉体技术(专辑),2000,6:267-269.
    [142] Abecassis WM,Rotter H,Landau MV,et al. Texture and nanostructure of chromia aerogels prepared by urea-assisted homogeneous precipitation and low-temperature supercritical drying,J. Non-Crystalline Solids,2003;318(1-2):95-111.
    [143] Burwell RL,Taylor KC,Haller GL,Texture of chromium oxide catalysts,J. Phys. Chem.,1967;71(13):4580-4581.
    [144] Ayyappan S,Ulagappan N,Rap CNR,Mesostructured lamellar chromium oxide,J. Mater. Chem.,1996;6(10):1737-1738.
    [145] Sinha AK,Suzuki K,Three-Dimensioal mesoporous chromium oxide: A highly efficient material for the elimination of volatile organic compounds,Angew. Chem. Int. Ed.,2005;44(2):271-273.
    [146] Jiao K,Zhang B,Yue B,et al. Growth of porous single-crystal Cr2O3 in a 3D mesopore system,Chem. Comm.,2005;(45):5618-5620.
    [147] Zhu KK,Yue B,Zhou WZ,et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15,Chem. Comm.,2003;(1):98-99.
    [148] 刘欣梅,阎子峰,Lu GQ,介孔纳米二氧化锆的微观结构及其应用,科学通报,2004;49(6):522-527.
    [149] 刘欣梅,阎子峰,逯高清,层状和 MSU 结构的介孔纳米二氧化锆,化学学报,2005;63(18):1669-1774.
    [150] Lang JP,Xing XQ,Solid state synthesis of Mo(VI) S cluster compounds at low heating temperatures,J. Solids State Chem.,1994;108(1):118-142.
    [151] Li QW,Luo GA,Shu YQ,Response of nanosized Cobalt oxide electrodes pH sensors,Anal. Chim. Acta.,2000;409(1-2):137-142.
    [152] 周益明,忻新泉,低温固相合成化学,无机化学学报,1999;15(3):273-292.
    [153] 李道华,叶向荣,忻新泉,纳米材料的室温(湿)固相化学反应合成,化学研究与应用,1999;11(4):415-418.
    [154] Malecki A,Gajerski R,Labus S,et al. Mechanism of thermal decomposition of d-metals nitrates hydrates,J. Therm. Anal. Cal.,2000;60(1):17-23.
    [155] 赵国玺,朱步瑶,表面活性剂作用原理,中国轻工业出版社,北京,2003;p. 299
    [156] Schraml-Marth M,Wokaun A,Curry-Hyde HE,et al. Surface structure of crystalline and amorphous chromia catalysts for the selective catalytic reduction of nitric oxide III. Diffuse reflectance FT-IR study of ammonia desorption from Br?nsted and Lewis acid sites,J. Catal.,1992,133(2): 431-444
    [157] Curry-Hyde HE,Musch H,Baiker A,Surface structure of crystalline and amorphous chromia catalysts for the selective catalytic reduction of nitric oxide I. Characterization by temperature-programmed reaction and desorption, J. Catal.,1992,133(2):397-414

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700