几种单质炸药燃烧性能及应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对几种单质炸药燃烧性能及应用进行了研究。研究采用密闭爆发器实验对炸药的燃烧性能参数(如火药力、余容等)进行了测试,并采用VLWR状态方程方法对这些燃烧参数进行了热力学计算,获得与实验吻合的燃烧性能参数。利用计算结果和密闭爆发器实验结果指导了燃气做功元件装药设计,实验表明输出最大压力预估值与实验值接近。具体如下:
     (1)密闭爆发器实验
     选定HMX、RDX、HNS-Ⅰ和B/KNO_3作为实验样品,进行了密闭爆发器内燃烧实验研究。实验测得了它们的火药力、余容、燃速系数、压力指数等燃烧性能参数。通过对测试结果的分析表明,在特定条件下具有相同原子组成比例的炸药,其燃烧性能相近;同种炸药的药柱和药粉燃烧性能差异较大;在211.7~635.0μm范围内,HMX、RDX颗粒越细,燃烧越快。
     (2)炸药及点火药燃烧性能参数计算
     应用热力学程序VLWR计算HMX、RDX、HNS-Ⅰ及点火药B/KNO_3的燃烧性能参数及燃烧平衡产物组成,得到了与密闭爆发器实验相近的燃烧性能参数。标定了硼系氧化产物的热力学函数系数,并通过热力学计算给出了B/KNO_3的燃烧产物组成。通过HMX、RDX计算结果与实验结果的比较分析,表明实际燃烧反应接近平衡。对计算结果的分析表明,负氧平衡系数较大的HNS-Ⅰ燃烧性能受装填密度(压力)等的影响较大。
     (3)燃气做功元件应用
     设计了燃气做功元件,并利用VLWR状态方程方法和密闭爆发器实验结果对做功元件装药量进行了计算。实验结果表明,燃气做功元件的最大输出压力的实测值与理论设计值接近,表明采用VLWR状态方程方法和密闭爆发器实验结果指导燃气做功元件装药设计是可行的。
The combustion characteristics and application of several explosives were studied. The combustion parameters such as co-volume and impetus of the studied explosives were obtained through two methods, one is the standard Closed Bomb Test (CBT) and the other is theoretic calculating with VLWR EOS. The calculated values agreed well with experimental data. Furthermore, the VLWR calculated results were used to guide the designation of the combustion pot, whose measured output pressure is close to the designed output value. (l)The Closed Bomb Test
    The tested samples included HMD, RDX, HNS-I and B/KNO_(3). The combustion p-t curves of each sample were measured through CBT. The co-volume, impetus, combustion velocity coefficient and pressure exponent were obtained through these combustion p-t curves. The test results show that: 1. under giving conditions, two explosives with the same atomic number ratio have similar combustion performances, 2.the pressed charge and the powder charge shows observably different combustion characteristics, 3.within 211.7μm-635.0μm, decreasing the grain size may enhance combustion velocity. (2)Calculation of the combustion parameters
    The combustion parameters of HMX, RDX, HNS-I and B/KNO_(3) were calculated with VLWR code. The thermodynamic function of boron oxide was fitted by method of the least square to JANAF thermo-chemical table, and their coefficients were determined. At the same time, the composition of combustion products were given out. The calculated combustion parameters agree well with CBT results. The calculated results also show that, for HNS-I explosive, combustion performance changes significantly with loading densities. (3)Application in the combustion pot
    Based on the calculated data and experimental results, the combustion pot was designed, and its output pressure was measured. The measured output pressure was close to the designed value, which indicate that using the calculated value and experimental data to guide the designation of the combustion pot is reasonable and practical.
引文
[1] 蒋小华等.GF国防科技报告[M] ,2001.
    [2] 杨文宝等.硝胺发射药的热行为与燃烧性能关系[J].火炸药,1994:1:1-5.
    [3] 张江居.硝胺发射药燃速曲线研究[J].含能材料,1996;3:97-101.
    [4] 梁汉冬等.黑索金和奥克托金的F-Tp曲线特征[J].北京理工大学学报,1997;1:36~40.
    [5] 李利等.含黑索今酮的火药热分解及其燃烧性能研究[J].火炸药学报,1998:3:10~13.
    [6] 阴翠梅等.AL-RDX-CMDB推进剂的高压热分解与燃烧性能的相关性[J].固体火箭技术,1998;3:35~39.
    [7] 杨栋等.重氢同位素效应在硝胺热解和燃烧机理研究中的应用[J].火炸药,1994;1:23~25.
    [8] 王大安等.提高固体推进剂燃速的研究[J] .火炸药,1987;3:19~23.
    [9] 涂永珍等.硝胺推进剂燃烧性能的实验研究[J].含能材料,1996:1:18~23.
    [10] 胡栋等.黑索金粉末粒径对快速反应特性的影响[J].含能材料,1998:1:1~7.
    [11] 关大林等.硝化棉球形粒度级配对推进剂燃烧性能的影响初探[J].火炸药学报,1998:4:4~5.
    [12] 苏艳玲等.固体粒度对高能固体推进剂燃烧性能的影响[J].弹道学报,1998:1:71~74.
    [13] 陈广兴等.无烟推进剂低压下燃烧问题的研究[J].火炸药,1994:4:1~8.
    [14] 潘文达等.燃温对平台双基缓燃药燃烧性能的影响[J].火炸药,1995:2:11~13.
    [15] 杨丽侠.高能硝胺发射药装药点火与起始燃烧过程的关系研究[J].火炸药,1995;4:1~3..
    [16] Fogelzang, A.E., et al. Burning behavior of composite propellants with fast-burning inclusions[J]. Journal of Propulsion and Power, 2000; 16: 374~376.
    [17] Bazaki, hakobu., et al. Combustion mechanism of high energy composite propellants(Ⅳ)-effect of energetic binders[J]. Kayaku Gukkaishi/Journal of the Japan Explosives Society, 1997; 58: 157~161.
    [18] Hidefumi SHIBAMOTO, Naminosuke KUBOTA. SUPER-RATE BURNING OF LiF CATALYZED HMX PYROLANTS[A]. The Proceedings of the 29th International Pyrotechnics Seminar held in Westminster, Colorado July 14-19, 2002;1:147~148.
    [19] 李新蕊等.六硝基芪对硝胺发射药燃烧性能的影响[J].火炸药学报,1998:4:1~3.
    [20] 金韶华等.黑索今、奥克托今和有机阻燃剂混合物的热分解研究[J].火炸药学报,1999;1:27~30.
    [21] 张端庆等.固体火箭推进剂[M].北京:兵器工业出版社,1991:112~113.
    
    
    [22] 张端庆等.固体火箭推进剂[M].北京:兵器工业出版社,1991:113~114.
    [23] Lundstrom, Eric A. Hot spot variation of the forest fire burn model for condensed heterogeneous explosives[A], The 22nd International Annual Conference on ICT 1991: 8.1~8.16.
    [24] Knyazeva, A. G. Combustion wave propagation in a deformed solid medium[J]. Fizika Goreniya I Vzryva, 1993; 29: 48~53.
    [25] 杨栋等.双基和硝胺改性双基推进剂燃烧模型的研究[J].兵工学报.,1997;1:42~45.
    [26] 赵志建等.多基硝胺稳态燃烧模型[J].兵工学报,1995;2:51~55.
    [27] Strunin, V. A., et al. Analysis of elementary models for the steady-state combustion of solid propepellants[J].Journal of Propulsion and power, 1995; 4: 666~676.
    [28] 杨栋等.HMX燃速特性的数值模拟[J].火炸药,1997;1:27~29.
    [29] 杨栋等.硝胺改性双基推进剂燃速压力指数的数值模拟.[J].火炸药学报.,1999;2:55~58.
    [30] 王宁飞等.固体推进剂燃烧波结构研究[J] .火炸药学报,1999;2:1~4.
    [31] Long Xinping, et.al.,Detonation Parameters of Hihg Energy Density Explosives[J] Predicted with A New Revised VLW EOS. EUROPYRC, 1995:221~229.
    [32] 吴雄.含能材料能量评价准则的讨论[J].含能材料,1993;1(1):21~26.
    [33] 吴雄.VLW状态方程在民用炸药计算中的应用[J].中国民爆学术会议论文集,1991:3~7.
    [34] 张双计等.工业炸药爆轰性能的计算[J].爆破器材杂志,1997;26(2):6~8.
    [35] He Bi. Theory & Practice of Energetic Materials[J], Vol. Ⅱ, The Publishing House Of Ordance Industry. 1997:41~45,
    [36] Gui Dayong, Liu Jiping, Feng Shunshan. Research of power performance of several typical Fuel-Air explosives[J]. Energetic materials, 2002, 3(10) 121 - 124.
    [37] 龙新平.VLW爆轰产物状态方程及纳米级铝粉含铝炸药爆轰特性研究[D] .博士学位论文.北京:北京理工大学,1999.
    [38] 鲍庭玉,邱文坚.内弹道学[M].北京:北京理工大学出版社,1995:11~29.
    [39] 刘庆荣等.火药装药设计[M].北京:国防工业出版社,1986:23~235.
    [40] 董海山,周芬芬.高能炸药及相关物性能[M] .北京:科学出版社,1989:252~266.
    [41] 黄毅民.JOB-9003炸药燃烧装爆轰研究[D] .硕士学位论文.北京:北京理工大学,2000:48~49.
    [42] Mader C.L., Detonation properties of condensed explosives computed using BKW equation of state[J]. Los Alamos Scientific Laboratory report LA-2900,1963:56~59.
    
    
    [43]吴雄.利用VLW状态方程计算火药的燃烧性能[J].工业火药,1991;2:115.
    [44]Hirschfelder J.o., et al. Molecular theory of gases and liquids[J].Wiley,1964; 2: 157.
    [45]吴雄.应用VLW状态方程计算炸药的爆轰参数[J].兵工学报,1985;3:25.
    [46]Charles L. Mader. FORTRAN BKW: A Code for Computing the Detonation Properties of Explosives[M].LA-3704 UC-32,MATHEMATICS AND COMPUTERS, 1967.
    [47]D.R.Stull., H Prophet, JANAF Thermochemical Tables[M].Washington, D.C. :U.S.Govemment Printing Office, 1971.
    [48]B.C.McGee,M.L.Hobbs,M.R.Baer. Exponential 6 Parameterization for the JCZ3-EOS[M]. SAND98-1191,1998.
    [49]蒋小华等.GF国防科技报告[M],2001.
    [50]杨国清等,火药性能试验方法密闭爆发器实验微分压力法[M].国防科学技术工业委员

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700