纳米氮化硼和二氧化铈的高压溶剂热合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以高压溶剂热方法为基础,我们探索了BN以及以Ce02为代表的氧化物纳米材料的可控合成方法。我们将BN的高压苯热合成以260℃为界分为低温和高温两部分,在低温部分我们合成了BN纳米地毯,并探讨了它的合成条件、生成机理和应用价值;在高温部分我们首先通过引入硫化物添加剂解决了苯的碳化问题,然后制备了多孔-中空BN纳米棒,我们探讨了这种形貌独特的BN纳米材料的生成机理,并以此为指导延伸合成出一系列的一维BN纳米材料。通过向Ce02的溶剂热合成反应中引入恒定加压和分步加压我们制备出了具有优良催化性质的形貌可控的多孔Ce02纳米球和中空Ce02纳米球,初步了解了高压对氧化物溶剂热合成反应的作用模式,并成功将高压应用到其他氧化物体系中实现了可控合成。具体结果如下:
     高压苯热法合成的BN纳米地毯结构是由BN薄片基底与生长在薄片上的的BN纳米棒组合而成。合成的BN纳米地毯的比表面积较大,同时有较多的结构缺陷,提高反应温度对产率和结晶质量有促进作用,但过高的温度会导致溶剂的碳化。提高压力在低温时有明显正面作用,但在高温时作用不明显。通过对反应粗产物及副产物的仔细分析,我们认为NH4N3与NaBF4是重要的反应中间产物,NaBF4在不同的分解速度下分别与NH4N3反应生成BN基底与纳米棒,在反应过程中存在气—液—固机理,其中高压和溶剂苯起了关键作用。BN纳米地毯这种多级结构可对有机芳香族污染物亚甲基蓝进行快速吸附和选择性吸附,最大吸附量为272.4mgL-1,并且BN纳米地毯吸附剂可以通过热处理方便地循环使用。
     经过对反应体系中的原料、中间产物以及产物相互关系的仔细研究,我们查明苯的碳化是由过量的中间产物NH4N3引起的。之后我们通过引入可以促进叠氮化物分解的噻吩成功抑制了高温反应中苯的碳化,并在280℃150MPa下合成了多孔-中空BN纳米棒,这种纳米结构与纳米地毯不同,它不具备单独的薄片基底。通过对使用噻吩添加剂的不同温度反应的结果的分析,我们认为多孔-中空结构是在高温晶化以及近超临界苯的扩散作用下形成的。另外添加剂用量不同时反应速率不同,样品的形貌会从短棒连续变化到线状。随后我们通过追加更多的添加剂、增加原料量、换用效率更高的添加剂等方式提高反应速率,最后成功制备了一系列一维BN纳米材料。
     通过在恒温阶段引入恒定45MPa外压,我们改良了硝酸铈—丙酸—乙二醇反应体系,制备了粒径小于原方法的Ce02多孔纳米球。连续提高压力至150MPa的过程中Ce02多孔纳米球的粒径从80nm被连续地压缩至45nm,最后Ce02形成晶面定向排列、类似介孔晶体的结构。我们仔细分析了压力对Ce02均相成核过程中各参数的影响,提出了通过压力变化调控Ce02纳米聚集体形貌的机理。用催化氧化CO的性能作为比较基准,我们发现Ce02多孔纳米球催化性能随着粒径的下降而提高,催化性能150MPa样品>45MPa样品>无外压样品,最多降低96℃。之后我们将恒定加压改为分步加压,向溶剂热体系中引入压力差这一参数,成功地实现了Ce02纳米空心球的可控合成,并讨论了压力差在反应过程中的作用机制,指出压力差驱动的不同溶剂扩散强度决定了Ce02的空心尺寸。具有最大空心尺寸的45—150MPa分步加压样品的乃T90较无外压样品降低了113℃,优于已知的所有纯Ce02催化剂的催化性能。
With the foundation of the high pressure solvent thermal method, we explored the controllable synthesis method of BN and a representative of oxide nanometer material CeO2. We divided high pressure benzene heating method of BN into two parts of low temperature and high temperature. In the low temperature part, we synthesized the BN nano-carpets, and discussed its synthetic conditions, formation mechanism and application value. In high temperature part, we firstly solved the solvent carbonization problem by introducing sulfide additives. Then we prepared hollow-porous BN nanotubes, and discussed the forming mechanism of this unique morphology of BN nanomaterials. Following on these, we successfully synthesized a series of one dimensional BN nanomaterials. Through introducing constant pressure and section pressure into CeO2solvent thermal synthetic reaction, we also prepared porous CeO2nanoball and hollow CeO2nanoball with controllable morphology and good catalytic property. And by these work, we preliminarily understood of the mode of high pressure impressing on solvent thermal synthetic reaction of oxide. After this, we successfully applied high pressure into other oxide system and realized the controllable synthesis. The results are as follows:
     BN nano-carpets synthesized by high benzene thermal synthesis was composed by BN nanosheets and BN nanorods grew on them. Those BN nano-carpets structures have a larger BET surface area and more structure defects. To improve the reaction temperature on the yield and crystallization quality have a promote role, but too high temperature will lead to solvent carbonization. Improving the pressure in low temperature has an obvious positive effect, but not as in high temperature. Based on careful analysis of reaction coarse products and by-products, we thought NH4N3and NaBF4are important intermediate products. The reaction of NH4N3and NaBF4in different decomposition speed produces BN nanosheets and BN nanorods, respectively. There is a gas-liquid-solid mechanism in the reaction where high pressure and solvent benzene play a key role. The multistage structure of BN nano-carpets can absorb organic aromatic pollutants methylene blue quickly and selectively. The maximum adsorption is272.4mgL-1. In addition, BN nano-carpets adsorbent can be conveniently circularly used by heat treatment.
     After careful study on raw materials, intermediate products in the reaction system and the relationship of products, we found the problem of Benzene carbonation was caused of excessive amounts of intermediate product NH4N3. Then we successfully solved benzene carbonization in high temperature reaction by introducing thiophene which could promote decomposition of azide and synthesized the hollow-porous BN nanorods which had no individual chip basement in280℃,150MPa. Through the analysis of the different temperature reaction results of using thiophene, we thought the hollow-porous structure was formed because of the effect of high temperature crystallization and nearly supercritical benzene diffusion. In addition, we found that reaction would be accelerated by additive. At the same time, the morphology of samples will continuously change from short rod to linear fibrous. Then by improving the reaction rate through the additional more additives, increasing the amount of raw materials and changing higher efficiency additive, we finally prepared a series of one dimensional BN nanomaterials.
     Through introducing external constant45MPa pressure in the constant temperature stage, we improved the cerium nitrate-acrylic acid-glycol reaction system and prepared much smaller CeO2porous nanoball than the original. The size of CeO2porous nanoball continuously changes from80nm to45nm in the process of continuously improving pressure to150150MPa. At last, we got a crystal orientation arrangement and similar mesoporous crystal structure. We carefully analyzed the influence of the pressure on each parameter in the process of CeO2homogeneous nucleation. Then we put forward the mechanism of regulating and controlling CeO2nano-aggregation morphology by changing the pressure. Using the catalytic oxidation CO performance as a benchmark, we found that CeO2porous nanoball catalytic performance improved with the decline of particle size (Catalytic performance150MPa>45MPa> no external pressure). The biggest temperature decreasing amplitude was96℃. After that we introduced a pressure differential parameter by changing the constant pressure to sectionalized pressure, we successfully realized the controllable synthesis of CeO2nanoball. We also discussed the mechanism of pressure differential and pointed that the strength brought by diffusion of different solvent determined the size of hollow structure in CeO2nanoball. With the maximum hollow structure size, T90of the fractional pressure sample (45—150MPa) reduces113℃, which is superior to the most known pure CeO2catalyst.
引文
[1]徐如人,无机合成化学,1991:高等教育出版社.
    [2]徐.庞.霍启升,无机合成与制备化学,2009:高等教育出版社.
    [3](a) U. Schubert and N. Husing, Synthesis of Inorganic Materials,2012:Wiley.(b)施尔畏,夏长泰,王步国,仲维卓,水热法的应用与发展,无机材料学报,1996:193-206.(c)唐井元.(2007)纳米材料的水热法合成与表征.扬州大学.
    [4](a)席国喜,姚路and路迈西,水热法在无机粉体材料制备中的研究进展,材料导报,2007:134-136.(b)周菊红,王涛,陈友存and张元广,水热法合成一维纳米材料的研究进展,化学通报,2008:510-517.(c)姚连增,晶体生长基础,1995:中国科学技术大学出版社.
    [5](a) J. Livage, Vanadium pentoxide gels, Chemistry of Materials,1991,3: 578-593. (b) J. Rouxel, M. Tournoux and R. Brec, Soft Chemistry Routes to New Materials:Chimie Douce:Proceedings of the International Symposium Held in Nantes, France, September 6-10,1993,1994:Trans Tech Publications, (c) C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere and L. Nicole, "Chimie douce":A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials, Comptes Rendus Chimie,2010,13:3-39. (d)齐西伟and周济,纳米晶材料的软化学制备技术,电子元件与材料,2002:27-31.(e)宋秀芹and马建峰,无机非金属材料的软化学合成,硅酸盐通报,1996:57-60.(f)王辉,崔斌,畅柱国and王小芳,软化学法制备钛酸钡粉体的研究进展,材料科学与工程学报,2003:773-776.(f)朱协彬.(2007)软化学法制备纳米ITO材料及其介孔组装体系研究.中南大学.(g)邹光龙.(2007)氢氧化镁、氧化锌微/纳米结构的软化学合成与表征.浙江大学.
    [6](a) X. Wang, J. Zhuang, Q. Peng and Y.D. Li, A general strategy for nanocrystal synthesis, Nature,2005,437:121-124. (b)卢寿慈,粉体技术手册,2004:化学工业出版社.
    [7](a) I. Bilecka and M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis, Nanoscale,2010,2:1358-1374. (b) X.B. Chen and S.S. Mao, Synthesis of titanium dioxide (TiO2) nanomaterials, Journal of Nanoscience and Nanotechnology,2006,6:906-925. (c) Y.S. Ding, X.F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V.M.B. Crisostomo, S.L. Suib and M. Aindow, Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method, Chemistry of Materials,2005,17:5382-5389. (d) E. Reverchon and R. Adami, Nanomaterials and supercritical fluids, Journal of Supercritical Fluids,2006,37:1-22. (e) U. Schubert and N. Husing, Synthesis of Inorganic Materials,2012:Wiley, (f)施尔畏,夏长泰,王步国,仲维卓,水热法的应用与发展,无机材料学报,1996:193-206.(g)魏昂.(2006)水热法合成氧化锌纳米结构及其应用.复旦大学.(h)席国喜,姚路and路迈西,水热法在无机粉体材料制备中的研究进展,材料导报,2007:134-136.
    [8](a) C. Burda, X. Chen, R. Narayanan and M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chemical Reviews,2005,105: 1025-1102. (b) K. Byrappa and T. Ohachi, Crystal Growth Technology,2003: Springer. (c) A.A. Chernov and E.I. Givargizov, Modern crystallography: Crystal growth,1984:Springer.
    [9]FS Ham, Diffusion-Limited Growth of Precipitate Particles, Journal of Applied Physics,1959,30:1518-1525.
    [10]H.J. Maris and F. Caupin, Nucleation of Solid Helium from Liquid Under High Pressure, Journal of Low Temperature Physics,2003,131:145-154.
    [11]K. Maeda, Y. Asakuma and K. Fukui, Nucleation of ammonium salts in aqueous solution by high pressure, Journal of Physics:Conference Series,2010,215: 012066
    [12]R. R. Wills, Wurtzitic boron nitride-a review, Int. J. High Technology Ceramics, 1985,1(2):139-153.
    [13]T. Ishii, T. Sato, and Y. Sekikawa et al., Growth of whiskers of hexagonal boron nitride,J. Cryst. Growth,1981,52(1):285-289.
    [14]J. Y. Huang, and Yuntian T. Zhu, Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressures and temperatures, Client. Mater.,2002,14:1873-1878.
    [15]W. J. Zhang, Y. M. Chong, I. Bello et al. Nucleation, growth and characterization of cubic boron nitride (cBN) films, J. Phys. D:Appl. Phys.,2007,40:6159-6174.
    [16]Q.W. Chen, Y.T. Qian, X.G. Li, et al, Hydrothermal deposition and characterization of ultrafine ZrO2 thin films, Nanostruct. Mater.,1996,7: 467-471.
    [17](a) P. Delhaes, Graphite and Precursors,2000:Taylor & Francis, (b) J.C.H. Henager and W.T. Pawlewicz, Thermal conductivities of thin, sputtered optical films, Appl. Opt.,1993,32:91-101. (c) E.P. Muljadi, Boron: Paul Muljadi. (d) S. Weissmantel, G. Reisse, B. Keiper and S. Schulze, Microstructure and mechanical properties of pulsed laser deposited boron nitride films, Diamond and Related Materials,1999,8:377-381. (e) R. Zedlitz, M. Heintze and M.B. Schubert, Properties of amorphous boron nitride thin films, Journal of Non-Crystalline Solids,1996,198-200, Part 1:403-406.
    [18](a) K. Watanabe, T. Taniguchi, and H. Kanda, Direct-bandgap properties and evid-ence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater.,2004,3:404-409. (b) T. Taniguchi, K. Watanabe, and S. Koizumi, Defect characterization of cBN single crystals grown under HP/HT, Phys. Status Solidi A,2004,201:2573-2577. (c) Y. Kubota, K. Watanabe, and O. Tsuda et al., Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science,2007,317:932-934. (d) Y. Kubota, K. Watanabe, and O. Tsuda et al., Hexagonal boron nitride single crystal growth at atmospheric pressure using Ni-Cr solvent, Chem. Mater.,2008,20(5):1661-1663. (e) T. Ishii, and T. Sato, Growth of single crystals of hexagonal boron nitride, J. Cryst. Growth,1983,61(3):689-690. (f) M. Kuhr, S. Reinke, and W. Kulisch et al., Nucleation of cubic boron nitride (c-BN) with ion-induced plasma-enhanced CVD, Diam. Relat. Mater.,1995,4(4):375-380. (g) S. P. S. Aray, A. Damico, Preparation, properties and applications of boron nitride thin films, Thin Solid Films,1998,157(2):267-282. (h) G. M. Ingo, G. Padeletti, X-ray photoelectron spectroscopy and secondary-ion mass spectrometry of boron nitride thin films on austenitic stainless steel, Thin Solid Films,1993,228(1-2):276-279. (i) G. Satta, G. Cappellini, and M. Palummo et al., Ab initio optical properties of BN in the cubic and in the layered hexagonal phase, Computational Materials Science, 2001,22:78-80. (j) H. Edgar, Prospects for device implementation of wide band gap semiconductors,J. Mater. Res.,1992,7(1):235-235. (k) Y. Kimura, T. Wakabayashi, and K. Okada, Boron nitride as a lubricant additive, Wear,1999, 232:199-206. (1) W. Auwarter, H. U. Suter, and H. Sachdev et al., Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)3, Chem. Mater.,2004,16:343-345.
    [19](a)方啸虎,人造金刚石、立方氮化硼及其制品实用大全:人造金刚石立方氮化硼基础与标准,1993:化学工业出版社.(b)张.邹广田,立方氮化硼,1993,吉林长春:吉林大学出版社.
    [20](a) C.W. Chang, A.M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D.Y. Li, A. Majumdar and A. Zettl, Isotope effect on the thermal conductivity of boron nitride nanotubes, Physical Review Letters,2006,97. (b) J.P. Hong, S.W. Yoon, T. Hwang, J.S. Oh, S.C. Hong, Y. Lee and J.D. Nam, High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers, Thermochimica Acta,2012,537:70-75. (d) I. Savic, D.A. Stewart and N. Mingo, Thermal conduction mechanisms in boron nitride nanotubes:Few-shell versus all-shell conduction, Physical Review B,2008,78. (e) W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meziani, A.J. Farr and Y.P. Sun, Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance, Angewandte Chemie-International Edition,2012,51: 6498-6501.
    [21](a) Z.H. Gao, T. Sawada, C.Y. Zhi, Y. Bando, D. Golberg and T. Serizawa, Nucleotide-assisted decoration of boron nitride nanotubes with semiconductor quantum dots endows valuable visible-light emission in aqueous solution, Soft Matter,2011,7:8753-8756. (b) Y. Huang, Y. Bando, C. Tang, C. Zhi, T. Terao, B. Dierre, T. Sekiguchi and D. Golberg, Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature, Nanotechnology, 2009,20. (c) P. Jaffrennou, J. Barjon, T. Schmid, L. Museur, A. Kanaev, J.S. Lauret, C.Y. Zhi, C. Tang, Y. Bando, D. Golberg, B. Attal-Tretout, F. Ducastelle and A. Loiseau, Near-band-edge recombinations in multiwalled boron nitride nanotubes:Cathodoluminescence and photoluminescence spectroscopy measurements, Physical Review B,2008,77. (d) L.J. Liu, T.K. Sham, W.Q. Han, C.Y. Zhi and Y. Bando, X-ray Excited Optical Luminescence from Hexagonal Boron Nitride Nanotubes:Electronic Structures and the Role of Oxygen Impurities, Acs Nano,2011,5:631-639. (e) K. Watanabe, T. Taniguchi and H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nature Materials,2004,3:404-409.
    [22](a). Boldrin, F. Scarpa, R. Chowdhury and S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets, Nanotechnology,2011,22. (b) T. Kondo, K. Shindo and Y. Sakurai, Comparison of hydrogen absorption properties of Ti mechanically milled with hexagonal boron nitride (h-BN) and with graphite, Journal of Alloys and Compounds,2005,386:202-206. (c) K.S. Lee, Y.S. Kim, M. Tosa, A. Kasahara and K. Yosihara, Mechanical properties of hexagonal boron nitride synthesized from film of Cu/BN mixture by surface segregation, Applied Surface Science,2001,169:420-424.
    [23](a)邓橙.(2009)氮化硼纤维先驱体—聚硼氮烷的合成及热解特性研究.国防科学技术大学.(b)方震宇.(2011)硅氮氧陶瓷纤维增强氮化硼陶瓷基透波复合材料的制备与性能研究.国防科学技术大学.(c)李端.(2011)氮化硼纤维增强陶瓷基透波复合材料的制备与性能研究.国防科学技术大学.(d)张伟儒.(2007)高性能氮化物透波材料的设计、制备及特性研究.武汉理工大学.
    [24]A. Pakdel, C.Y. Zhi, Y. Bando, T. Nakayama and D. Golberg, Boron Nitride Nanosheet Coatings with Controllable Water Repellency, Acs Nano,2011,5: 6507-6515.
    [25](a) X.L. Shi, S. Wang, H. Yang, X.L. Duan and X.B. Dong, Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology, Journal of Solid State Chemistry,2008,181: 2274-2278. (b) T.E. Warner and D.J. Fray, Nitriding of iron boride to hexagonal boron nitride, Journal of Materials Science,2000,35:5341-5345.
    [26](a) S.Z. Bai, B. Yao, G.Z. Xing, K. Zhang and W.H. Su, Synthesis, conductivity and high-pressure phase transition of amorphous boron carbon nitride, Physica B-Condensed Matter,2007,396:214-219. (c) X.F. Li, J. Zhang, L.H. Shen, W.W. Lei, D.P. Yang, Q.L. Cui and G.T. Zou, Synthesis and characterization of nanocrystalline hexagonal boron carbo-nitride under high temperature and high pressure, Journal of Physics-Condensed Matter,2007,19. (d) R. Ma, Y. Bando and T. Sato, CVD synthesis of boron nitride nanotubes without metal catalysts, Chemical Physics Letters,2001,337:61-64. (e) R.Z. Ma, Y. Bando and T. Sato, Bamboo-like boron nitride nanotubes, Journal of Electron Microscopy,2002,51: S259-S263.
    [27](a) A.M. Alexander and J.S.J. Hargreaves, Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys, Chemical Society Reviews,2010,39:4388-4401. (b) L.L. Chen, H.H. Ye, Y. Gogotsi and M.J. McNallan, Carbothermal synthesis of boron nitride coatings on silicon carbide, Journal of the American Ceramic Society,2003,86:1830-1837. (c) M. Das, A.K. Basu, S. Ghatak and A.G. Joshi, Carbothermal synthesis of boron nitride coating on PAN carbon fiber, Journal of the European Ceramic Society,2009, 29:2129-2134. (d) M. Das, J. Ghosh and A.K. Basu, Effect of activation on boron nitride coating on carbon fiber, Ceramics International,2010,36: 2511-2514.
    [28](a) D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C.C. Tang and C.Y. Zhi, Boron Nitride Nanotubes and Nanosheets, Acs Nano,2010a,4:2979-2993. (b) D. Golberg, Y. Bando, Y. Huang, Z. Xu, X.L. Wei, L. Bourgeois, M.S. Wang, H.B. Zeng, J. Lin and C.Y. Zhi, Recent Advances in Boron Nitride Nanotubes and Nanosheets, Israel Journal of Chemistry,2010b,50:405-416. (c) D. Pacile, J.C. Meyer, C.O. Girit and A. Zettl, The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes, Applied Physics Letters, 2008,92. (d) A. Pakdel, C.Y. Zhi, Y. Bando and D. Golberg, Low-dimensional boron nitride nanomaterials, Materials Today,2012a,15:256-265. (e) A. Pakdel, C.Y. Zhi, Y. Bando, T. Nakayama and D. Golberg, Boron Nitride Nanosheet Coatings with Controllable Water Repellency, Acs Nano,2011,5:6507-6515. (f) A. Pakdel, C.Y. Zhi, Y. Bando, T. Nakayama and D. Golberg, A comprehensive analysis of the CVD growth of boron nitride nanotubes, Nanotechnology,2012b, 23. (g) D.M. Tang, C.L. Ren, X.L. Wei, M.S. Wang, C. Liu, Y. Bando and D. Golberg, Mechanical Properties of Bamboo-like Boron Nitride Nanotubes by In Situ TEM and MD Simulations:Strengthening Effect of Interlocked Joint Interfaces, Acs Nano,2011,5:7362-7368. (h) C.Y. Zhi, Y. Bando, C.C. Tang and D. Golberg, Specific heat capacity and density of multi-walled boron nitride nanotubes by chemical vapor deposition, Solid State Communications,2011a, 151:183-186. (i) C.Y. Zhi, Y.B. Xu, Y. Bando and D. Golberg, Highly Thermo-conductive Fluid with Boron Nitride Nano fillers, Acs Nano,2011b,5: 6571-6577.
    [29](a).N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist and V. Nicolosi, Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials, Science,2011,331:568-571.(b) P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen and D.A. Muller, Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature,2011,469: 389-392.
    [30](a) X. Chen, J.F. Dobson and C.L. Raston, Vortex fluidic exfoliation of graphite and boron nitride, Chemical Communications,2012,48:3703-3705. (b) R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim and P. Blake, Hunting for Monolayer Boron Nitride:Optical and Raman Signatures, Small,2011,7: 465-468. (c) D. Pacile, J.C. Meyer, C.O. Girit and A. Zettl, The two-dimensional phase of boron nitride:Few-atomic-layer sheets and suspended membranes, Applied Physics Letters,2008,92:133107-133103.
    [31](a) G. Lian, X. Zhang, M. Tan, S. Zhang, D. Cui and Q. Wang, Facile synthesis of 3D boron nitride nanoflowers composed of vertically aligned nanoflakes and fabrication of graphene-like BN by exfoliation, Journal of Materials Chemistry, 2011,21:9201-9207. (b) R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi and J.N. Coleman, Large-Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions, Advanced Materials,2011, 23:3944-3948.
    [32](a) F. Avila, J.F. Arenas, D. Pelaez, J.C. Otero, Y. Bando, D. Golberg, Q. Huang and J. Soto, Role of Dimethyl Sulfoxide in the Hydrolytic Peeling of Boron Nitride Nanotubes, Journal of Physical Chemistry C,2009,113:15565-15568. (b) Q. Huang, Y. Bando, C.Y. Zhi, D. Golberg, K. Kurashima, F.F. Xu and L. Gao, Chemical peeling and branching of boron nitride nanotubes in dimethyl sulfoxide, Angewandte Chemie-International Edition,2006,45:2044-2047.
    [33](a) K.J. Erickson, A.L. Gibb, A. Sinitskii, M. Rousseas, N. Alem, J.M. Tour and A.K. Zettl, Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons, Nano Letters,2011,11: 3221-3226. (b) H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando and D. Golberg, "White Graphenes":Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping, Nano Letters,2010,10:5049-5055.
    [34](a) C.R. Dean, A.F. Young, MericI, LeeC, WangL, SorgenfreiS, WatanabeK, TaniguchiT, KimP, K.L. Shepard and HoneJ, Boron nitride substrates for high-quality graphene electronics, Nat Nano,2010,5:722-726.(b) K.H. Lee, H.-J. Shin, J. Lee, I.-y. Lee, G.-H. Kim, J.-Y. Choi and S.-W. Kim, Large-Scale Synthesis of High-Quality Hexagonal Boron Nitride Nanosheets for Large-Area Graphene Electronics, Nano Letters,2012,12:714-718.
    [35](a) M. Bokdam, P.A. Khomyakov, G. Brocks, Z.C. Zhong and P.J. Kelly, Electrostatic Doping of Graphene through Ultrathin Hexagonal Boron Nitride Films, Nano Letters,2011,11:4631-4635. (b) M.S. Bresnehan, M.J. Hollander, M. Wetherington, M. LaBella, K.A. Trumbull, R. Cavalero, D.W. Snyder and J.A. Robinson, Integration of Hexagonal Boron Nitride with Quasi-freestanding Epitaxial Graphene:Toward Wafer-Scale, High-Performance Devices, Acs Nano, 2012,6:5234-5241. (c) S. Bruzzone and G. Fiori, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride, Applied Physics Letters,2011,99. (d) T. Cao, J. Feng and E.G. Wang, Adsorption of hydrogen on the interface of a graphene/boron nitride hybrid atomic membrane, Physical Review B,2011,84. (e) W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M.F. Crommie and A. Zettl, Boron nitride substrates for high mobility chemical vapor deposited graphene, Applied Physics Letters,2011,98. (f) N. Jain, T. Bansal, C. Durcan and B. Yu, Graphene-Based Interconnects on Hexagonal Boron Nitride Substrate, Ieee Electron Device Letters,2012,33:925-927. (g) Y. Jiao, A.J. Du, Z.H. Zhu, V. Rudolph, G.Q. Lu and S.C. Smith, A density functional theory study on CO2 capture and activation by graphene-like boron nitride with boron vacancy, Catalysis Today,2011,175:271-275.(h) J. Jung, Z.H. Qiao, Q. Niu and A.H. MacDonald, Transport Properties of Graphene Nanoroads in Boron Nitride Sheets, Nano Letters,2012,12:2936-2940.
    [36](a) P.J. Cai, L.Y. Chen, L. Shi, Z.H. Yang, A.W. Zhao, Y.L. Gu, T. Huang and Y.T. Qian, One convenient synthesis route to boron nitride nanotube, Solid State Communications,2005,133:621-623. (b) L.Y. Chen, M.X. Huang, T. Luo, Y.L Gu, L. Shi, Z.H. Yang and Y.T. Qian, A low-temperature route to nanocrystalline boron nitride whiskers and flakes, Materials Letters,2004,58:3634-3636. (c) C.H. Sun, C.L. Guo, X.J. Ma, L.Q. Xu and Y.T. Qian, A facile route to prepare boron nitride hollow particles at 450 degrees C, Journal of Crystal Growth,2009, 311:3682-3686. (d) C.H. Sun, L.Q. Xu, X.J. Ma and Y.T. Qian, Sulfur-Assisted Synthesis of Highly Porous Macroporous Boron Nitride Materials, Chinese Journal of Inorganic Chemistry,2012,28:601-606. (e) M. Wang, M.H. Li, L.Q. Xu, L.C. Wang, Z.C. Ju, G.D. Li and Y.T. Qian, High yield synthesis of novel boron nitride submicro-boxes and their photocatalytic application under visible light irradiation, Catalysis Science & Technology,2011a,1:1159-1165. (f) T.T. Wang, Z.C. Ju, C.H. Sun and Y.T. Qian, One-step Solid-state Reaction for the Synthesis of Hexagonal or Rhombohedral Boron Nitride Nanoplates in Autoclaves, Chemistry Letters,2011b,40:1173-1175.
    [37](a) G. Lian, X. Zhang, M. Tan, S.J. Zhang, D.L. Cui and Q.L. Wang, Facile synthesis of 3D boron nitride nanoflowers composed of vertically aligned nanoflakes and fabrication of graphene-like BN by exfoliation, Journal of Materials Chemistry,2011,21:9201-9207. (b) G. Lian, X. Zhang, L.L. Zhu, M. Tan, D.L. Cui and Q.L. Wang, A facile solid state reaction route towards nearly monodisperse hexagonal boron nitride nanoparticles, Journal of Materials Chemistry,2010a,20:3736-3742. (c) G. Lian, X. Zhang, L.L. Zhu, M. Tan, D.L Cui and Q.L. Wang, New strategies for selectively synthesizing cubic boron nitride in hydrothermal solutions, Crystengcomm,2010b,12:1159-1163.
    [38]L.Y. Chen, M.X. Huang, T. Luo, Y.L. Gu, L. Shi, Z.H. Yang and Y.T. Qian, A low-temperature route to nanocrystalline boron nitride whiskers and flakes, Materials Letters,2004,58:3634-3636.
    [39](a) Z.H. Gao, C.Y. Zhi, Y. Bando, D. Golberg, M. Komiyama and T. Serizawa, Efficient disentanglement of boron nitride nanotubes using water-soluble polysaccharides for protein immobilization, Rsc Advances,2012,2:6200-6208. (b) Z.H. Gao, C.Y. Zhi, Y. Bando, D. Golberg and T. Serizawa, Isolation of Individual Boron Nitride Nanotubes via Peptide Wrapping, Journal of the American Chemical Society,2010,132:4976-+. (c) Z.H. Gao, C.Y. Zhi, Y. Bando, D. Golberg and T. Serizawa, Noncovalent Functionalization of Disentangled Boron Nitride Nanotubes with Flavin Mononucleotides for Strong and Stable Visible-Light Emission in Aqueous Solution, Acs Applied Materials & Interfaces,2011,3:627-632. (d) D. Golberg, Y. Bando, C.C. Tang and C.Y. Zhi, Functional Boron Nitride Nanotubes,2010. (e) W.L. Wang, Y. Bando, C.Y. Zhi, W.Y. Fu, E.G. Wang and D. Golberg, Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes, Journal of the American Chemical Society,2008,130:8144. (f) J.M. Wu and L.W. Yin, Platinum Nanoparticle Modified Polyaniline-Functionalized Boron Nitride Nanotubes for Amperometric Glucose Enzyme Biosensor, Acs Applied Materials & Interfaces,2011,3:4354-4362. (g) C. Zhi, Y. Bando, C. Tang and D. Golberg, Immobilization of proteins on boron nitride nanotubes, Journal of the American Chemical Society,2005,127: 17144-17145.
    [40](a) T. Ikuno, T. Sainsbury, D. Okawa, J.M.J. Frehet and A. Zettl, Amine-functionalized boron nitride nanotubes, Solid State Communications, 2007,142:643-646. (b) Y. Lin, T.V. Williams and J.W. Connell, Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets, The Journal of Physical Chemistry Letters,2009,1:277-283. (c) C.Y. Zhi, Y. Bando, C.C. Tang and D. Golberg, Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization, Physical Review B,2006a,74. (d) C.Y. Zhi, Y. Bando, C.C. Tang and D. Golberg, Publisher's Note:Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization (vol 74, art no 153413, 2006), Physical Review B,2006b,74. (e) C.Y. Zhi, Y. Bando, C.C. Tang, S. Honda, K. Sato, H. Kuwahara and D. Golberg, Covalent functionalization: Towards soluble multiwalled boron nitride nanotubes, Angewandte Chemie-Intemational Edition,2005,44:7932-7935.
    [41]G. Ciofani, Potential applications of boron nitride nanotubes as drug delivery systems, Expert Opinion on Drug Delivery,2010,7:889-893.
    [42](a) G. Ciofani, Potential applications of boron nitride nanotubes as drug delivery systems, Expert Opinion on Drug Delivery,2010,7:889-893. (b) G. Ciofani, V. Raffa, J. Yu, Y. Chen, Y. Obata, S. Takeoka, A. Menciassi and A. Cuschieri, Boron Nitride Nanotubes:A Novel Vector for Targeted Magnetic Drug Delivery, Current Nanoscience,2009,5:33-38. (c) Y. Huang, Y. Bando, C. Tang, C. Zhi, T. Terao, B. Dierre, T. Sekiguchi and D. Golberg, Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature, Nanotechnology,2009,20. (d) F. Mollaamin, N. Hooshmand and M. Monajjemi, Molecular dynamics, Monte Carlo and DFT studies of boron-nitride nano cones: properties investigating B1 ON 11 H7(Thr)(2) in different temperatures and solvents, Journal of Medicinal Plants Research,2011,5:2289-2297.(e) D.C.F. Soares, T.H. Ferreira, C.D. Ferreira, V.N. Cardoso and E.M.B. de Sousa, Boron nitride nanotubes radiolabeled with Tc-99m:Preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice, International Journal of Pharmaceutics,2012,423:489-495. (f) C.Y. Zhi, N. Hanagata, Y. Bando and D. Golberg, Dispersible Shortened Boron Nitride Nanotubes with Improved Molecule-Loading Capacity, Chemistry-an Asian Journal,2011,6:2530-2535.
    [43](a) X.M. Li, W.Q. Tian, X.R. Huang, C.C. Sun and L. Jiang, Adsorption of hydrogen on novel Pt-doped BN nano tube:A density functional theory study, Journal of Molecular Structure-Theochem,2009,901:103-109. (b)A.T. Nasrabadi and M. Foroutan, Interactions between Polymers and Single-Walled Boron Nitride Nanotubes:A Molecular Dynamics Simulation Approach, Journal of Physical Chemistry B,2010,114:15429-15436. (c) W.L. Wang, Y. Bando, C.Y. Zhi, W.Y. Fu, E.G. Wang and D. Golberg, Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes, Journal of the American Chemical Society,2008,130: 8144-+. (d) X.L. Wei, M.S. Wang, Y. Bando and D. Golberg, Electron-Beam-Induced Substitutional Carbon Doping of Boron Nitride Nanosheets, Nanoribbons, and Nanotubes, Acs Nano,2011,5:2916-2922.
    [44](a) W.Q. Han and A. Zettl, Functionalized boron nitride nanotubes with a stannic oxide coating:A novel chemical route to full coverage, Journal of the American Chemical Society,2003,125:2062-2063. (b) T. Sainsbury, T. Ikuno, D. Okawa, D. Pacile, J.M.J. Frechet and A. Zettl, Self-assembly of gold nanoparticles at the surface of amine- and thiol-functionalized boron nitride nanotubes, Journal of Physical Chemistry C,2007,111:12992-12999. (c) C. Zhi, Y. Bando, C. Tang and D. Golberg, SnO2 nanoparticle-functionalized boron nitride nanotubes, Journal of Physical Chemistry B,2006,110:8548-8550.
    [45]P. Patnaik, Handbook of Inorganic Chemicals,2002:McGraw-Hill.
    [46]HJ Avila-Paredes, C-T Chen, S Wang, RA De Souza, M Martin, Z Munir & S Kim, Grain boundaries in dense nanocrystalline ceria ceramics:exclusive pathways for proton conduction at room temperature, Journal of Materials Chemistry,2010,20:10110-10112.
    [47]G Li, Y Mao, L Li, S Feng, M Wang & X Yao, Solid Solubility and Transport Properties of Nanocrystalline(CeO2)1-x(BiO1.5)x by Hydrothermal Conditions, Chemistry of Materials,1999,11:1259-1266.
    [48](a) YM Choi, H Abernathy, HT Chen, MC Lin & ML Liu, Characterization of O2-CeO2 interactions using in situ Raman spectroscopy and first-principle calculations, Chemphyschem,2006,7:1957-1963. (b) DS Lee, WS Kim, SH Choi, J Kim, HW Lee & JH Lee, Characterization of ZrO2 co-doped with SC2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs, Solid State Ionics,2005,176:33-39. (c) HZ Song, HB Wang, SW Zha, DK Peng & GY Meng, Aerosol-assisted MOCVD growth of Gd2O3-doped CeO2 thin SOFC electrolyte film on anode substrate, Solid State Ionics,2003,156:249-254.
    [49](a) J Kaspar, P Fornasiero & M Graziani, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today,1999,50:285-298. (b) PS Lambrou & AM Efstathiou, The effects of Fe on the oxygen storage and release properties of model Pd-Rh/CeO2-Al2O3 three-way catalyst, Journal of Catalysis,2006,240: 182-193. (c) C Larese, FC Galisteo, ML Granados, R Mariscal, JLG Fierro, PS Lambrou & AM Efstathiou, Effects of the CePO4 on the oxygen storage and release properties of CeO2 and Ce0.8Zr0.2O2 solid solution, Journal of Catalysis, 2004,226:443-456.
    [50](a) JP Kim, JG Yeo, U Paik, YG Jung, JG Park & VA Hackley, Modification of electrokinetic behavior of CeO2 abrasive particles in chemical mechanical polishing for shallow trench isolation, Journal of the Korean Physical Society, 2001,39:S197-S200. (b) MX Li, SH Zhang, HS Li, YZ He, JH Yoon & TY Cho, Effect of nano-CeO2 on cobalt-based alloy laser coatings, Journal of Materials Processing Technology,2008,202:107-111.
    [51](a) B Liu, B Liu, Q Li, Z Li, R Liu, X Zou, W Wu, W Cui, Z Liu, D Li, B Zou, T Cui & G Zou, Solvothermal synthesis of monodisperse self-assembly CeO2 nanospheres and their enhanced blue-shifting in ultraviolet absorption, Journal of Alloys and Compounds,2010,503:519-524. (b) S Tsunekawa, T Fukuda & A Kasuya, Blue shift in ultraviolet absorption spectra of monodisperse CeO[sub 2-x] nanoparticles, Journal of Applied Physics,2000,87:1318-1321.
    [52](a) LF Liotta, G Di Carlo, G Pantaleo, AM Venezia & G Deganello, Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4-CeO2 interaction and catalytic activity, Applied Catalysis B-Environmental,2006,66:217-227. (b) Y Liu, Q Fu & M Flytzani-Stephanopoulos, Preferential oxidation of CO in H-2 over CuO-CeO2 catalysts, Catalysis Today,2004,93-5:241-246. (c) JA Montoya, E Romero-Pascual, C Gimon, P Del Angel & A Monzon, Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel, Catalysis Today,2000,63: 71-85. (d) T Tsoncheva, L Ivanova, C Minchev & M Froba, Cobalt-modified mesoporous MgO, ZrO2, and CeO2 oxides as catalysts for methanol decomposition, Journal of Colloid and Interface Science,2009,333:277-284.
    [53](a) R Si & M Flytzani-Stephanopoulos, Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction, Angewandte Chemie-International Edition,2008,47:2884-2887. (b) X Wang, JA Rodriguez, JC Hanson, M Perez & J Evans, In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction:Presence of Au and O vacancies in the active phase, Journal of Chemical Physics,2005,123.
    [54](a) AS Ivanova, Physicochemical and Catalytic Properties of Systems Based on CeO2, Kinetics and Catalysis,2009,50:797-815. (b) LP Li & JC Nino, Ionic conductivity across the disorder-order phase transition in the SmO1.5-CeO2 system, Journal of the European Ceramic Society,2012,32:3543-3550. (c) DS Yoon, HK Baik & SM Lee, Tantalum-microcrystalline CeO2 diffusion barrier for copper metallization, Journal of Applied Physics,1998,83:1333-1336.
    [55](a) LF Liotta, G Di Carlo, G Pantaleo, AM Venezia & G Deganello, Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4-CeO2 interaction and catalytic activity, Applied Catalysis B-Environmental,2006,66:217-227. (b) Z Mu, JJ Li, MH Du, ZP Hao & SZ Qiao, Catalytic combustion of benzene on Co/CeO2/SBA-15 and Co/SBA-15 catalysts, Catalysis Communications,2008,9:1874-1877.
    [56]G Li, Y Mao, L Li, S Feng, M Wang & X Yao, Solid Solubility and Transport Properties of Nanocrystalline(CeO2)1-x(BiO1.5)x by Hydrothermal Conditions, Chemistry of Materials,1999,11:1259-1266.
    [57](a) S Carrettin, P Conception, A Corma, JM Lopez Nieto & VF Puntes, Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude, Angewandte Chemie International Edition,2004,43: 2538-2540. (b) O Pozdnyakova, D Teschner, A Wootsch, J Krohnert, B Steinhauer, H Sauer, L Toth, FC Jentoft, A Knop-Gericke, Z Paal & R Schlogl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I:Oxidation state and surface species on Pt/CeO2 under reaction conditions, Journal of Catalysis,2006a,237:1-16. (c) O Pozdnyakova, D Teschner, A Wootsch, J Krohnert, B Steinhauer, H Sauer, L Toth, FC Jentoft, A Knop-Gericke, Z Paal & R Schlogl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II:Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism, Journal of Catalysis,2006b,237:17-28. (d) X Wang, JA Rodriguez, JC Hanson, M Perez & J Evans, In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction:Presence of Au and O vacancies in the active phase, Journal of Chemical Physics,2005,123.
    [58](a) HJ Avila-Paredes, C-T Chen, S Wang, RA De Souza, M Martin, Z Munir & S Kim, Grain boundaries in dense nanocrystalline ceria ceramics:exclusive pathways for proton conduction at room temperature, Journal of Materials Chemistry,2010,20:10110-10112. (b) YM Choi, H Abernathy, HT Chen, MC Lin & ML Liu, Characterization of O-2-CeO2 interactions using in situ Raman spectroscopy and first-principle calculations, Chemphyschem,2006,7:1957-1963. (c) N Laosiripojana & S Assabumrungrat, Catalytic steam reforming of ethanol over high surface area CeO2:The role of CeO2 as an internal pre-reforming catalyst, Applied Catalysis B-Environmental,2006,66:29-39. (d) N Laosiripojana, W Sangtongkitcharoen & S Assabumrungrat, Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature:Improvement of resistance toward carbon formation by the redox property of doping CeO2, Fuel,2006,85:323-332.
    [59](a) R Leppelt, B Schumacher, V Plzak, M Kinne & RJ Behm, Kinetics and mechanism of the low-temperature water-gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere, Journal of Catalysis,2006,244:137-152. (b) O Pozdnyakova, D Teschner, A Wootsch, J Krohnert, B Steinhauer, H Sauer, L Toth, FC Jentoft, A Knop-Gericke, Z Paal & R Schlogl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I:Oxidation state and surface species on Pt/CeO2 under reaction conditions, Journal of Catalysis,2006a,237:1-16. (c) O Pozdnyakova, D Teschner, A Wootsch, J Krohnert, B Steinhauer, H Sauer, L Toth, FC Jentoft, A Knop-Gericke, Z Paal& R Schlogl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part Ⅱ:Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism, Journal of Catalysis,2006b,237: 17-28. (d) JA Rodriguez, P Liu, J Hrbek, J Evans & M Perez, Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(000(1)over-bar):Intrinsic activity and importance of support interactions, Angewandte Chemie-International Edition,2007,46:1329-1332. (e) R Si & M Flytzani-Stephanopoulos, Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction, Angewandte Chemie-International Edition,2008,47:2884-2887.
    [60](a) M Khobragade, S Majhi & KK Pant, Effect of K and CeO2 promoters on the activity of Co/SiO2 catalyst for liquid fuel production from syngas, Applied Energy,2012,94:385-394. (b) TA Maia, JM Assaf & EM Assaf, Steam reforming of ethanol for hydrogen production on Co/CeO2-ZrO2 catalysts prepared by polymerization method, Materials Chemistry and Physics,2012,132: 1029-1034. (c) B Roy, H Sullivan & CA Leclerc, Aqueous-phase reforming of n-BuOH over Ni/Al2O3 and Ni/CeO2 catalysts, Journal of Power Sources, 2011,196:10652-10657. (d) H Wang, JL Ye, Y Liu, YD Li & YN Qin, Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods, Catalysis Today,2007,129:305-312.
    [61](a) XP Dai, CC Yu, RJ Li, HB Shi & SK Shen, Role of CeO2 promoter in CO/SiO2 catalyst for Fischer-Tropsch synthesis, Chinese Journal of Catalysis, 2006,27:904-910. (b) MK Gnanamani, MC Ribeiro, WP Ma, WD Shafer, G Jacobs, UM Graham & BH Davis, Fischer-Tropsch synthesis:Metal-support interfacial contact governs oxygenates selectivity over CeO2 supported Pt-Co catalysts, Applied Catalysis a-General,2011,393:17-23. (c) L Spadaro, F Arena, ML Granados, M Ojeda, JLG Fierro & F Frusteri, Metal-support interactions and reactivity of Co/CeO2 catalysts in the Fischer-Tropsch synthesis reaction, Journal of Catalysis,2005,234:451-462.
    [62](a) G Avgouropoulos & T Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method, Applied Catalysis a-General,2003,244:155-167. (b) G Avgouropoulos, T Ioannides, HK Matralis, J Batista & S Hocevar, CuO-CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Letters,2001,73: 33-40. (c) S Carrettin, P Concepcion, A Corma, JML Nieto & VF Puntes, Nanocrystalline CeO2 increases the activity of an for CO oxidation by two orders of magnitude, Angewandte Chemie-International Edition,2004,43:2538-2540.
    [63](a) A Bumajdad, MI Zaki, J Eastoe & L Pasupulety, Microemulsion-Based Synthesis of CeO2 Powders with High Surface Area and High-Temperature Stabilities, Langmuir,2004,20:11223-11233. (b) Z Guo, F Du & Z Cui, Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2, Materials Chemistry and Physics,2009,113:53-56. (c) Z Guo, F Du, G Li & Z Cui, Synthesis and Characterization of Single-Crystal Ce(OH)C03 and CeO2 Triangular Microplates, Inorganic Chemistry,2006,45:4167-4169. (d) G-R Li, D-L Qu, X-L Yu & Y-X Tong, Microstructural Evolution of CeO2 from Porous Structures to Clusters of Nanosheet Arrays Assisted by Gas Bubbles via Electrodeposition, Langmuir, 2008,24:4254-4259.
    [64]H.-P. Zhou, H.-S. Wu, J. Shen, A.-X. Yin, L.-D. Sun and C.-H. Yan, Thermally Stable Pt/CeO2 Hetero-Nanocomposites with High Catalytic Activity, Journal of the American Chemical Society,2010,132:4998-4999.
    [65]N. Zhang, X. Fu and Y.-J. Xu, A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst, Journal of Materials Chemistry,2011, 21:8152-8158.
    [66]T. Yu, J. Zeng, B. Lim and Y. Xia, Aqueous-Phase Synthesis of Pt/CeO2 Hybrid Nanostructures and Their Catalytic Properties, Advanced Materials,2010,22: 5188-5192.
    [67]M. Cargnello, N.L. Wieder, T. Montini, R.J. Gorte and P. Fornasiero, Synthesis of Dispersible Pd@CeO2 Core-Shell Nanostructures by Self-Assembly, Journal of the American Chemical Society,2009,132:1402-1409.
    [68]H. Imagawa, A. Suda, K. Yamamura and S. Sun, Monodisperse CeO2 Nanoparticles and Their Oxygen Storage and Release Properties, The Journal of Physical Chemistry C,2011,115:1740-1745.
    [69](a) S. Carrettin, P. Concepcion, A. Corma, J.M.L. Nieto and V.F. Puntes, Nanocry stalline CeO2 increases the activity of an for CO oxidation by two orders of magnitude, Angewandte Chemie-International Edition,2004,43:2538-2540. (b) X.H. Liao, J.M. Zhu, J.J. Zhu, J.Z. Xu and H.Y. Chen, Preparation of monodispersed nanocrystalline CeO2 powders by microwave irradiation, Chemical Communications,2001:937-938. (c) R. Si and M. Flytzani-Stephanopoulos, Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction, Angewandte Chemie-International Edition,2008,47:2884-2887. (d) A. Vantomme, Z.Y. Yuan, G.H. Du and B.L. Su, Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods, Langmuir,2005,21:1132-1135.
    [70]A. Corma, P. Atienzar, H. Garcia and J.-Y. Chane-Ching, Hierarchically mesostructured doped CeO2 with potential for solar-cell use, Nat Mater,2004,3: 394-397.
    [71](a) D.M. Lyons, K.M. Ryan and M.A. Morris, Preparation of ordered mesoporous ceria with enhanced thermal stability, Journal of Materials Chemistry,2002,12: 1207-1212. (b) N. Nermeen, S. Renate, L. Ingo, K. Emanuel, F. Robert, K. Stefan, K.W. Clemens and L. Katharina, Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation, Nanotechnology,2011,22:135606. (c) Q. Yuan, Q. Liu, W.-G. Song, W. Feng, W.-L. Pu, L.-D. Sun, Y.-W. Zhang and C.-H. Yan, Ordered Mesoporous Cel-xZrxO2 Solid Solutions with Crystalline Walls, Journal of the American Chemical Society,2007,129:6698-6699.
    [72](a) C. Pan, D. Zhang and L. Shi, CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods, Journal of Solid State Chemistry,2008,181: 1298-1306. (b) J.P.Y. Tan, H.R. Tan, C. Boothroyd, Y.L. Foo, C.B. He and M. Lin, Three-Dimensional Structure of CeO2 Nanocrystals, The Journal of Physical Chemistry C,2011,115:3544-3551. (c) K. Zhou, X. Wang, X. Sun, Q. Peng and Y. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, Journal of Catalysis,2005,229:206-212.
    [73](a) K. Kaneko, K. Inoke, B. Freitag, A.B. Hungria, P.A. Midgley, T.W. Hansen, J. Zhang, S. Ohara and T. Adschiri, Structural and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis, Nano Letters,2007,7:421-425. (b) J. Zhang, H. Kumagai, K. Yamamura, S. Ohara, S. Takami, A. Morikawa, H. Shinjoh, K. Kaneko, T. Adschiri and A. Suda, Extra-Low-Temperature Oxygen Storage Capacity of CeO2 Nanocrystals with Cubic Facets, Nano Letters,2011,11:361-364. (c) J. Zhang, S. Ohara, M. Umetsu, T. Naka, Y. Hatakeyama and T. Adschiri, Colloidal Ceria Nanocrystals: A Tailor-Made Crystal Morphology in Supercritical Water, Advanced Materials, 2007,19:203-206.
    [74]X. Lu, T. Zhai, H. Cui, J. Shi, S. Xie, Y. Huang, C. Liang and Y. Tong, Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods, Journal of Materials Chemistry,2011,21:5569-5572.
    [1]Z. Darvishi and A. Morsali, Synthesis and characterization of nano-sepiolite by solvothermal method, Applied Surface Science,2010,256:3607-3611. (b) S. Kaowphong, T. Thongtem and S. Thongtem. (2007) Solvothermal preparation of nano-sized CaWO4 particles. In:Ahn BT, Jeon H, Hur BY, et al. (eds) Advances in Nanomaterials and Processing, Pts 1 and 2.1265-1268. (c) J.S. Lee and S.C. Choi, Solvent effect on synthesis of indiurn tin oxide nano-powders by a solvothermal process, Journal of the European Ceramic Society,2005,25: 3307-3314. (d) J. Ma, Y. Du and Y. Qian, Low-temperature synthesis of nanocrystalline niobium nitride via a benzene-thermal route, Journal of Alloys and Compounds,2005,389:296-298. (e) X.F. Qian, X.M. Zhang, C. Wang, K.B. Tang, Y. Xie and Y.T. Qian, Benzene-thermal preparation of nanocrystalline chromium nitride, Materials Research Bulletin,1999,34:433-436. (f) X.S. Qu, G.H. Pan, H.K. Yang, Y. Chen, J.W. Chung, B.K. Moon, B.C. Choi and J.H. Jeong, Solvothermal synthesis and luminescence properties of NaYF4:Ln(3+) (Eu3+, Tb3+, Yb3+/Er3+) nano- and microstructures, Optical Materials,2012, 34:1007-1012. (g) T. Thongtem, A. Phuruangrat and S. Thongtem, Analyses of nano-crystalline LiCoVO4 prepared by solvothermal reaction, Materials Letters, 2006,60:3776-3781. (h) T. Thongtem, A. Phuruangrat and S. Thongtem, Formation of LiNi0.5CO0.5VO4 nano-crystals by solvothermal reaction, Ceramics International,2008,34:421-427. (i) Y. Xie, Y. Qian, W. Wang, S. Zhang and Y. Zhang, A Benzene-Thermal Synthetic Route to Nanocrystalline GaN, Science,1996,272:1926-1927. (j) F. Xue, H.B. Li, Y.C. Zhu, S.L. Xiong, X.W. Zhang, T.T. Wang, X. Liang and Y.T. Qian, Solvothermal synthesis and photoluminescence properties of BiPO4 nano-cocoons and nanorods with different phases, Journal of Solid State Chemistry,2009,182:1396-1400. (k) S.-H. Yu, L. Shu, J. Yang, K.-B. Tang, Y. Xie, Y.-T. Qian and Y.-H. Zhang, Benzene-thermal synthesis and optical properties of CdS nanocrystalline, Nanostructured Materials,1998a,10:1307-1316.
    [2]L. Chen, Y. Gu, Z. Li, Y. Qian, Z. Yang and J. Ma, Low-temperature synthesis and benzene-thermal growth of nanocrystalline boron nitride, Journal of Crystal Growth,2005,273:646-650.
    [3](a)陈志.(2006)氮化物合成方法探索及性质研究.山东大学.(b)谭淼.(2011)纳米BN的控制合成及其相变过程研究.山东大学.(c)朱玲玲.(2010)纳米BN的可控合成及其在液态环境中的相变.山东大学.
    [4]L. Zhu, M. Tan, G. Lian, X. Zhang, D. Cui and Q. Wang, Investigation on the synthesis of turbostratic boron nitride by solvothermal hot-press method, Solid State Sciences,2010,12:1084-1087.
    [5](a) G.D. Bachand, S.B. Rivera, A.K. Boal, J. Gaudioso, J. Liu and B.C. Bunker, Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins, Nano Letters,2004,4:817-821. (b) F.Y. Cheng, J.Z. Zhao, W. Song, C.S. Li, H. Ma, J. Chen and P.W. Shen, Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries, Inorganic Chemistry,2006,45:2038-2044. (c) J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He and J.B. Li, Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment, Advanced Materials,2008,20:452-+. (d) J. Li and H.C. Zeng, Hollowing Sn-doped TiO(2) nanospheres via Ostwald ripening, Journal of the American Chemical Society,2007,129:15839-15847. (e) Y. Luo, S.K. Lee, H. Hofmeister, M. Steinhart and U. Gosele, Pt nanoshell tubes by template wetting, Nano Letters,2004,4:143-147. (f) L.Q. Mai, L. Xu, C.H. Han, X. Xu, Y.Z. Luo, S.Y. Zhao and YL. Zhao, Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries, Nano Letters,2010, 10:4750-4755. (g) G.W. Meng, Y.J. Jung, A.Y. Cao, R. Vajtai and P.M. Ajayan, Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires, Proceedings of the National Academy of Sciences of the United States of America,2005,102:7074-7078. (h) X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen and T.H. Wang, One-Step Synthesis of Hierarchical SnO2 Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries, Journal of Physical Chemistry C,2010,114:8084-8088.
    [6](a) C. O'Dwyer, D. Navas, V. Lavayen, E. Benavente, M.A. Santa Ana, G. Gonzalez, S.B. Newcomb and C.M. Sotomayor Torres, Nano-Urchin:The Formation and Structure of High-Density Spherical Clusters of Vanadium Oxide Nanotubes, Chemistry of Materials,2006,18:3016-3022. (b) Y. Qiu Zhu, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, W. Kuang Hsu, M. Terrones and D. R. M. Walton,3D Silicon oxide nanostructures:from nanoflowers to radiolaria, Journal of Materials Chemistry,1998,8:1859-1864.
    [7](a) L.M. Cao, Z. Zhang, L.L. Sun, C.X. Gao, M. He, Y.Q. Wang, Y.C. Li, X.Y. Zhang, G. Li, J. Zhang and W.K. Wang, Well-Aligned Boron Nanowire Arrays, Advanced Materials,2001,13:1701-1704. (b) J. Fan and Y. Zhao, Nanocarpet Effect Induced Superhydrophobicity, Langmuir,2010,26:8245-8250. (c) C.A. Grimes, Synthesis and application of highly ordered arrays of TiO2 nanotubes, Journal of Materials Chemistry,2007,17:1451-1457. (d) B.A. Korgel and D. Fitzmaurice, Self-Assembly of Silver Nanocrystals into Two-Dimensional Nanowire Arrays, Advanced Materials,1998,10:661-665. (e) Z.F. Ren, Z.P. Huang, J.W Xu, J.H. Wang, P. Bush, M.P. Siegal and P.N. Provencio, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science,1998,282: 1105-1107. (f) T. Thurn-Albrecht, J. Schotter, G.A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen and T.P. Russell, Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates, Science,2000,290:2126-2129. (g) Z.L. Wang and J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science,2006,312:242-246. (h) J.J. Xu, K. Wang, S.Z. Zu, B.H. Han and Z.X. Wei, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, Acs Nano,2010,4: 5019-5026. (i) Y. Zhou and H. Li, Sol-gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array, Journal of Materials Chemistry,2002,12:681-686.
    [8]G. Lian, X. Zhang, M. Tan, S. Zhang, D. Cui and Q. Wang, Facile synthesis of 3D boron nitride nanoflowers composed of vertically aligned nanoflakes and fabrication of graphene-like BN by exfoliation, Journal of Materials Chemistry, 2011,21:9201-9207.
    [9]Y. Qi and J.L.G. Hector, Planar stacking effect on elastic stability of hexagonal boron nitride, Applied Physics Letters,2007,90:081922-081923.
    [10](a) L. Chen, Y. Gu, Z. Li, Y. Qian, Z. Yang and J. Ma, Low-temperature synthesis and benzene-thermal growth of nanocrystalline boron nitride, Journal of Crystal Growth,2005,273:646-650. (b) G. Lian, X. Zhang, L. Zhu, M. Tan, D. Cui and Q. Wang, New strategies for selectively synthesizing cubic boron nitride in hydrothermal solutions, CrystEngComm,2010,12:1159-1163.
    [11](a) C.D. Wagner and G.E. Muilenberg, Handbook of x-ray photoelectron spectroscopy:a reference book of standard data for use in x-ray photoelectron spectroscopy,1979:Physical Electronics Division, Perkin-Elmer Corp. (b) Y. Wen, Y. Wang, F. Zhang and B. Liu, Near-ultraviolet excitable Ca4Y6(SiO4)6O: Ce3+, Tb3+ white phosphors for light-emitting diodes, Materials Chemistry and Physics,2011,129:1171-1175. (c) J.D. Xiujuan, C. Ying, C. Zhiqiang, R.L. Peter, H.L. Lu, P. Johan du, G.M. Dougal and W. Xungai, Controlled surface modification of boron nitride nanotubes, Nanotechnology,2011,22:245301.
    [12]S. Bernard, V. Salles, J. Li, A. Brioude, M. Bechelany, U.B. Demirci and P. Miele, High-yield synthesis of hollow boron nitride nano-polyhedrons, Journal of Materials Chemistry,2011,21:8694-8699.
    [13](a) L. Hou, F. Gao, G. Sun, H. Gou and M. Tian, Synthesis of High-Purity Boron Nitride Nanocrystal at Low Temperatures, Crystal Growth & Design,2007,7: 535-540. (b) K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry,1985,57:603-619. (c) S.J. Teng, J.N. Wang and X.X. Wang, Synthesis of thin-walled carbon nanocages and their application as a new kind of nanocontainer, Journal of Materials Chemistry,2011,21:5443-5450.
    [14]Q. Zhang and B. Yan, Phase control of upconversion nanocrystals and new rare earth fluorides though a diffusion-controlled strategy in a hydrothermal system, Chemical Communications,2011,47:5867-5869.
    [15](a) N. Bao, Y. Li, Z.T. Wei, G.B. Yin and J.J. Niu, Adsorption of Dyes on Hierarchical Mesoporous TiO2 Fibers and Its Enhanced Photocatalytic Properties, Journal of Physical Chemistry C,2011,115:5708-5719. (b) Y.L. Hong, H.S. Fan and X.D. Zhang, Synthesis and Protein Adsorption of Hierarchical Nanoporous Ultrathin Fibers, Journal of Physical Chemistry B,2009,113: 5837-5842. (c) J. Qu, C.Y. Cao, Y.L. Hong, C.Q. Chen, P.P. Zhu, W.G. Song and Z.Y. Wu, New hierarchical zinc silicate nanostructures and their application in lead ion adsorption, Journal of Materials Chemistry,2012,22:3562-3567. (d) R. Zhai, Y.Z. Wan, L. Liu, X. Zhang, W.Q. Wang, J.D. Liu and B. Zhang, Hierarchical MnO2 nanostructures:synthesis and their application in water treatment, Water Science and Technology,2012,65:1054-1059. (e) Q. Zhang and B. Yan, Phase control of upconversion nanocrystals and new rare earth fluorides though a diffusion-controlled strategy in a hydrothermal system, Chemical Communications,2011,47:5867-5869.
    [16](a) B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem and A. Addou, Methylene blue and iodine adsorption onto an activated desert plant, Bioresource Technology,2008,99:8441-8444. (b) D. Caparkaya and L. Cavas, Biosorption of Methylene Blue by a Brown Alga Cystoseira barbatula Kutzing, Acta Chimica Slovenica,2008,55:547-553. (c) X.C. Lu, X.Y. Chuan, A.P. Wang and F.Y. Kang, Microstructure and photocatalytic decomposition of methylene blue by TiO2-mounted halloysite, a natural tubular mineral, Acta Geologica Sinica-English Edition,2006,80:278-284. (d) P. Waranusantigul, P. Pokethitiyook, M. Kruatrachue and E.S. Upatham, Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza), Environmental Pollution,2003,125:385-392.
    [17]S. Wang, Y. Boyjoo, A. Choueib and Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud, Water Research,2005,39:129-138.
    [1]. J Economy & RV Anderson, Boron nitride fibers, Journal of Polymer Science Part C; Polymer Symposia,1967,19:283-297. (b) P Gleize, MC Schouler, P Gadelle & M Caillet, Growth of tubular boron nitride filaments, Journal of Materials Science,1994,29:1575-1580. (c) EJM Hamilton, SE Dolan, CM Mann, HO Colijn, CA McDonald & SG Shore, Preparation of Amorphous Boron Nitride and Its Conversion to a Turbostratic, Tubular Form, Science,1993,260:659-661. (d) S-I Hirano, T Yogo, S Asada & S Naka, Synthesis of Amorphous Boron Nitride by Pressure Pyrolysis of Borazine, Journal of the American Ceramic Society,1989,72:66-70. (e) T Ishii, T Sato, Y Sekikawa & M Iwata, Growth of whiskers of hexagonal boron nitride, Journal of Crystal Growth,1981,52, Part 1: 285-289.
    [2]. (a) X Blase, A De Vita, JC Charlier & R Car, Frustration effects and microscopic growth mechanisms for BN nanotubes, Physical Review Letters,1998,80: 1666-1669. (b) Y Chen, JD Fitz Gerald, JS Williams & S Bulcock, Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling, Chemical Physics Letters,1999,299:260-264. (c) NG Chopra, RJ Luyken, K Cherrey, VH Crespi, ML Cohen, SG Louie & A Zettl, Boron Nitride Nanotubes, Science, 1995,269:966-967. (d) NG Chopra & A Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube, Solid State Communications, 1998,105:297-300. (e) WQ Han, Y Bando, K Kurashima & T Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction, Applied Physics Letters,1998,73:3085-3087 (f) WQ Han, Y Bando, K Kurashima & T Sato, Boron-doped carbon nanotubes prepared through a substitution reaction, Chemical Physics Letters,1999,299:368-373. (g) A Loiseau, F Willaime, N Demoncy, N Schramchenko, G Hug, C Colliex & H Pascard, Boron nitride nanotubes, Carbon,1998,36:743-752. (h) SL Sung, SH Tsai, CH Tseng, FK Chiang, XW Liu & HC Shih, Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition, Applied Physics Letters,1999,74:197-199. (i) M Terauchi, M Tanaka, T Matsumoto & Y Saito, Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes, Journal of Electron Microscopy,1998,47:319-324.0) DP Yu, XS Sun, CS Lee, I Bello, ST Lee, HD Gu, KM Leung, GW Zhou, ZF Dong & Z Zhang, Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature, Applied Physics Letters,1998,72:1966-1968. (k) Y Zhang, K Suenaga, C Colliex & S Iijima, Coaxial nanocable:Silicon carbide and silicon oxide sheathed with boron nitride and carbon, Science,1998,281:973-975.
    [3]. (a) J Cumings & A Zettl, Mass-production of boron nitride double-wall nanotubes and nanococoons, Chemical Physics Letters,2000,316:211-216. (b) D Golberg, Y Bando, W Han, K Kurashima & T Sato, Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction, Chemical Physics Letters,1999,308: 337-342. (c) T Hirano, T Oku & K Suganuma, Atomic structure and electronic state of boron nitride fullerenes and nanotubes, Diamond and Related Materials, 2000,9:625-628. (d) Y Shimizu, Y Moriyoshi, H Tanaka & S Komatsu, Boron nitride nanotubes, webs, and coexisting amorphous phase formed by the plasma jet method, Applied Physics Letters,1999,75:929-931. (e) DP Yu, XS Sun, CS Lee, I Bello, ST Lee, HD Gu, KM Leung, GW Zhou, ZF Dong & Z Zhang, Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature, Applied Physics Letters,1998,72:1966-1968.
    [4]. (a) D Cornu, P Miele, R Faure, B Bonnetot, H Mongeot & J Bouix, Conversion of B(NHCH3)(3) into boron nitride and polyborazine fibres and tubular BN structures derived therefrom, Journal of Materials Chemistry,1999,9:757-761. (b) C Duriez, E Framery, B Toury, P Toutois, P Miele, M Vaultier & B Bonnetot, Boron nitride thin fibres obtained from a new copolymer borazine-tri(methylamino)borazine precursor, Journal of Organometallic Chemistry,2002,657:107-114. (c) B Jaschke, U Klingebiel, R Riedel, N Doslik & R Gadow, Cyclosilazanes and borazines:polymer precursors to silicon-and boron-containing ceramics, Applied Organometallic Chemistry,2000,14: 671-685. (d) K Moraes, J Vosburg, D Wark, LV Interrante, AR Puerta, LG Sneddon & M Narisawa, Microstructure and indentation fracture behavior of SiC-BN composites derived from blended precursors of AHPCS and polyborazylene, Chemistry of Materials,2004,16:125-132. (e) JA Perdigon-Melon, A Auroux, D Cornu, P Miele, B Toury & B Bonnetot, Porous boron nitride supports obtained from molecular precursors. Influence of the precursor formulation and of the thermal treatment on the properties of the BN ceramic, Journal of Organometallic Chemistry,2002,657:98-106. (f) B Toury, S Bernard, D Cornu, F Chassagneux, JM Letoffe & P Miele, High-performance boron nitride fibers obtained from asymmetric alkylaminoborazine, Journal of Materials Chemistry,2003,13:274-279. (g) B Toury, P Miele, D Cornu, H Vincent & J Bouix, Boron nitride fibers prepared from symmetric and asymmetric alkylaminoborazines, Advanced Functional Materials,2002,12: 228-234. (h) T Wideman, EE Remsen, E Cortez, VL Chlanda & LG Sneddon, Amine-modified polyborazylenes:Second-generation precursors to boron nitride, Chemistry of Materials,1998,10:412-421.
    [5]. (a) R Arenal, X Blase & A Loiseau, Boron-nitride and boron-carbonitride nanotubes:synthesis, characterization and theory, Advances in Physics,2010,59: 101-179. (b) D Golberg, Y Bando, Y Huang, T Terao, M Mitome, CC Tang & CY Zhi, Boron Nitride Nanotubes and Nanosheets, Acs Nano,2010,4:2979-2993. (c) D Golberg, Y Bando, K Kurashima & T Sato, Ropes of BN multi-walled nanotubes, Solid State Communications,2000,116:1-6. (e) W Han, Y Bando, K Kurashima & T Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction, Applied Physics Letters,1998,73: 3085-3087. (f) CH Lee, JS Wang, VK Kayatsha, JY Huang & YK Yap, Effective growth of boron nitride nanotubes by thermal chemical vapor deposition, Nanotechnology,2008,19. (g) OR Lourie, CR Jones, BM Bartlett, PC Gibbons, RS Ruoff & WE Buhro, CVD growth of boron nitride nanotubes, Chemistry of Materials,2000,12:1808-+.
    [6]. (a) KC Hou & HB Palmer, The Kinetics of Thermal Decomposition of Benzene in a Flow System, The Journal of Physical Chemistry,1965,69:863-868. (b) BE Koel, JE Crowell, BE Bent, CM Mate & GA Somorjai, Thermal decomposition of benzene on the rhodium(111) crystal surface, The Journal of Physical Chemistry,1986,90:2949-2956. (c) JE Zanetti & G Egloff, The Thermal Decomposition of Benzene, Journal of Industrial & Engineering Chemistry, 1917,9:350-356.
    [7]. F Feigl. (1966) Spot tests in organic analysis:BUTTERWORTH HEINEMANN.
    [8]. (a) N Asahi & Y Nakamura, NMR study of liquid and supercritical benzene, Berichte der Bunsengesellschaft fur physikalische Chemie,1997,101:831-836. (b) H Hayashi & K Torii, Hydrothermal synthesis of titania photocatalyst under subcritical and supercritical water conditions, Journal of Materials Chemistry, 2002,12:3671-3676. (c) YF Patrakov, ES Pavlusha, NI Fedorova & YA Strizhakova, Composition of the Products of the Supercritical Benzene Extraction of Combustible Shale from the Kashpirskoe Deposit, Solid Fuel Chemistry, 2008a,42:65-67.(d) YF Patrakov, ES Pavlusha, NI Fedorova & YA Strizhakova, Thermal Solution of Kashpir Shale in Pressurized Benzene under Supercritical Conditions, Solid Fuel Chemistry,2008b,42:10-13. (e) RI Walton, Subcritical solvothermal synthesis of condensed inorganic materials, Chemical Society Reviews,2002,31:230-238.
    [9]. T Tassaing, MI Cabaco, Y Danten & M Besnard, The structure of liquid and supercritical benzene as studied by neutron diffraction and molecular dynamics, Journal of Chemical Physics,2000,113:3757-3765.
    [10]. Y. Qi and J.L.G. Hector, Planar stacking effect on elastic stability of hexagonal boron nitride, Applied Physics Letters,2007,90:081922-081923.
    [11]. AL Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review,1939,56:978-982.
    [12]. (a) L. Chen, Y. Gu, Z. Li, Y. Qian, Z. Yang and J. Ma, Low-temperature synthesis and benzene-thermal growth of nanocrystalline boron nitride, Journal of Crystal Growth,2005,273:646-650. (b) G. Lian, X. Zhang, L. Zhu, M. Tan, D. Cui and Q. Wang, New strategies for selectively synthesizing cubic boron nitride in hydrothermal solutions, CrystEngComm,2010,12:1159-1163.
    [13]. (a) C.D. Wagner and G.E. Muilenberg, Handbook of x-ray photoelectron spectroscopy:a reference book of standard data for use in x-ray photoelectron spectroscopy,1979:Physical Electronics Division, Perkin-Elmer Corp. (b) Y. Wen, Y. Wang, F. Zhang and B. Liu, Near-ultraviolet excitable Ca4Y6(SiO4)6O: Ce3+, Tb3+ white phosphors for light-emitting diodes, Materials Chemistry and Physics,2011,129:1171-1175. (c) J.D. Xiujuan, C. Ying, C. Zhiqiang, R.L. Peter, H.L. Lu, P. Johan du, G.M. Dougal and W. Xungai, Controlled surface modification of boron nitride nanotubes, Nanotechnology,2011,22:245301.
    [1]. T Gurel, R Erygit. Ab initio pressure-dependent vibrational and dielectric roperties of CeO2 Phys. Rev. B.,2006,74:014302-1-5; (b) X. D. Feng, D. C. Sayle, Z.L. Wang, et al. Converting Ceria polyhedral nanoparticles into single-crystal nanospheres Science,2006,312:1504-1507; (c) M Inoue, M Kimura, T Inui. Transparent colloidal solution of 2 nm ceria particles Chem. Commun.,1999,11:957-958; (d) Z Y Guo, F L Du, G C Li, et al. Synthesis and characterization of single-crystal Ce(OH)3CO and CeO2 triangular microplates, Inorg. Chem.,2006,45:4167-4169; (e) B C H Steele. Fuel-cell technology running on natural gas, Nature,400:619-621; (f) Z X Li, L L Li, Q Yuan, et al. Sustainable and facile route to nearly monodisperse spherical aggregates of CeO2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation J. Phys. Chem. C,2008,112:18405-18411.
    [2]. (a) J Kaspar, P Fornasiero & M Graziani, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today,1999,50:285-298; (b) A Rodriguez, JC Hanson, J-Y Kim, G Liu, A Iglesias-Juez & M Fernandez-Garcia, Properties of CeO2 and Ce1-xZrxO2Nanoparticles:X-ray Absorption Near-Edge Spectroscopy, Density Functional, and Time-Resolved X-ray Diffraction Studies, The Journal of Physical Chemistry B,2003,107:3535-3543; (c) A Trovarelli, Catalytic Properties of Ceria and CeO2-Containing Materials, Catalysis Reviews,1996,38: 439-520.
    [3]. (a) Yang S W, Gao L. Controlled synthesis and self-assembly of CeO2 nanocubes J. Am. Chem. Soc.2006,128:9330-9331. (b) Lu X W, Li X Z, Chen F, et al. Hydrothermal synthesis of prism-like mesocrystal CeO2 J. Alloys Compd.,2009, 479:958-962. (c) Guo Z Y, Du F L, Cui Z L, et al. Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2 Mater. Chem. Phys.,2009,113:53-56. (d) Mai H X, Sun L D, Zhang Y W, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes.J. Phys.Chem. B,2005,109: 24380-24385. (e) Tang B, Zhuo L H, Ge J H, et al. A surfactant-free route to single-crystalline CeO2 nanowires Chem. Commun.,2005,28:3565-3567. (f) Gonza'lez-Rovira L, Sa'nchez-Amaya J, Lo'pez-Haro M, et al. Single-step process to prepare CeO2 nanotubes with improved catalytic activity Nano Lett,2009,9:1395-1400.
    [4]. (a) S Carrettin, P Conception, A Corma, JM Lopez Nieto & VF Puntes, Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude, Angewandte Chemie International Edition,2004,43: 2538-2540. (b) A Corma, P Atienzar, H Garcia & J-Y Chane-Ching, Hierarchically mesostructured doped CeO2 with potential for solar-cell use, Nat Mater,2004,3:394-397. (c) J Guzman, S Carrettin & A Corma, Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2, Journal of the American Chemical Society,2005,127:3286-3287. (d) DM Lyons, KM Ryan & MA Morris, Preparation of ordered mesoporous ceria with enhanced thermal stability, Journal of Materials Chemistry,2002,12:1207-1212. (e) Q Yuan, Q Liu, W-G Song, W Feng, W-L Pu, L-D Sun, Y-W Zhang & C-H Yan, Ordered Mesoporous Cel-xZrxO2 Solid Solutions with Crystalline Walls, Journal of the American Chemical Society,2007,129:6698-6699.
    [5]. (a) A Bumajdad, MI Zaki, J Eastoe & L Pasupulety, Microemulsion-Based Synthesis of CeO2 Powders with High Surface Area and High-Temperature Stabilities, Langmuir,2004,20:11223-11233. (b) Z Guo, F Du, G Li & Z Cui, Synthesis and Characterization of Single-Crystal Ce(OH)CO3 and CeO2 Triangular Microplates, Inorganic Chemistry,2006,45:4167-4169. (c) G-R Li, D-L Qu, X-L Yu & Y-X Tong, Microstructural Evolution of CeO2 from Porous Structures to Clusters of Nanosheet Arrays Assisted by Gas Bubbles via Electrodeposition, Langmuir,2008,24:4254-4259. (d) C Pan, D Zhang & L Shi, CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods, Journal of Solid State Chemistry,2008,181:1298-1306. (e) G Zhang, Z Shen, M Liu, C Guo, P Sun, Z Yuan, B Li, D Ding & T Chen, Synthesis and Characterization of Mesoporous Ceria with Hierarchical Nanoarchitecture Controlled by Amino Acids, The Journal of Physical Chemistry B,2006,110:25782-25790.
    [6]. (a) J Fan, SW Boettcher & GD Stucky, Nanoparticle Assembly of Ordered Multicomponent Mesostructured Metal Oxides via a Versatile Sol-Gel Process, Chemistry of Materials,2006,18:6391-6396. (b) A Mak, C Yu, J Yu, Z Zhang & C Ho, A lamellar ceria structure with encapsulated platinum nanoparticles, Nano Research,2008,1:474-482. (c) S Pavasupree, Y Suzuki, S Pivsa-Art & S Yoshikawa, Preparation and characterization of mesoporous TiO2-CeO2 nanopowders respond to visible wavelength, Journal of Solid State Chemistry, 2005,178:128-134. (d) E Rossinyol, J Arbiol, F Peiro, A Cornet, JR Morante, B Tian, T Bo & D Zhao, Nanostructured metal oxides synthesized by hard template method for gas sensing applications, Sensors and Actuators B:Chemical, 2005,109:57-63. (e) AK Sinha & K Suzuki, Preparation and Characterization of Novel Mesoporous Ceria-Titania, The Journal of Physical Chemistry B, 2005,109:1708-1714. (f) D Terribile, A Trovarelli, J Llorca, C de Leitenburg & G Dolcetti, The preparation of high surface area CeO2-ZrO2 mixed oxides by a surfactant-assisted approach, Catalysis Today,1998a,43:79-88. (g) D Terribile, A Trovarelli, J Llorca, C de Leitenburg & G Dolcetti, The Synthesis and Characterization of Mesoporous High-Surface Area Ceria Prepared Using a Hybrid Organic/Inorganic Route, Journal of Catalysis,1998b,178:299-308. (h) Q Yuan, Q Liu, W-G Song, W Feng, W-L Pu, L-D Sun, Y-W Zhang & C-H Yan, Ordered Mesoporous Ce1-xZrxO2 Solid Solutions with Crystalline Walls, Journal of the American Chemical Society,2007,129:6698-6699.
    [7]. (a) L Han, R Liu, C Li, H Li, C Li, G Zhang & J Yao, Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid, Journal of Materials Chemistry,2012,22: 17079-17085. (b) Z Yang, D Han, D Ma, H Liang, L Liu & Y Yang, Fabrication of Monodisperse CeO2 Hollow Spheres Assembled by Nano-octahedra, Crystal Growth & Design,2009,10:291-295. (c) Z Yang, L Liu, H Liang, H Yang & Y Yang, One-pot hydrothermal synthesis of CeO2 hollow microspheres, Journal of Crystal Growth,2010a,312:426-430. (d) Z Yang, J Wei, H Yang, L Liu, H Liang & Y Yang, Mesoporous CeO2 Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications, European Journal of Inorganic Chemistry, 2010b,2010:3354-3359.
    [8]. X Liang, J Xiao, B Chen & Y Li, Catalytically Stable and Active CeO2 Mesoporous Spheres, Inorganic Chemistry,2010,49:8188-8190.
    [9]. (a) S Imamura, H Yamada & K Utani, Combustion activity of Ag/CeO2 composite catalyst, Applied Catalysis A:General,2000,192:221-226. (b) M Lundberg, B Skarman & L Reine Wallenberg, Crystallography and porosity effects of CO conversion on mesoporous CeO2, Microporous and Mesoporous Materials, 2004,69:187-195.
    [10]. (a) EA Anumol, P Kundu, PA Deshpande, G Madras & N Ravishankar, New Insights into Selective Heterogeneous Nucleation of Metal Nanoparticles on Oxides by Microwave-Assisted Reduction:Rapid Synthesis of High-Activity Supported Catalysts, ACS Nano,2011,5:8049-8061. (b) Y Hu, B Lee, C Bell & Y-S Jun, Environmentally Abundant Anions Influence the Nucleation, Growth, Ostwald Ripening, and Aggregation of Hydrous Fe(III) Oxides, Langmuir, 2012,28:7737-7746. (c) J-G Li, X Li, X Sun, T Ikegami & T Ishigaki, Uniform Colloidal Spheres for (Y1-xGdx)2O3 (x=0-1):Formation Mechanism, Compositional Impacts, and Physicochemical Properties of the Oxides, Chemistry of Materials,2008,20:2274-2281. (d) Y-C Liang, MY Tsai, C-L Huang, C-Y Hu & CS Hwang, Structural and optical properties of electrodeposited ZnO thin films on conductive RuO2 oxides, Journal of Alloys and Compounds,2011,509:3559-3565. (e) DR Modeshia & RI Walton, Solvothermal synthesis of perovskites and pyrochlores:crystallisation of functional oxides under mild conditions, Chemical Society Reviews,2010,39: 4303-4325. (f) C-C Pan & K-L Lin, The interfacial amorphous double layer and the homogeneous nucleation in re flow of a Sn-Zn solder on Cu substrate, Journal of Applied Physics,2011,109:103513-103513-103514. (g) N Rivera, S Choi, C Strepka, K Mueller, N Perdrial, J Chorover & PA O'Day, Cesium and strontium incorporation into zeolite-type phases during homogeneous nucleation from caustic solutions, American Mineralogist,2011,96:1809-1820.
    [11]. (a) J Ge, Y Hu, M Biasini, WP Beyermann & Y Yin, Superparamagnetic Magnetite Colloidal Nanocrystal Clusters, Angewandte Chemie International Edition,2007,46:4342-4345. (b) S Libert, V Gorshkov, D Goia, E Matijevic & V Privman, Model of Controlled Synthesis of Uniform Colloid Particles:Cadmium Sulfide, Langmuir,2003,19:10679-10683.
    [12]. FS Ham, Diffusion-Limited Growth of Precipitate Particles, Journal of Applied Physics,1959,30:1518-1525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700