基于产物资源化的湿式镁法烟气脱硫技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿式镁法烟气脱硫技术在国内经过十多年的研究和发展,其技术的可靠性、建造和运行的经济性以及脱硫副产物资源化的可行性已获得了广泛认同,有希望成为我国未来的主导脱硫技术之一。本文基于循环经济理念,着重探讨了湿式镁法烟气脱硫过程中亚硫酸镁的氧化和抑制氧化过程,并对不同反应器中的湿式镁法烟气脱硫过程进行了系统研究,根据实验结果探索了亚硫酸镁氧化和二氧化硫吸收过程的反应机理,为其工业化应用提供理论依据。主要内容如下:
     通过间歇式密闭均相反应器,研究了亚硫酸钠在不同水质中的本征氧化动力学,并建立了相应动力学方程,证实亚硫酸钠的氧化过程对于水质变化十分敏感;通过曝气搅拌反应器,研究了亚硫酸镁的宏观氧化动力学,建立了相应的动力学方程,证实氧的扩散是亚硫酸镁氧化的速率控制步骤。通过间歇式密闭均相反应器,研究了不同抑制剂存在时亚硫酸钠的本征氧化动力学,建立了相应动力学方程;最终确定硫代硫酸钠作为脱硫产物的最佳抑制氧化剂;通过曝气搅拌反应器,研究了各参数对硫代硫酸钠抑制条件下亚硫酸镁氧化过程的影响,并建立了反应动力学方程;实验证明硫代硫酸钠对亚硫酸镁的氧化具有良好的抑制效果,在其浓度为6.67mmol/L时,抑制氧化效率高达92.8%。
     通过鼓泡反应器,研究了不同参数条件对产物常规氧化的湿式镁法烟气脱硫过程的影响,结果表明鼓泡反应器能适应各参数变化对脱硫率的冲击;烟气量、烟气SO2浓度、烟气O2含量和MgSO4浓度都能影响MgSO3占产物比值;反应过程中浆液pH值的变化可分为稳定阶段、缓慢下降阶段和快速下降阶段三个部分,当pH值低于5.0左右后,脱硫率迅速下降。通过鼓泡反应器,研究了不同参数条件对产物抑制氧化的湿式镁法烟气脱硫过程的影响,结果表明鼓泡反应器能适应各参数变化对脱硫率的冲击;较小的烟气量、较低的烟气O2含量和较高的Na2S2O3浓度有助于提高MgSO3占产物比值,而烟气SO2浓度的变化对其影响不大;反应过程中浆液pH值的变化同样分为三个阶段,当pH值低于5.5左右后,脱硫率迅速下降。
     通过喷淋塔反应器,研究了不同参数条件对产物常规氧化的湿式镁法烟气脱硫过程的影响,确定了最佳操作条件为:烟气量为20Nm3/h,烟气S02浓度为1000~2000mg/Nm3,液气比为8L/Nm3,以及使用较高位置的1“喷嘴;浆液提浓实验表明当MgSO4浓度接近饱和时浆液利用率和脱硫率最高,其最佳pH值操作范围为5.3-5.8。通过喷淋塔反应器,研究了不同参数条件对产物抑制氧化的湿式镁法烟气脱硫过程的影响,确定了最佳操作条件为:烟气量为20Nm3/h,烟气S02浓度为2000mg/Nm3,液气比为8L/Nm3,使用3#单层喷嘴,抑制剂浓度为20mmol/L,浆液pH值为6.5-7.0左右;为使MgSO3占产物比值高于90%,Na2S2O3与MgSO3的摩尔比应维持在1:4以上。基于SO2的气液平衡、气侧传质、液侧传质和SO2的外部传质四个部分建立了喷淋塔湿式镁法烟气脱硫传质模型,结果表明此模型能够较好的模拟正常操作条件下产物常规氧化和抑制氧化的湿式镁法烟气脱硫过程,同时证实了8O2的吸收过程受气膜扩散控制。
     对不同浆液条件下的镁法脱硫产物进行了分析,结果表明产物组成与终止pH值有关,而与Mg(OH)2初始浓度无关;通过热重分析,获得了外部水和结构水去除、亚硫酸镁热解、亚硫酸氢镁热解和硫酸镁热解四个阶段的最大失重温度依次为100℃左右、540℃左右、640℃左右和990℃左右;通过抽滤与离心分离的比较,发现两者组分和浓度差异并不明显,说明固液分离方法对产物的影响不大。
After more than10years of research and development of the magnesium-based wet flue gas desulfurization technology in China, the reliability of the process, the economy of the construction and operation as well as the feasibility of desulfurization byproducts resources have been widely recognized, which is expected to become the dominant desulfurization technology in our country in the future. This paper is based on the concept of circular economy, focused on the oxidation and oxidation inhibition processes of magnesium sulfite in the magnesium-based wet flue gas desulfurization process, systematically studied the magnesium-based wet flue gas desulfurization process in different reactors, and explored the reaction mechanism of magnesium sulfite oxidation and sulfur dioxide absorption process based on the experimental results, which provided the theoretical basis for the industrial application of the magnesium-based wet flue gas desulfurization technology. The main contents are as follows:
     Using the intermittent airtight homogeneous reactor, the intrinsic oxidation kinetics of sodium sulfite under different water quality has been studied and the corresponding kinetic equations have been established. The results confirmed that the sodium sulfite oxidation process is very sensitive to the water quality. Using the aeration stirred reactor, the macroscopical oxidation kinetics of magnesium sulfite has been studied and the corresponding kinetic equation has been established. The results confirmed that the oxygen diffusion is the controlling step of the magnesium sulfite oxidation. Using the intermittent airtight homogeneous reactor, the intrinsic oxidation kinetics of sodium sulfite under the presence of different inhibitors has been studied and the corresponding kinetic equations have been established. Sodium thiosulfate was determined as the optimal oxidation inhibitor for the desulfurization product. Using the aeration stirred reactor, the impact of various parameters on magnesium sulfite oxidation process under oxidation inhibition condition with sodium thiosulfate has been studied and the corresponding kinetic equation has been established. The results confirmed that sodium thiosulfate has a good inhibition effect on the magnesium sulfate oxidation and the oxidation inhibition efficiency could reach92.8%with a concentration of6.67mmol/L of sodium thiosulfate.
     Using the bubbling reactor, the impact of various parameters on the magnesium-based wet flue gas desulfurization process with conventional oxidation of the product has been studied. The results confirmed that the bubbling reactor could adapt to the impact of various parameters on the desulfurization efficiency and the flue gas flow rate, the flue gas SO2concentration, the flue gas O2content and the slurry MgSO4concentration could affect the MgSO3content in the product. The slurry pH value which changes during the reaction process can be divided into three parts, the stable stage, the slow decline stage and the rapid decline stage, respectively. The desulfurization efficiency began to fell rapidly when the pH value was less than5.0. Using the bubbling reactor, the impact of various parameters on the magnesium-based wet flue gas desulfurization process with oxidation inhibition of the product has been studied. The results confirmed that the bubbling reactor could adapt to the impact of various parameters on the desulfurization efficiency and the lower flue gas flow rate, the lower flue gas O2content and the higher Na2S2O3concentration could improve the MgSO3content in the product while the flue gas SO2concentration has less impact on it. The slurry pH value changes during the reaction process can also be divided into three parts and the desulfurization efficiency began to fell rapidly when the pH value was less than5.5.
     Using the spray scrubber, the impact of various parameters on the magnesium-based wet flue gas desulfurization process with conventional oxidation of the product has been studied. The optimum operating conditions were determined as follows:flue gas flow rate as20Nm3/h, flue gas SO2concentration as1000-2000mg/Nm3, liquid-gas ratio as8L/Nm3, and using the1nozzle which located in the higher position. The slurry enrichment experiment indicated that the slurry utilization efficiency and the desulfurization efficiency could reach the highest level when MgSO4concentration was close to the saturation state and the optimal operation pH value range was5.3-5.8. Using the spray scrubber, the impact of various parameters on the magnesium-based wet flue gas desulfurization process with oxidation inhibition of the product has been studied. The optimum operating conditions were determined as follows:flue gas flow rate as20Nm3/h, flue gas SO2concentration as2000mg/Nm3, liquid-gas ratio as8L/Nm3, using the3#nozzle, inhibitor concentration as20mmol/L, and pH value around6.5-7.0. The molar ratio of Na2S2O3to MgSO3should be maintained above1:4in order to maintain the MgSO3content in the product above90%. The magnesium-based wet flue gas desulfurization mass transfer model in spray scrubber has been established based on the four parts of gas-liquid equilibrium of SO2, gas side mass transfer, liquid side mass transfer and external mass transfer of SO2. The results confirmed that the model can be reasonable simulate the magnesium-based wet flue gas desulfurization process with conventional oxidation or oxidation inhibition of the product under normal operating conditions and the SO2absorption process was found to be controlled by gas-film diffusion.
     The analysis results of the magnesium-based wet flue gas desulfurization products under different slurry conditions showed that the product composition was related to the terminate pH value and was independent to the initial Mg(OH)2concentration. Using the thermogravimetric analysis method, the maximum mass loss temperature of the removal of external water and structural water, the thermal decomposition of magnesium sulfite, the thermal decomposition of magnesium bisulfite, and the thermal decomposition of magnesium sulfate were obtained as100℃,540℃,640℃and990℃, respectively. The difference of the desulfurization products components from air pump filtration and centrifugal separation was not significant, which indicated that the solid-liquid separation method has less impact to the product.
引文
[1]马勇.二氧化硫现状与控制分析[J].中国电力教育,2010,(z1):5-6,9.
    [2]谭鑫,钟儒刚,甄岩,等.钙法烟气脱硫技术研究进展[J].化工环保,2003,23(6):322-328.
    [3]周琴.大气中二氧化硫的污染及防治对策[J].内蒙古环境保护,2002,14(3):3.
    [4]国家环境保护总局.2002年中国环境状况公报[R].国家环境保护总局,2002.
    [5]国家环境保护总局.2006年中国环境状况公报[R].国家环境保护总局,2006.
    [6]中华人民共和国环境保护部.2009年中国环境状况公报[R].中华人民共和国环境保护部,2010.
    [7]中华人民共和国环境保护部.2011年中国环境状况公报[R].中华人民共和国环境保护部,2012.
    [8]许红,刘尧祥.燃煤电厂烟气脱硫现状及其工艺[J].中国煤炭,2006,32(11):48-50.
    [9]郝吉明,马广大.大气污染控制工程.第二版[M].北京:高等教育出版社,2002.304-502.
    [10]张强,许世森,郭振锁,等.湿法氧化镁烟气脱硫技术在我国的发展前景[J].热力发电,2005,34(8):9-11.
    [11]王胜.工业毒物及其防治(3)[J].现代职业安全,2010,(106):100-101.
    [12]孟紫强,桑楠,张波,等.二氧化硫体内衍生物诱发小鼠骨髓嗜多染红细胞微核的效应[J].环境科学学报,2000,20(2):239-243.
    [13]Ziqiang Meng, Bo Zhang. Polymerase chain reaction-based deletion screening of bisulfite (sulfur dioxide)-enhanced gpt-mutants in CHO-AS52 cells[J]. Mutation Research,1999,425(1):81-85.
    [14]党卫红,任平国.亚硫酸盐生殖毒性研究[J].现代食品科技,2009,25(4):373-375.
    [15]孝文.二氧化硫吸入对运动大鼠学习记忆能力影响的研究[D].北京:北京师范大学,2010.
    [16]沈飞.二氧化硫吸入对运动大鼠淋巴细胞凋亡及脾脏氧化应激的影响[D].北京:北京师范大学,2010.
    [17]周昌云,陈爱玉,张鹏,等.酸雨的成因、危害与防治[J].农技服务,2009,26(10):104-105.
    [18]K. Myllynen, E. Ojutkangas, M. Nikinmaa. River water with high iron concentration and low pH causes mortality of lamprey roe and newly hatched larvae[J]. Ecotoxicology and Environmental Safety,1997,36(1):43-48.
    [19]陈明艳,姜显政,黄汝红.浅析酸雨的形成、危害及防治措施[J].广东微量元素科学,2009,16(1):15-20.
    [20]秦广辉.浅谈酸雨对生态系统的影响[J].工会博览·理论研究,2010,(5):267.
    [21]牛建刚,牛荻涛,周浩爽.酸雨的危害及其防治综述[J].灾害学,2008,23(4):110-116.
    [22]S. Sandey, R.M. Langaker. Atlantic salmon and acidification in Southern Norway:A disaster in the 20th century, but a hope for the future? [J]. Water, Air,& Soil Pollution, 2001,130:1340.
    [23]刘晓华.酸雨的形成及对环境的危害[J].赤峰学院学报(自然科学版),2010,26(5):96-97.
    [24]牛玉璐,曹永胜.大气主要污染物对植物叶形态结构的影响[J].生物学教学,2010,35(12):7-8.
    [25]张琼.二氧化硫和氯气对植物的危害及其验证[J].生物学教学,2001,26(10):22.
    [26]丁宁.二氧化硫污染对植物影响的研究进展[J].城市建设,2010,(69):91-92.
    [27]郑淑颖.二氧化硫污染对植物影响的研究进展[J].生态科学,2000,19(1):59-64.
    [28]崔兴国.小麦、玉米种子萌发对酸雨胁迫的响应[J].安徽农业科学,2010,38(14):7677-7678.
    [29]金清,江洪,余树全,等.酸雨胁迫对亚热带典型树种幼苗生长与光合作用的影响[J].生态学报,2009,29(6):3322-3327.
    [30]孟赐福,姜培坤,曹志洪,等.酸雨对植物的危害机理及其防治对策研究进展[J].浙江农业学报,2008,20(3):208-212.
    [31]贾果,玉玲.酸雨的形成、危害及防治措施[J].魅力中国,2010,(20):52.
    [32]李雪梅,黄海英,吕岩.亚硫酸对玉米和高粱苗的伤害及磷酸缓冲液的防护作用[J].生态学杂志,2000,19(3):16-19.
    [33]Misako Kato, Seki Shimizu. Chlorophyll metabolism in higher plants VI. involvement of peroxidase in chlorophyll degradation[J]. Plant Cell Physiol,1985,26(7):1291-1301.
    [34]Xiaohua Huang, Qing Zhou, Yaxin Ye, et al. Effect of cerium on seed germination under acid rain stress [J]. Journal of Rare Earths,2000,18(4):298-301.
    [35]Neil W. Macdonald, Brandon J. Ducsay. Growth and survival of jack pine exposed to simulated acid rain as seedlings [J]. Soil Science Society of America Journal,1997, 61(1):295-297.
    [36]邓努波.火电厂二氧化硫污染现状及治理措施[J].重庆电力高等专科学校学报,2001,6(2):16-20.
    [37]曾庭华,杨华.湿法烟气脱硫系统的安全性及优化[M].北京:中国电力出版社,2004.
    [38]郭大本.酸雨及其危害[J].黑龙江水专学报,2006,33(2):1-5.
    [39]Xuchang Xu, Changhe Chen, Haiyin Qi, et al. Development of coal combustion pollution control for SO2 and NOx in China[J]. Fuel Processing Technology,2000,62(2-3): 153-160.
    [40]贾立军,刘炳光.我国烟气脱硫技术综述[J].盐业与化工,2006,35(5):35-39.
    [41]S. Ebrahimi, C. Picioreanu, R. Kleerebezem. Rate-based modelling of SO2 absorption into aqueous NaHCO3/Na2CO3 solutions accompanied by the desorption of CO2[J]. Chemical Engineering Science,2003,58(16):3589-3600.
    [42]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.245.
    [43]李乐丰.氨法烟气脱硫工艺及应用时要注意的问题[J].山东电力技术,1999,(6):45-48,57.
    [44]魏巍.烟气氧化镁法脱硫技术研究[J].山西能源与节能,2004,(3):20-21.
    [45]马训华,渠智彦.烟气脱硫技术的研究[J].中国新技术新产品,2008,7(2):85.
    [46]王健,姜开明.我国烟气脱硫技术现状综述[J].粉煤灰,2004,16(6):41,44.
    [47]徐凤刚.脱硫产业的发展机遇和面临的挑战[J].电力环境保护,2005,21(1):1-4.
    [48]薛菲,石劲松.烟气脱硫技术现状与发展建议[J].江苏化工,2001,29(2):32-35.
    [49]韩成年.燃煤二氧化硫污染及其治理技术的现状分析[J].中国铸造装备与技术,2001,(2):5-8.
    [50]Jacek A. Michalski. The Influence of aerodynamic characteristics on mass exchange efficiency in FGD scrubbers[J]. Chemical Engineering & Technology,1999,22(4): 343-351.
    [51]赵健,曾德勇.氧化镁-亚硫酸镁湿法脱硫工艺初探[J].热力发电,2006,35(1):54-56.
    [52]Keping Yan, Ruinian Li, Tianle Zhu, et al. A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale [J]. Chemical Engineering Journal,2006,116(2):139-147.
    [53]Suhao He, Guangming Xiang, Dingkai Li, et al. Commercial test of a slurry jet FGD system[J]. Environmental Progress,2002,21(2):131-136.
    [54]A. Bandyopadhyaya, M. N. Biswasa. Prediction of the removal efficiency of a novel two-stage hybrid scrubber for flue gas desulfurization[J]. Chemical Engineering & Technology,2006,29(1):130-145.
    [55]郭如新.镁法烟气脱硫研究进展[J].硫磷设计与粉体工程,2009,(3):10-14.
    [56]曹霞,陈秀萍.浅谈氢氧化镁法脱硫技术[J].有色冶金设计与研究,2000,21(1):47-51.
    [57]Eric N. Kaufman, Mark H. Little, Punjai T. Selvaraj. Recycling of FGD gypsum to calcium carbonate and elemental sulfur using mixed sulfate-reducing bacteria with sewage digest as a carbon source[J]. Journal of Chemical Technology & Biotechnology,1996,66(4):365-374.
    [58]郭如新.氢氧化镁生产应用现状及研发动向[J].化工科技市场,2001,24(11):4-7,25.
    [59]郭如新.氧化镁、氢氧化镁在环保领域中的应用[J].江苏化工,2004,32(2):1-4.
    [60]Torii Masahiro, Shimazaki Hiroaki, Endo Takumi, et al. Operation results of IHI flue gas desulfurization system for coal-fired boiler of IPP[J]. Ishikawajima Harima Engineering Review,2001,41(3):128-131.
    [61]G. R. Koehler. Alkaline scrubbing removes sulfur dioxide[J]. Chemical Engineering Progress,1974,70(6):63-65.
    [62]P. Bishop, Qingzhong Wu. Application of recovered magnesium hydroxide from a flue gas desulfurization system for wastewaters treatment[A].16th Proceedings Annual InternationalPittsburgh Coal Conference[C].1999.477-486.
    [63]J. H. Beeghly. Product development of FGD recovered magnesium hydroxide[A].16th Proceedings Annual International Pittsburgh Coal Conference [C].1999.462-467.
    [64]J. Vejvoda, J. Hubena. Utilization of the magnesite process for desulfurization of combustion gases in Czechoslovakia:Further alter natives of the process[J]. Chemicky Prumsyl,1986,36(8):396-400.
    [65]M. Hartman, K. Svoboda. Chemical and engineering aspects of the regeneration of MgO in a wet magnesite process of desulfrizing flue gases[J]. Chemicky Prumsyl,1984, 34(1):33-39.
    [66]J. Hubena, J. Vejvoda. Evaluation of potential raw materials for FGD by magnesite process in combination with production of sintered magnesia[P]. Czechoslovakia: 103-22-182949,1985.
    [67]S. Najmer. Processing MgSO3 from flue gas desulfurizing traps[P]. Czechoslovakia: 106-14-104741,1987.
    [68]M. Krysik. Studies of absorption in the magnesite method for desulfurization of flue gases[J]. Prace Naukowe Politechniki Szczecinskiej,1988, (362):43-51.
    [69]A. Urbanek, K. Kunanowski. Desulfurization of gases by the wet magnesia method of Warsaw Technical University[P]. Czechoslovakia:137-8-113391,2002.
    [70]Hirofumi Kikkawa, Takanori Nakamoto, Masanori Morishita, et al. New wet FGD process using granular limestone[J]. Industrial & Engineering Chemistry Research, 2002,41(12):3028-3036.
    [71]Matsui Hideo, Iiraura Hiroaki. Treatment of incinerator flue gases with magnesium hydroxide[P]. Japan:06246130A2,1994.
    [72]Kita Yoshihiro, Uejima Naoyuki. Wet-process desulfurization of flue gas by using calcined magnesia slurry[P]. Japan:07232029,1995.
    [73]USA Chemical Construction Corp.. Removal of sulfur dioxide and solid particles from flue gas[P]. Japan:52002865,1977.
    [74]R. Bitsko, R. W. Helt. Progress and problems with magnesium oxide regenerable scrubbers [A]. Proceedings of the American Power Conference [C].1991.701-705.
    [75]Y. Berman, A. Tanklevsky, Y. Oren, et al. Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams:Part II[J]. Chemical Engineering Science,2000,55(5):1023-1028.
    [76]Akiyoshi Tetsuo. Waste gas desulfurization using magnesium hydroxide with improved utilization factor of treatment agent[P]. Japan:2001179048A2,2001.
    [77]Hayakawa Yurni, Yamashita Masatada. Removal of sulfur oxides from boiler flue gases[P]. Japan:2001179048A2,2001.
    [78]Ishikawajima Harima Heavy Ind.. Exhaust gas desulfurization method involves adding calcium hydroxide to waste material slurry resulting from treatment of exhaust gas with magnesium oxide or hydroxide and recovering magnesium hydroxide and gypsum[P]. Japan:2000288338A,1999.
    [79]D. K. Jones, Allegheny Energy Inc.. Recovery of gypsum product and magnesium hydroxide product from flue gas containing sulfur dioxide involves treating flue gas with magnesium hydroxide slurry[P]. USA:2006251556A1,2005.
    [80]Koyama Hisaji. Apparatus for desulfurization of flue gases with recycling magnesium oxide and recoverying sulfuric acid[P]. Japan:10109013,1998.
    [81]G. R. Koehler. SO2 processing em dash alkaline scrubbing removes sulfur dioxide[J]. Chemical Engineering Progress,1974, (6):63-65.
    [82]Turcaniova, Udmila, Tkacova. Selective reaction of sulfur dioxide with magnesium oxide in an aqueous suspension of caustic magnesite[J]. Chemicky Prumsyl,1988, 38(8):398-402.
    [83]Chemical Construction Corporation. Removal of sulfur dioxide from waste gases[P]. USA:794200,1969.
    [84]郭如新.镁法烟气脱硫技术国内应用与研发近况[J].硫磷设计与粉体工程,2010,(3):16-20.
    [85]茆令文.玻璃熔窑烟气脱硫除尘技术研究[J].中国玻璃,2002,27(5):2-6.
    [86]郭如新.镁剂烟气脱硫联产硫镁肥料初探[J].化工科技市场,2002,25(8):24-27.
    [87]崔可,柴明,徐康富,等.回收法氧化镁湿法烟气脱硫机理和工艺基础研究[J].环境科学,2006,27(5):846-849.
    [88]张战朝,尚占黎,贾继元.氧化镁脱硫回收副产品提浓试验研究[J].中国环保产业,2006,(11):28-30.
    [89]六合天融(北京)环保科技有限公司.用锅炉烟气制取七水硫酸镁肥料的方法[P].中国:1733656,2006.
    [90]六合天融(北京)环保科技有限公司.利用锅炉烟气制取亚硫酸镁的万法[P].中国:1775682,2006.
    [91]六合天融(北京)环保科技有限公司.利用镁法脱硫副产物亚硫酸镁制取脱硫剂氧化镁和二氧化硫的方法[P].中国:1775681,2006.
    [92]北京融通丰源系统技术有限公司.低浓度二氧化硫烟气脱硫制硫酸的方法及烟气脱硫系统[P].中国:1887696,2007.
    [93]熊天渝.循环使用氧化镁除去废气中二氧化硫使其成为产品的方法[P].中国:1891330,2007.
    [94]徐辉,梁燕,童翠香.大型烟气脱硫除尘系统[P].中国:101507895,2009.
    [95]山乐胜.应用氧化镁法烟气脱硫工艺的可行性分析[A].2004中国国际脱硫脱硝技术与设备展览会暨技术研讨会论文集[C].2004.32-35.
    [96]郭如新.中国镁质资源概况与镁法烟气脱硫[J].硫磷设计与粉体工程,2009,(6):24-29.
    [97]王孝镕.硫离子、亚硫酸根和硫代硫酸根的分光光度测定[J].分析化学,1987,15(1):21.
    [98]李伟文.改良硫酸钡比浊法测定水中硫酸盐的探讨[J].广东卫生防疫,1998,24(4):17-19.
    [99]E. R. Altwicker. Oxidation/inhibition of sulfite ion in aqueous solution[J]. AIChE Symposium Series,1979,75:145-150.
    [100]Hubert N. Alyea, Hans L. J. Backstrom. The inhibitive action of alcohols on the oxidation of sodium sulfite[J]. Journal of the American Chemical Society,1929,51(1): 90-109.
    [101]Kia-Khwe Jeu, Hubert N. Alyea. A comparison of organic inhibitors in chain reactions [J]. Journal of the American Chemical Society,1933,55(2):575-588.
    [102]V. Linek, V. Vacek. Chemical engineering use of catalyzed sulphite oxidation kinetics for the determination of mass transfer characteristics of gas-liquid contactors [J]. Chemical Engineering Science,1981,36:1747-1768.
    [103]Xiangli Long, Wei Li, Wende Xiao, et al. Novel homogeneous catalyst system for the oxidation of concentrated ammonium sulfite[J]. Journal of Hazardous Materials,2006, 129(1-3):260-265.
    [104]Bo Zhao, Yan Li, Huiling Tong, et al. Study on the reaction rate of sulfite oxidation with cobalt ion catalyst[J]. Chemical Engineering Science,2005,60(3):863-868.
    [105]Yuegang Zuo, Jian Zhan. Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water[J]. Atmospheric Environment,2005, 39(1):27-37.
    [106]Charles H. Barron, Harold A. O'hern. Reaction kinetics of sodium sulfite oxidation by the rapid-mixing method[J]. Chemical Engineering Science,1966,21(5):397-404.
    [107]John E. Sawicki, Charles H. Barron. On the kinetics of sulfite oxidation in heterogeneous systems[J]. The Chemical Engineering Journal,1973,5(2):153-159.
    [108]Yong Jia, Qin Zhong, Xueyou Fan, et al. Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulphurization process[J]. Chemical Engineering Journal,2010,164(1):132-138.
    [109]Jiazhong Zhang, Frank J. Millero. The rate of sulfite oxidation in seawater[J]. Geochimica et Cosmochimica Acta,1991,55(3):677-685.
    [110]Yuegang Zuo, Jurg Hoigne. Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog water[J]. Science,1993,260:71-73.
    [111]Y. Zuo. Light-induced oxidation of bisulfite-aldehyde adducts in real fog water[J]. Naturwissenschaften,1994,81(11):505-507.
    [112]Yuegang Zuo, Jian Zhan, Taixing Wu. Effects of monochromatic UV-visible light and sunlight on Fe(Ⅲ)-catalyzed oxidation of dissolved sulfur dioxide[J]. Journal of Atmospheric Chemistry,2005,50(2):195-210.
    [113]Klaus Hjuler, Kim Dam-Johansen. Wet oxidation of residual product from spray absorption of sulphur dioxide[J]. Chemical Engineering Science,1994,49(24): 4515-4521.
    [114]汪黎东,赵毅,李蔷薇,等.添加剂促进亚硫酸钙氧化的实验研究[J].环境污染治理技术与设备,2006,7(4):41-45.
    [115]钟秦.亚硫酸钙非均相氧化动力学的研究[J].南京理工大学学报(自然科学版)2000,24(2):172-176.
    [116]E. Delplancq, P. Casti, J. Vanderschuren. Kinetics of oxidation of calcium sulphite slurries in aerated stirred tank reactors:Chemical reaction engineering [J]. Chemical Engineering Research & Design,1992,70(A3):291-295.
    [117]Amedeo Lancia, Dino Musmarra, Francesco Pepe. Uncatalyzed heterogeneous oxidation of calcium bisulfite [J]. Chemical Engineering Science,1996,51(16): 3889-3896.
    [118]Amedeo Lancia, Dino Musmarra, Francesco Pepe, et al. Model of oxygen absorption into calcium sulfite solutions[J]. Chemical Engineering Journal,1997,66(2):123-129.
    [119]杜谦,吴少华,赛俊聪,等.湿法烟气脱硫环境下亚硫酸钙强制催化氧化的研究[J].环境保护科学,2005,31(2):1-4.
    [120]杨剑,刘清才,郑慧敏,等.烟气脱硫亚硫酸钙铁催化氧化动力学实验[J].重庆大学学报(自然科学版),2009,32(8):910-914.
    [121]Lidong Wang, Yongliang Ma, Jiming Hao, et al. Mechanism and kinetics of sulfite oxidation in the presence of ethanol[J]. Industrial & Engineering Chemistry Research, 2009,48(9):4307-4311.
    [122]Jerome S. Schultz, Elmer L. Gaden. Sulfite oxidation as a measure of aeration effectiveness[J]. Industrial & Engineering Chemistry,1956,48(12):2209-2212.
    [123]Jinghong Zhou, Wei Li, Wende Xiao. Kinetics of heterogeneous oxidation of concentrated ammonium sulfite[J]. Chemical Engineering Science,2000,55(23): 5637-5641.
    [124]汪黎东,马永亮,袁钢,等.多相条件下亚硫酸镁非催化氧化反应动力学及机理[J].中国科学:化学,2010,40(8):1172-1178.
    [125]E. Narita, F. Lawson, K.N.Han. Solubility of oxygen in aqueous electrolyte solutions [J]. Hydrometallurgy,1983,10(1):21-37.
    [126]Jinghong Zhou, Wei Li, Wende Xiao. The solubilities of oxygen in electrolyte solutions of ammonium salts [J]. Oxidation Communication,2000,23:172-177.
    [127]Yoshio Iwai, Hideyuki Eya, Yoshitomo Itoh, et al. Measurement and correlation of solubilities of oxygen in aqueous solutions containing salts and sucrose [J]. Fluid Phase Equilibria,1993,83:271-278.
    [128]T. Gurkan, A. Nufal, I. ErogLu. Kinetics of the heterogeneous oxidation of ammonium sulfite[J]. Chemical Engineering Science,1992,47(13-14):3801-3808.
    [129]Peter M. Wilkinson, Bert Doldersum, Peter H. M. R. Cramers, et al. The kinetics of uncatalyzed sodium sulfite oxidation[J]. Chemical Engineering Science,1993,48(5): 933-941.
    [130]林树昌,曾泳淮.酸碱滴定原理[M].北京:高等教育出版社,1989.
    [131]T.K. Sherwood, R. L. Pigford, C. R. Wilke. Mass Transfer[M]. New York: McGraw-Hill, Inc.,1975.
    [132]Lidong Wang, Yi Zhao. Kinetics of sulfite oxidation in wet desulfurization with catalyst of organic acid[J]. Chemical Engineering Journal,2008,136(2-3):221-226.
    [133]Jiansong Mo, Zhongbiao Wu, Changjie Cheng, et al. Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system[J]. Journal of Environmental Sciences,2007, 19(2):226-231.
    [134]Jun Wang, Tim C. Keener, Guang Li, et al. The dissolution rate of Ca(OH)2 in aqueous solutions[J]. Chemical Engineering Communications,1998,169(1):167-184.
    [135]中南冶金学院分析化学教研组.分析化学手册[M].北京:科学出版社,1988.
    [136]E. Alper. Mass Transfer with Chemical Reaction in Multiphase Systems. Volume I: Two-Phase Systems[M]. Hague:Martinus Nijhoff Publishers,1983.
    [137]John C. S. Chang, Theodore G. Brna. Pilot testing of sodium thiosulfate[J]. Environmental Progress,1986,5(4):225-233.
    [138]魏刚,熊蓉春,张小冬.某些物质对亚硫酸盐氧化的阻滞作用[J].水处理技术, 1999,25(5):277-280.
    [139]Laszlo Sipos. Inhibition of sulfite oxidation by phenols:Screening antioxidant behavior with aclark oxygen sensor[J]. Journal of Chemical Education,1998,75(12): 1603-1605.
    [140]Wanda Pasiuk-Bronikowska, Tadeusz Bronikowski, Marek Ulejczyk. Synergy in the autoxidation of S(IV) inhibited by phenolic compounds[J]. The Journal of Physical Chemistry A,2003,107(11):1742-1748.
    [141]Ernest. Rolia, Chuni L. Chakrabarti. Kinetics of decomposition of tetrathionate, trithionate, and thiosulfate in alkaline media[J]. Environmental Science & Technology, 1982,16(12):852-857.
    [142]F. Vidal B., P. Ollero. A kinetic study of the oxidation of S(IV) in seawater[J]. Environmental Science & Technology,2001,35(13):2792-2796.
    [143]Binlin Dou, Weiguo Pan, Qiang Jin, et al. Prediction of SO2 removal efficiency for wet flue gas desulfurization[J]. Energy Conversion and Management,2009,50(10): 2547-2553.
    [144]Binlin Dou, Young-Cheol Byun, Jungho Hwang. Flue gas desulfurization with an electrostatic spraying absorber[J]. Energy & Fuels,2008,22(2):1041-1045.
    [145]Jerzy Warych, Marek Szymanowski. Model of the wet limestone flue gas desulfurization process for cost optimization[J]. Industrial & Engineering Chemistry Research,2001,40(12):2597-2605.
    [146]Thibaut Neveux, Yann Le Moullec. Wet industrial flue gas desulfurization unit:Model development and validation on industrial data[J]. Industrial & Engineering Chemistry Research,2011,50(12):7579-7592.
    [147]S. Y. Liu, W. D. Xiao. Modeling and simulation of a bubbling SO2 absorber with granular limestone slurry and an organic acid additive[J]. Chemical Engineering & Technology,2006,29(10):1167-1173.
    [148]刘乃玲,张旭,杨勇.螺旋型喷嘴雾滴分布特性实验研究[J].山东建筑大学学报,2006,21(4):8-12.
    [149]E. Sada, H. Kumazawa, Y. Sawada, et al. Kinetics of absorptions of leansulfurdioxide into aqueousslurries of calcium carbonate and magnesium hydroxide[J]. Chemical Engineering Science,1981,36(1):149-155.
    [150]M. Eigen, K. Kustin, G. Maass. Die geschwindigkeit der hydratation von SO2 in waβriger losung[J]. Zeitschrift fur Physikalische Chemie,1961,30(1-2):130-136.
    [151]Manoj V. Dagaonkar, Antonie A. C. M. Beenackers, Vishwas G. Pangarkar. Absorption of sulfur dioxide into aqueous reactive slurries of calcium and magnesium hydroxide in a stirred cell[J]. Chemical Engineering Science,2001,56(3):1095-1101.
    [152]Hui Chen, Honghua Ge, Binlin Dou, et al. Thermogravimetric kinetics of MgSO3·6H2O byproduct from magnesia wet flue gas desulfurization[J]. Energy & Fuels,2009,23(5): 2552-2556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700