过氧化氢发动机动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以过氧化氢为氧化剂的液体火箭发动机具有广泛的应用前景,其动态特性是研制中的难题之一。本文综合采用理论分析、数值仿真和实验研究等多种手段,对过氧化氢发动机的动态特性进行了全面深入的研究。
     针对液体火箭发动机系统的特点,提出了混合维仿真方法。对静态参数混合、动态参数混合和动态直接混合的三种维度混合方式,分析了其相关理论问题。在静态参数混合中,以过氧化氢喷嘴为例,研究了流量系数随结构参数和工作参数的变化。在动态参数混合中,首先应用有限元方法,分析了弹簧的模态和频响特性,再应用系统辨识的方法,建立了弹簧的二阶模型,指出:由于存在死圈,弹簧的等效质量应为总质量的40%,并据此对压力调节阀进行了仿真;通过对文氏管进行二维CFD仿真,建立了文氏管的黑箱和灰箱模型,计算表明,文氏管在动态反压下,输出流量将有±3.3%的波动。
     对某发动机的启动过程开展了仿真研究,分析了该发动机隔离阀前出现压力突然下降的原因,特别指出压力降不是与流量变化值相关,而是与流量变化的速率相关。提出了相应的解决措施,包括:(1)改变管路尺寸;(2)调节流量变化曲线;(3)在隔离阀前加装蓄能器。
     针对某过氧化氢/煤油发动机出现关机爆炸的现象,开展了包含传热、两相流在内的关机过程仿真,对氦气吹除的效果进行了评估,得到了不当的氦气吹除反而造成温升的结论。提出了过氧化氢延时关机方案,通过对过氧化氢冷却和吹除气冷却的效果进行研究,得到了最佳的关机时序。
     开展了以低浓度过氧化氢/低浓度酒精为推进剂的发动机实验。(1)开展了催化分解实验,对催化分解效率、活化时间、催化剂寿命等进行了研究,得到了催化床的设计准则;利用孔板和隔板,成功消除了过氧化氢催化床中存在的低频不稳定。(2)研究了燃烧室构型、喷注器结构、催化分解效率、工作参数等对燃烧性能的影响,得到了提高燃烧效率的途径。(3)从推进剂浓度、喷注压降、点火能量、点火时序等方面开展了点火研究,突破了低浓度推进剂发动机的点火这一关键技术。(4)过氧化氢发动机中长期存在低频振荡,通过分析影响振荡的各种因素,提出了相应解决方案,攻克了这一技术难关。研制了一系列高效、稳定、快速的过氧化氢发动机,所采用的过氧化氢浓度可以为90%,70%,50%,工作室压为1.9~4.0MPa,发动机流量为0.6~7.7kg/s,理论燃烧温度为900~1800K。这些发动机所生成的高温燃气具有广泛用途。
     针对实验中的不稳定现象,综合采用各种维度混合方式,建立了过氧化氢发动机的混合维仿真模型。(1)稳态仿真表明:在低浓度酒精发动机中存在着“酒精先蒸发”现象,使局部温度大于理论温度,这一定程度上解释了实验中出现的喷注面板烧蚀现象;燃烧效率的仿真结果与实验结果较为吻合,偏差不超过6%。(2)建立了发动机稳定性的理论分析模型,对实验发动机而言,当燃烧时滞大于13ms时,系统将不稳定。(3)仿真所得到的系统振荡频率与实验的频率接近,趋势一致,说明混合维仿真具有较高实用价值;研究了喷注压降、余氧系数等对发动机不稳定度的影响,表明:过低的喷注压降会引起系统振荡,过高的压降会造成发动机熄火。(4)提出了一种部分催化的单调变推力发动机方案,该发动机具有宽范围的稳定性和良好的调节性。
Liquid propellant rocket engine with hydrogen peroxide as its oxidant has prosperious future and one of the most difficult things to develop this type of engine is its dynamic characteristics, as is researched deeply in this thesis by means of theoretical analysis, numerical simulation, and experiment research.
     A new method used to simulate liquid rocket propulsion system is proposed by the name of mixing-dimensional simulation. And there are three modes of dimension mixing: static parameter mixing, dynamic parameter mixing, dynamic direct mixing, all of which are researched with relative theories. The discharge coefficiency of injector, as is an example of static parameter mixing, is variable with structure parameter and work parameter, considering the injector is so narrow in hydrogen peroxide engine. The modes and frequency response of spring is obtained using 3D CFE method, then spring model is established by means of system identification and the result shows that the equivalent mass occupies 40 percent of total mass because of dead loop. And a pressure adjust valve is simulated based on this spring model. Black-box model and grey-box model of venturi are established based on 2D CFD simulation, results show that the flow rate fluctuates in the range of±3.3% in the conditions of dynamic exit pressure.
     The starup process of engine is simulated with focusing on the pressure drop before isolation valve. The reasons are found and correlative means to solve this problem are proposed including: (1) change size of supply pipe; (2) regulate the variety of flow rate; (3) install accumulator before isolation valve.
     The shutdown pocess of hydrogen peroxide/kerosane engine is simulated based on heat transfer and two phase flow aiming at the explosion in experiment. It shows that the peroxide temperature in cooling channel may increases when helium expels in wrong flow rate or in wrong sequence. A scheme of postponing shut of hydrogen peroxide is proposed and the shutdown sequence is optimized through evaluating the effect of peroxide as a coolant or helium as a filling gas on the decrease of temperature.
     Experiments of engine with low concentration hydrogen peroxide and low concentration ethanol as propellants are conducted. (1) Catalysis decomposition of peroxide is researched especially focused on the catalysis efficiency, activation time and longevity of catalyst bed in order to get the design and use guideline. The low frequency fluctuate in the catalyst bed is elimilated using hole shutter and isolation panel. (2) Combustion performance is researched in different conditions including: different configuration of combustor, structure of injector, efficiency of catalyze and working parameters. Then approachs to improve combustion performance are obtained. (3) The ignition of this low concentration propellant which is very difficult is broken through considering the effect of propellant concentration, pressure drop of injector, ignitor energy and ignition sequence. (4) Low frequency fluctuate which often happens is controlled by analyzing relative factors. Then a series of fast, high efficiency and stable hydrogen peroxide engines are developed with peroxide concentration range of 90%~50%, combustor pressure range of 1.9~4.0MPa, combustion temperature ranges of 900~1800K, flow rate of 0.6~7.7kg/s. And the high temperature gas produced by these engines is very useful in some areas.
     The mixing-dimension model of experimental propulsion system is established in order to simulate the unstable phenomena. (1) Results from stability simulation show that there is a phenomenon of“ethanol evaporates firstly”, as is the reason why injector panel is burnt in experiment. And the combustion efficiency from simulation is consistent with that from experiment; with the maximum deviation is less than 6%. (2) Stability model is established and researched, results show that the propulsion system gets unstable when combustion-lag is more than 12 millisecond. (3) Oscillation frequency from simulation is approximately equal to that from experiment. Then the factors that influence instability degree are checked, including injector pressure drop, excess oxygen coefficient, etc. Results show that too low injector pressure drop leads to unstable but too high drop leads to flameout. (4) And a new concept variable thrust engine using partially catalyzed peroxide is evaluated mainly on its stability and modulation.
引文
[1] S A Frolik, B L Austin, J J Rusek. Development of Hypergolic Liquid Fuels for Use with Hydrogen Peroxide. AIAA 2000-3684
    [2] J E Quinn. Cost Trade off for a Pressure Fed Liquid Rocket to LEO. AIAA 1999-2622
    [3]谢红军,洪鑫.深空探测器推进系统.上海航天, 2003, 20(2):38-43
    [4] M Ventura, P Mullens. The Use of Hydrogen Peroxide for Propulsion and Power. AIAA 1999-2880
    [5] J C Whitehead, M D Dittman, A G Ledebuhr. Progress toward Hydrogen Peroxide Micropulsion. DE200114593
    [6] J R Kirchner. Hydrogen Peroxide. Kirk-othmer Encyclopedia of Chemical Technology. 4th ed. New York: John Wiely & Sons, 1995
    [7] http://www.h2o2.com/intro/properties/physics
    [8] D Gibbon, M Paul, P Jolley, etc. Energetic Green Propulsion for Small Spacecraft. AIAA 2001-3247
    [9] J E Funk, J Rusek. Assessment of United States Navy Block 0 NKMF/RGHP Propellants. Second International Hydrogen Peroxide Propulsion Conference, 1999
    [10] S A Frolik. Hypergolic Liquid Fuels for Use With Rocket Grade Hydrogen Peroxide[M]. USA, Purdue University, 2000
    [11] J E Funk, S D Heister, R Humble, etc. Development Testing of Non-Toxic, Storable Hypergolic Liquid Propellants. AIAA 1999-2878
    [12]刘晓伟.过氧化氢和自燃燃料的双组元发动机研制.火箭推进, 2001, 27(5):5-8
    [13]肖锋,谭建国,沈赤兵.过氧化氢自燃点火器的实验研究.火箭推进, 2006, 32(4):21-25
    [14] R Humble. Bipropellant Engine development Using Hydrogen Peroxide and Hypergolic Fuel. AIAA 2000-3554
    [15] M Ventura, G Garbodem. A Brief History of Concentrated Hydrogen Peroxide Uses. AIAA 1999-2739
    [16] M Ventura, P Mullens. The Ues of Hydrogen Peroxide for Propulsion and Power. AIAA 1999-2880
    [17] B L Austin, S Frolik. Characterization of Non-Toxic Hypergolic Bi-Propellants, Second International Hydrogen Peroxide Propulsion Conference, 1999
    [18] E Wernimotit, P Mullens. Recent Developments in Hydrogen PeroxideMonopropellant Devices, AIAA 1999-2741
    [19]贺芳,方涛,等.新型绿色液体推进剂研究进展.火炸药学报, 2006, 29(4): 54-57
    [20]王万军,唐松青.绿色过氧化氢双组元自燃推进剂.化学推进剂与高分子材料, 2004, 2(5): 30~35
    [21] D Andrews. The GAMMA Rocket Engines For Black Knight, Journal of the British Interplanetary Society, 1990, (43): 301-310
    [22] R Sackheim, R Ryan, E Threet. Survey of Advanced Booster Options for Potential Shuttle-Derivative Vehicles. AIAA 2001-3414
    [23] A J Musker. Highly Stabilised Hydrogen Peroxide as a Rocket Propellant. AIAA 2003-4619
    [24] J E Quinn. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide). N20030006267/XAB
    [25] K J Miller, J C Sisco, B L Austin, etc., Design and Ground Testing of a Hydrogen Peroxide Kerosene Combustor For RBCC Application, AIAA 2003-4477
    [26] E Hulbert, Z Baojiong, W Yue, et al. Non-toxic Orbital Maneuvering and Reaction Control systems for Reusable Spacecraft. Jouranl of Propulsion and Power. 1998, 14(5): 676-687
    [27] R Ross, D Morgan, D Crockett, et al. Upper Stage Flight Experiment 10K Engine Design and Test Results. AIAA 2000-3558
    [28] A H Epstein, C Joppin, J L Kerrebrock. Micro-fabricated Liquid Rocket Motors. N20030020732/XAB
    [29]黄俊,薛宏.微动力系统的若干研究动态和进展.世界科技研究与发展, 2005, 27(1): 5-9
    [30]刘昌波,刘志让,林革.过氧化氢燃料电池.电源技术, 2006, 30(5):345-348
    [31] J A Horkovich. Directed Energy Weapons: Promise & Reality. AIAA 2006-3753
    [32] Johnson, C; Anderson, W; Ross, R. Catalyst Bed Instability within the USFE H2O2/JP-8 Rocket Engine. AIAA 2000-3301
    [33]杜新,汪亮. H2O2-PE固液火箭发动机低频不稳定燃烧研究.固体火箭技术, 2004, 27(1):24-27
    [34] E K Ruth, H Ahn, R L Baker, M A Brosmer. Advanced Liquid Rocket Engine Transient Model. AIAA 90-2299
    [35] J R Mason, R D Southwick. Large Liquid Rocket Engine Transient Performence Simulation System (Final Report). NASA CR-184099, 1990
    [36] A D Garclee. Analysis of the Space Shuttle Main Engine Simulation. N93-20251 (NASA-CR-191063). June, 1993
    [37] W J D Escher, B J Flornes. A Study of Composite Propulsion Systems for Advanced Launch Vehicle Applications. The Marquardt Company Report 25194, 1966
    [38] E J Wernimont, S D Heister. Progress in Hydrogen Peroxide Oxidized Hybrid Rocket Experiment. AIAA 1996-2696
    [39] J E Bradford, J R Olds. Improvements and Enhancements to SCCREAM, A Conceptual RBCC Engine Analysis Tool. AIAA 1998-3775
    [40] S Z Barley, P Palmer, J Wallbank. Characterisation of a Monopropellant Microthruster Catalytic Bed. AIAA 2005-4544
    [41] E Hulbert, B Zhang, Y Wang. Nontoxic Orbital Maneuvering and Reaction Control System for Reusable Spacecraft. Journal of Propulsion and Power, 1998, 14(4): 676-687
    [42] N Luo, G H Miley, P J Shrestha, et al. H2O2-Based Fuel Cells for Space Power System. AIAA 2005-5755
    [43] P K Wu, R P Fuller, P W Morlan, et al., Development of a Pressure-Fed Rocket Engine Using Hydrogen Peroxide and JP-8, AIAA 1999-2877
    [44] M Ventura, E Wernimont. Advancements in High Concentration Hydrogen Peroxide Catalyst Beds. AIAA 2001-3250
    [45] M R Long, J Rusek. The Characterization of the Propulsive Decomposition of Hydrogen Peroxide. AIAA 2000-3683
    [46] E Wernimont, P Mullens. Capabilities of Hydrogen Peroxide Catalyst Beds. AIAA 2000-3555
    [47] E Wernimont, P Mullens. Catalyst Bed Testing for Development of a 98% Hydrogen Peroxide Procurement Specification. AIAA 2002-3852
    [48] J S Mok, W J Helms, J C Sisco, et al. Decomposition and Vaporization Studies of Hydrogen Peroxide. AIAA 2002-4028
    [49] L M Chiappetta, L J Spadaccini, H Huang, et al. Modeling a hydrogen peroxide gas generator for rockets. AIAA 2000-3223
    [50] X Zhou, D L Hitt. Modeling of Catalyzed Hydrogen Peroxide Decomposition in Slender Microchannels with Arrhenius Kinetics. AIAA 2004 3763
    [51] J H Corpening, S D Heister, W E Anderson. A Model for Thermal Decomposition of Hydrogen Peroxide. AIAA 2004-3373
    [52]张宗美等.航天故障手册.北京:宇航出版社, 1994
    [53]田含晶,高浓度过氧化氢分解催化剂的研究[M].大连:中科院大连化物所, 2000
    [54]杨黄河,过氧化氢分解反应及其催化剂的研究[M].大连:中科院大连化物所, 2001
    [55]雷娟萍.过氧化氢催化剂及其催化剂床技术综述.火箭推进, 2005, 31(6):30-34
    [56]李小芳.无毒单组元发动机技术研究.上海航天, 2001, 18(3):26-31
    [57]白云峰,林庆国,金盛宇,等.过氧化氢单元催化分解火箭发动机研究.液体火箭推进技术发展研讨会, 2005
    [58] K Palmer. Development and Testing of Non-Toxic Hypergolic Miscible Fuels[M]. USA: Purdue University, 2002
    [59] M Brian, M Mark, C. Grubelich. Investigation of Hypergolic Fuels with Hydrogen Peroxide, AIAA 2001-3837
    [60] J A Musker, G Roberts, P Chandler, et al. Optimisation Study of a Homogeneously Catalysed HTP Rocket Engine. Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion (ESA SP-557). June 2004
    [61] J J Rusek, M K Minthom, M L Purcell, et al., Non-Toxic Homogeneous Miscible Fuel Development for Hypergolic Bipropellant Engines, Sixth Annual AIAA BMDO TBMD Conference, USA: San Diego, 1997
    [62] R L Matthew, E A William, W H Ronald. Bi-Centrifugal Swirl Injector Development For Hydrogen Peroxide And Non-Toxic Hypergolic Miscible Fuels. AIAA 2002-4026
    [63] J A Blevins, R Gostowski, S Chianese. An Experimental Investigation of Hyperglic Ignition Delay of Hydrogen Peroxide with Fuel Mixture. AIAA 2004-3863
    [64] J A Muss, C W Johnson, W Kruse, et al. The Performance of Hydrocarbon fuels with H2O2 in a Uni-element Combustor. AIAA 2003-4623
    [65] J C Sisco, B L Austin, J S Mok, et al., Ignition Studies of Hydrogen Peroxide and Kerosene Fuel. AIAA 2003-831
    [66] J C Sisco, B L Austin, J S Mok, et al. Autoignition of Kerosene by Decomposed Hydrogen Peroxide In a Dump Combustor Configuration. AIAA 2003-4921
    [67] P Y Kim, A Majamaki, c Papesh, et al. Design and Development Testing of the TR108- a 30Klbf Thrust-Class Hydrogen Peroxide/Hydrocarbon Pump-Fed Engine. AIAA 2005-3566
    [68]吴志坚.过氧化氢/醇类绿色双组元推进剂自燃技术研究.宇航学报, 2006, 27(3): 448-451
    [69]董李亮.过氧化氢发动机实验技术现状.火箭推进, 2004, 30(6): 32-35
    [70]林革,凌前程,李福云.过氧化氢推力室技术研究.火箭推进, 2005, 31(3): 1-4
    [71]单建胜,累宁.固液混合发动机的研制及其应用.固体火箭技术, 1997,20(3):13-20
    [72] J H Corpening, P K Palmer, S D Heister. Combustion of Advanced Non-toxic Hybrid Propellants. AIAA 2003-4596
    [73]杜新,汪亮等. H2O2固液混合发动机燃烧流动计算分析.固体火箭技术, 2002, 25(4):27-30
    [74] C Lorenzo, P Dario. Oxidizer Conrtol and Optimal Design of Hybrid Rockets For Small Satellites. AIAA 2003-4748
    [75] C Lorenzo, P Dario. Optimal Design of Hybrid Rocket for Small Satellite. AIAA 2002-3579
    [76] N Tsujikado, M Koshimae, R Ishikawa, et al. An Application of Commerical Grade Hydrogen Peroxide for Hybrid/Liquid Rocket Engine. AIAA 2002-3573
    [77] G K Lund, W D Starret, K C Jensen. Development and Lab-Scale Testing of a Gas Generator Hybrid Fuel in Support of Hydrogen Peroxide Hybrid Upper-Stage Program. AIAA 2001-3244
    [78]杜大华,张继桐.液压流体系统的频域特性分析.机床与液压, 2006, (10):86-88
    [79] L M Santi. Integrated Model Development of Liquid Fueled Rocket Propulsion System (Final Report). N94-27166,1993
    [80]周松柏,郭正,等.火箭发动机动态流场的数值模拟.推进技术, 2007, 28(2):118-121
    [81] M F Cross, A K Majumdar, J C Bennett. Modelling of Chill Down in Cryogenic Transfer Lines. Journal of Spacecraft and Rocket.Vol.39, No.2, 2002
    [82] O C Delgosha, Y Courtot, F Joussellin. Numerical Simulation of the Unsteady Cavitation Behavior of an Inducer Blade Cascade. AIAA Journal, 2004, 42(3):560-569
    [83] D T哈杰, F H里尔登.液体推进剂火箭发动机不稳定燃烧.国防工业出版社. 1980,6
    [84]刘昆.分级燃烧循环液氧液氢发动机系统分布参数模型与通用仿真研究[D].长沙:国防科技大学研究生院, 1999,10
    [85] M P Binder. A Transient Model of the RL10A-3-3A Rocket Engine.NASA CR-195478
    [86] V杨, W E安德松.液体火箭发动机燃烧不稳定性.北京:科学出版社, 2001,2
    [87] C Brennen. Scale Effects in the Dynamic Transfer Functions for Cavitating Inducers. ASME Journal of Fluids Engineering, 1982, 104(4): 428-433
    [88] V M Kalnin, V A Sherstiannikov. Pecularities of Start Regime Orgnization in Stage-Combustion Cycle Liquid Rocket Engines. IAF 1983-373
    [89] P D Silkowsik, C M Rhie, G S Copeland. Computational Fluid DynamicInvestigation of Aeromechanics. Journal of Propulsion and Power, 2002, 18(3)
    [90]黄道琼,张继桐,何洪庆.四机并联发动机低频动态特性分析.火箭推进, 2004, 30(4): 27-31
    [91] C K Smith. Digital Computer Simulation of Complex Hydraulic System. Using Multiport Component Models[D]. USA: Oklahoma State University, 1975
    [92]张黎辉,李家文,张雪梅.航天器推进系统发动机动态特性研究.航空动力学报, 2004, 19(4): 546-549
    [93]樊久铭,申研,邹经湘.模态区间方法在液体火箭发动机系统仿真中的应用.推进技术, 2006, 27(3): 193-196
    [94]陈阳,高芳,张黎辉,等.减压器动态仿真的有限体积模型.推进技术, 2006, 27(1):9-14
    [95] R E Biggs. Space Shuttle Main Engine: The First Ten Years. AAS 89-556
    [96] M Binder. An RL10A-3-3A Rocket Engine Model Using the Rocket Engine Transient Simulator(ROCETS) software. AIAA 1993-2357
    [97] [俄]ВФПрисняков邢耀国译.液体火箭发动机及其供给系统动力学.烟台:海军航空工程学院, 1988, 5
    [98]格列克曼.顾明初,郁明桂,邱明熠.液体火箭发动机自动调节.北京:宇航出版社, 1995,3
    [99] V M Kalnin, V A Sherstiannikov. Pecularities of Start Regime Orgnization in Stage-Combustion Cycle Liquid Rocket Engines. IAF 83-373
    [100] H D Sabbick, G Krulle. Numerical Simulations of Transients in Feed Systems of Cryogenic Rocket engines. AIAA 95-2967
    [101] A Kanmuri, T Kanda,Y Wakamatsu, et al. Transient Analysis of LOX/LH2 Rocket Engine (LE-7). AIAA 89-2736
    [102]张黎辉,张振鹏.补燃循环液体火箭发动机输送系统的频率特性.推进技术, 2000, 21(1):5-7
    [103]高芳,陈阳,张振鹏,等.液体火箭发动机实验台液路系统工作过程仿真.航空动力学报, 2006, 21(2):417-420
    [104]李家文,张黎辉,张雪梅,等.空间推进系统静动态特性仿真软件研究.推进技术, 2004, 25(2):148-151
    [105]陈启智.液体火箭发动机控制与动态特性理论.长沙:国防科技大学出版社, 1993,12
    [106]张育林.喷注器与文氏管双调的变推力液体火箭发动机响应特性分析[M].长沙:国防科技大学研究生院, 1984
    [107]沈赤兵.液体火箭发动机静特性与响应特性研究[D].长沙:国防科技大学研究生院, 1997,12
    [108]王珏. YF-73氢氧发动机启动过程分析[M].北京:航天工业总公司第11研究所, 1990
    [109]黄玉辉.燃烧不稳定性的理论、数值与实验研究[D].长沙:国防科技大学研究生院, 2001,6
    [110] J P Hathout, M Fleifel, A M Annaswamy, et al. Combustion Instability Active Control Using Periodic Fuel Injection. Journal of Propulsion and Power. 2002, 18(2):390-399
    [111] G A Flandro, J Majdalani, J D Sims. Nonlinear Longitudinal Mode Instability in Liquid Propellant Rocket Engine Preburners. AIAA 2004-4162
    [112] V G Bazarov, V Yang. Liquid Propellant Rocket Engine Injector Dynamic. Journal of Propulsion and Power. 1998, 14(5):797-806
    [113] T C Lieuwen. Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor. Journal of Propulsion and Power, 2002, 18(1): 61-67
    [114] A Sarkar, M P Paidoussis. A Compact Limit-cycle Oscillation Model of a Cantilever Conveying Fluid. Journal of Fluid and Structure, 2003, 17(4): 525-539
    [115] C D Bertram, N S J Elliott. Flow Rate Limitation in a Uniform Thin-Walled Collapsible Tube, with Comparison to a Uniform Thick-Walled Tube and a Tube of Tapering Thickness. Journal of Fluid and Structure, 2003, 17(4): 541-559
    [116] H Karimi, A Nassirharand. Dynamic and Nonlinear Simulation of Liquid Propellant Engines. Journal of Propulsion and Power, 2003, 19(5):938-944
    [117] F Lassoudiere, C Brune. Rotordynamics of the Vulcain LH2 Turbopump- Comparision between test Results and Nonlinear Dynamic Analysis. European Forum on Aeroelasticity and Structural Dynamic, Aachen, Federal Republic of Germany. Apr. 1989: 317-323
    [118]应桂炉,王梦魁.氢涡轮泵转子非线性振动.强度与环境, 1994, (1):1-7
    [119] N D Vaughan, J B Gamble. The Modeling and Simulation of a Proportional Solenoid Valve. Journal of Dynamic System, Measurement and Control, 1996, 118(1):120-125
    [120]戴义平,马庆中,赵婷,等.调节阀特性非线性补偿方式对动态特性的影响.热力透平, 2006, 35(2):74-78
    [121] W Zhang, M Ye. Local and Global Bifurcations of Valve Mechanism. Nonlinear Dynamics, 2004, 6(3):301-306
    [122] F Mougenet, V Hayward. Limit Cycle Characterization, Existence and Quenching in the Control of a High Performance Hydraulic Actuator. IEEEInternational Conference on Robotics and Automation, Nagoya, Japan. 1995, (3): 2218-2223
    [123] P S Zung, M H Perng. Nonlinear Dynamic Model of Two Stage Pressure Relief Valve for Designer. Journal of Dynamic System, Measurement and Control, Vol.124, No.1, 2002
    [124] G C Cheng, F Richard. Real Fluid Modeling of Multiphase Flow in Liquid Rocket Engine Combustor. Journal of Propulsion and Power, 2006, 22(6):1373-1381
    [125]陈小前.飞行器总体优化设计理论与应用研究[D].长沙:国防科技大学研究生院, 2001,12
    [126]李海滨,冯国泰.叶轮机械中的多场耦合分析技术.航空发动机, 2002, (2):51-56
    [127] J J P Nadon, S C Kramer, P I King. Multidisciplinary Optimization in Conceptual Design of Mixed-Stream Turbofan Engine. Journal of Propulsion and Power, 1999, 15(1): 17-22
    [128] S V sorokin, A V Terentiev. Nonlinear Statics and Dynamics of a Simply Supported Nonuniform Tube Conveying an Incompressible Inviscid Fluid. Journal of Fluid and Structure, 2003, 17(3): 415-431
    [129] H M Park, W J Lee. Recursive Identification of Thermal Convection. Journal of Dynamic System, Measurement and Control, 2003, 125(1): 1-10
    [130] P J Langhorne, A P Dowling, N Hooper. Practical Active Control System for Combustion Oscillation. Journal of Propulsion and Power, 1990, 6(3): 324-333
    [131]吕振华,姜利泉.基于液-固耦合有限元分析方法的气液型减震器补偿阀性能研究.工程力学, 2006, 23(11):163-169
    [132] D O Bridges. Damage Mitigating Control of Rotorcraft[M]. USA: The Pennsylvania State University the Graduate School. Aug. 2003
    [133]李颖哲,林忠钦,陈泳,等.基于EELG理论与Dymola环境的多学科系统集成仿真.系统仿真学报, 2006, (18):2275-2279
    [134]金捷.美国推进系统数值仿真(NPSS)计划综述.燃气涡轮实验与研究, 2003, 16(1):57-62
    [135] J Benstsman, A J Pearlstein, M A Wilcutts. Control Oriented Modeling of Combustion and Flow Processes in Liquid Propellant Rocket Engines. AIAA 90-1877
    [136]孙道恒. MEMS耦合场分析与系统级仿真.中国机械工程, 2002, 13(9):765-768
    [137] J M Herard, O Hurisse. Coupling Two and One Dimensional Model Through aThin Interface. AIAA 2005-4718
    [138] R Max, G Arnaud, A Nadine. Fully Coupled 1D Model for the Response of a Membreane in a Thin Air Filled Cavity. 59th Annual Meeting of the APS Division of Fluid Dynamics. Nov. 2006
    [139]李众,杨一栋.基于混合维云模型定性推理的调距桨螺距控制.南京航空航天大学学报, 2003, 35(2):162-167
    [140] F Chandeler, G Grayson, P Mazurkivich. The Importance of Detailed Component Simulations in the Feedsystem Development for a Two-Stage-to- Orbit Reusable Launch Vehicle. AIAA 2005-4370
    [141]徐祖信,尹海龙.平原感潮河网地区一维、二维水动力耦合模型研究.水动力学研究与进展:A辑, 2004, 19(6):744-752
    [142]赖锡军.非恒定水流的一维、二维耦合数值模型.水利水运工程学报, 2002, (2):48-51
    [143]郑国栋,黄东,赵明登.一、二维嵌套模型在河口工程中的应用.水利学报, 2004, (1):22-28
    [144] K P Roger, S Kongeter. A New Method for Coupling One and Two Dimensional River and Floodplain Models to Predict the Impacts of Dike Breaks. 31st Proceedings of the Congress International Association for Hydrolic Research, 2005, (1):772-773
    [145] D J Dorney, D Sondak. B Marcu. Application of a Real Fluid Turbomachinery Analysis to Rocket Turbopump Geometries. AIAA 2005-1007
    [146]刘昆.分级燃烧循环液氧液氢发动机系统分布参数模型与通用仿真研究[D].长沙:国防科技大学研究生院, 1999,10
    [147]谭建国.三组元液体火箭发动机系统方案与动态特性研究[D].长沙:国防科技大学研究生院, 2003,12
    [148]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社, 1995,9
    [149]曹泰岳.火箭发动机动力学.长沙:国防科技大学出版社, 2004,8
    [150]蔡亦钢.流体传输管道动力学.杭州:浙江大学出版社, 1990,6
    [151]潘锦珊.气体动力学基础.西安:西北工业大学出版社, 1995,6
    [152]周进,沈赤兵等.三组元双工况火箭发动机喷注器研究报告.长沙:国防科学技术报告, 1998.7
    [153]田章福.过氧化氢燃气发生器理论和实验研究[D].长沙:国防科技大学研究生院, 2007,04
    [154]武良臣.动态系统辨识.北京:中国矿业大学出版社, 1997,08
    [155]蔡季冰.系统辨识.北京:北京理工大学出版社. 1989,12
    [156]胡德文.非线性与多变量系统相关辨识.长沙:国防科技大学出版社, 2001,04
    [157]黄文梅.系统仿真分析与设计:MATLAB语言工程应用.长沙:国防科技大学出版社, 2001,12
    [158]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社, 2001,2
    [159] T.C.Hsia著,吴礼民译.系统辨识与应用.长沙:中南工业大学出版社, 1986
    [160]李鹏波,胡德文.系统辨识基础.北京:中国水利水电出版社, 2006,10
    [161]孙长任. MSC.Nastran应用实例教程.科学出版社, 2005,6
    [162]隋允康,杜家政,彭细荣. MSC.Nastran有限元动力分析与优化设计实用教程.科学出版社, 2004,4
    [163] D K Beale. Experimental Measurement of Venturi Discharge Coefficient Including Sensitivity to Geometric and Flow Quality Variables. AIAA 99-0304
    [164] B Stutz, J L Reboud. Experiments on unsteady cavitation. Experiments in Fluid, 1997, 22(3): 191-198
    [165] Changhai Xu, Stephen Heister, Steven Collicott, Che-ping Yeh. Modeling Cavitating Venturi Flows. AIAA 2002-3699
    [166] L. M. Charles. Dynamic of sheet cavitation and large scale shedding. N20000612097
    [167]张育林.变推力液体火箭发动机及其控制技术.北京:国防工业出版社, 2001, 1
    [168] M Rocker. Modeling of Non-acoustic Combustion Instability in Simulations of Hybrid Motor Tests. NASA/TP-2000-209905
    [169]陶玉静.液体火箭发动机响应特性研究及稳定性的非线性分析[D].长沙:国防科技大学研究生院, 2007,04
    [170] M V Dirke, A Krautter, etc. Simulation of Cavitating Flow in Diesel Injectors. Oil & Gas Science and Technology, 1999, 54(2): 223-226
    [171]陈怀琛. Matlab及其在理工课程中的应用指南.西安:西安电子科技大学出版社, 2000,1
    [172]许波,刘征. Matlab工程数学应用.北京:清华大学出版社, 2000,4
    [173] A Hosangadi, v Ahuja. A New Unsteady Model for Dense Cloud Cavitation. ASME FEDSM 2005-77485
    [174]郑令仪,孙祖国,赵静霞.工程热力学.北京:国防工业出版社, 1983,11
    [175] M Callenaere, J Franc, etc. The Cavitation Instability Induced by the Development of a Re-entrant Jet. Journal of Fluid Mechanics, 2001, 444: 223-256
    [176] L Agostino, E Rapposelli, etc. A Modified Bubbly Isenthalpic Model forNumerical Simulation of Cavitating Flow. AIAA 2001-3402
    [177]冯康.数值计算方法.北京:国防工业出版社, 1978
    [178]张韵华,奚梅成,陈效群.数值计算方法和算法.北京:科学出版社, 2005,6
    [179]刘国球.液体火箭发动机原理.北京:宇航出版社, 1993
    [180] M Ventura, S Yuan. Commercial Production and Use of Hydrogen Peroxide. AIAA 2000-36740
    [181]赵坚行.燃烧的数值模拟.北京:科学出版社, 2002
    [182]王振国.液体火箭发动机燃烧室内部工作过程数值仿真研究[D].长沙:国防科技大学研究生院, 1993
    [183]徐春光.复杂喷流流场数值模拟及应用研究[M].长沙:国防科技大学研究生院, 2002
    [184] K K Kuo,陈义良,张孝春,孙慈,季鹤鸣编译.燃烧原理.北京:航空工业出版社, 1992
    [185] A M Kanury,庄逢辰等译.燃烧导论.长沙:国防科技大学出版社, 1981
    [186] A Krishnan, A J Przekwas, K W Gross. Computational Analysis of Liquid Hypergolic Propellant Rocket Engine. AIAA 92-1552
    [187]汤燕斌,乐励华.时滞微分方程定常解稳定性改变的几何判别法.工程数学, 2003, 19(5): 48-51
    [188]熊喆风.一类三阶时滞微分方程无条件稳定的判据.江汉大学学报(自燃科学版), 2004, 32(1): 9-16
    [189]蹇继贵,孔德明,罗海庚,等.分离变量时滞微分系统的指数稳定性.中南大学学报(自然科学版), 2005, 36(2): 283-287
    [190]王刚.多变量飞行控制系统稳定裕度的研究[M].北京:北京交通大学研究生院, 2006,3
    [191]黄玉辉.液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[D].长沙:国防科技大学研究生院, 2001,4
    [192]李红增,卢京潮,王志刚,等.一种大范围变推力液体火箭发动机控制器的设计及实现.空军工程大学学报, 2004, 5(6):14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700