硼氢化镁氨合物的合成、放氢性能及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全、高效和经济的固态储氢技术是实现氢能实用化和规模化的关键。Mg(BH4)2具有高储氢密度和适中的放氢焓变,是目前固态储氢材料的研究热点之一。然而,Mg(BH4)2的放氢温度相对较高,吸放氢动力学性能较差,可逆储氢条件过于苛刻,严重阻碍了其实用化进程。为了改善Mg(BH4)2的放氢性能,本文通过其与NH3络合形成了Mg(BH4)2·xNH3,系统研究了材料的制备、结构、热解性能及其机理,并通过F-离子掺杂、多元复合和纳米限域等方法,改善了其吸放氢热力学和动力学性能,并揭示了相关机理。
     在Mg(BH4)2·xNH3的合成方面,提出了“氨再分配”机制,实现了Mg(BH4)2·xNH3的室温固相合成。研究发现,Mg(BH4)2存在Mg(BH4)2·NH3、 Mg(BH4)2·2NH3、Mg(BH4)2-3NH3和Mg(BH4)2·6NH3四种氨合物。在“氨再分配”机制指导下,我们首次合成了Mg(BH4)2·NH3,并报道了Mg(BH4)2·3NH3的结构数据。研究发现了Mg(BH4)2·xNH3的放氢性能与其氨络合数的相关性。一方面,Mg(BH4)2·xNH3释放氢气的纯度与Hδ'/Hδ+比例以及N:→Mg2+配位键的强度密切相关,随着氨络合数的降低有所提高。另一方面,Mg(BH4)2·xNH3(x=1、2、)的放氢温度与Hδ-和Hδ+上电荷分布有关,而氨络合数是影响电荷分布的因素之一。
     研究了Mg(BH4)2·6NH3的热分解过程,揭示了其六步分解机理。研究表明,Mg(BH4)2·6NH3首先放出NH3并生成Mg(BH4)2·3NH3。随后,Mg(BH4)2·3NH3放出1equiv.的NH3和3equiv.的H2,生成[MgNBHNH3][BH4]聚合物。接着,[MgNBHNH3][BH4]通过三步连续反应,分别生成[MgNBNH2][BH4] MgNBNH2BH2和MgNBNHBH并各放出1equiv.的H2。当温度高于400℃C时,MgNBNHBH继续分解,放出剩余的氢并生成Mg和BN。其中,Mg(BH4)2-3NH3分解生成[MgNBHNH3][BH4]聚合物的反应对升温速率敏感,是导致Mg(BH4)2·6NH3气体产物成分随加热速率变化的主要原因。在低加热速率下,较易发生N:→Mg2+配位键断裂放氨;而在高加热速率下,Hδ+-Hδ-结合放氢则更容易。
     研究了F掺杂对Mg(BH4)2·2NH3放氢性能的影响,揭示了F离子的作用机理。基于[BH4]-和[BF4-]-离子的相互作用,成功制备了F掺杂的Mg(BH4)2·2NH3材料。其起始放氢温度降至约70℃,放氢速率加快,放氨被完全抑制。F掺杂增强了Hδ+与Hδ-之间的的相互作用,从而降低了材料的放氢温度,并提高了放氢动力学性能。此外,Hδ+-Hδ-作用增强还有效抑制了N:→Mg2+配位键的断裂和放氨。
     系统研究了Mg(BH4)2·2NH3-xMgH2复合体系的吸放氢性能和反应机理。研究表明,用MgH2与Mg(BH4)2·2NH3复合可以显著降低其放氢温度并完全抑制放氨。Mg(BH4)2·2NH3-xMgH2体系的起始放氢温度约为70℃,放氢量高于12wt%。在加热过程中,MgH2中的Hδ-优先与NH3基团中的Hδ+反应,从而降低了Hδ--Hδ+结合放氢温度并抑制N:→Mg2+配位键的断裂放氨。此外,Mg(BH4)2·2NH3-MgH2分解放氢的中间产物为MgBH4NH2,为其低温可控合成提供了一种新合成方法。
     研究了纳米限域对Mg(BH4)2·6NH3分解放氢反应行为的影响,实现了放氢热力学调控。结果表明,纳米限域Mg(BH4)2·6NH3的放氢起始温度为40℃,结束温度为175℃,均远低于Mg(BH4)2·6NH3。此外,纳米限域导致Mg(BH4)2·6NH3的放氢反应由放热变为吸热过程。一方面,纳米限域的Mg(BH4)2·6NH3中,高能表面上的Hδ--Hδ+相互作用增强,且传质路径缩短,从而改善了材料的放氢性能。另一方面,增强的Hδ--Hδ+相互作用以及孔壁限制所导致的反应路径变化是材料热力学行为发生变化的主要原因。
     研究了Mg基混合阳离子硼氢化物氨合物的可控合成及其形成机理。合成了包括Li9Mg(BH4)11·6NH3、Li2Mg(BH4)4·6NH3、Li2Mg(BH4)4·3NH3LiMg(BH4)3-2NH3和MgCa2(BH4)6·6NH3在内的一系列混合阳离子硼氢化物氨合物。研究可知,在混合阳离子硼氢化物氨合物的合成过程中,NH3基团起到了“稳定剂”的作用,只有能与氨络合的金属硼氢化物之间才能形成混合阳离子硼氢化物氨合物。所合成的Li2Mg(BH4)4·6NH3为四方结构,空间群为P43212;其中最短双氢键为1.8360A,是已知此类化合物中最短的。Li2Mg(BH4)4-6NH3的起始放氢温度为80℃,分解过程中可以放出11.01equiv.的H2(相当于11.1Wt%)和3.07equiv.的NH3;在450℃和100bar起始氢压下,其可逆储氢量为4wt%。分析发现,Li2Mg(BH4)4·6NH3受热分解时,首先放出NH3生成Li2Mg(BH4)4·3NH3;然后,Li2Mg(BH4)4·3NH3分解,放出H2生成LiBH4和MgB2N3;最后,LiBH4和MgB2N3反应放出H2,生成最终产物Mg、LiH、BN和B。Li2Mg(BH4)4·6NH3中N:→Mg2+配位键比Mg(BH4)4·6NH3中的强,因而抑制了放氨。此外,该化合物中极短的双氢键导致低温下其发生微弱放氢,同时促进了Li2Mg(BH4)4·3NH3形成。
The development of safe, high-efficiency and economical solid-state hydrogen-storage technologies is critical to achieve the practical large-scale utilization of hydrogen energy. Magnesium borohydride (Mg(BH4)2), which possesses a high hydrogen capacity and moderate dehydrogenation enthalpy, is regarded as one of the most promsing hydrogen storage materials. However, Mg(BH4)2suffers from relatively high dehydrogenation temperatures, poor reaction kinetics and limited reversibility under moderate conditions, hindering its practical applications. In order to improve the dehydrogentiaon properties of Mg(BH4)2, NH3is adducted to Mg(BH4)2to generate Mg(BH4)2-xNH3. In this work, the synthesis, crystal structure, thermal decomposition and reaction mechanisms of Mg(BH4)2·xNH3are investigated. In addition, their hydrogen-storage thermodynamics and kinetics are significantly improved via F doping, compositing with metal hydrides, nanocomfinement and forming derivatives. The corresponding mechanisms are also evaluated.
     A novel "ammonia-redistribution" strategy is proposed for the solid-state synthesis of Mg(BH4)2-xNH3at room temperature. It is discovered that there are four magnesium borohydride ammoniates, viz., Mg(BH4)2·NH3, Mg(BH4)2·2NH3, Mg(BH4)2·3NH3and Mg(BH4)2·6NH3. Specifically, Mg(BH4)2·NH3is obtained for the first time based on the "ammonia-redistribution" strategy, and the structural characteristics of Mg(BH4)2·3NH3are also demonstrated in this work. The results show that the dehydrogenation properties of Mg(BH4)2·xNH3are closely related to the coordination number of NH3. On one hand, the purity of hydrogen released from Mg(BH4)2·xNH3, which is determined by both the Hδ-/Hδ+ratio and N:→Mg2+bond strength, is increased with the decrease in coordination number of NH3. On the other hand, the magnitudes of charge on Hδ-and Hδ+, which are also related to the coordination number of NH3, are critical for the dehydrogenation temperatures of Mg(BH4)2·xNH3(x=1,2,3).
     Thermolysis mechanisms of Mg(BH4)2·6NH3are studied in-depth and a six-step decomposition process is proposed. It is founded that, at the initial stage, Mg(BH4)2·6NH3decomposes to evolve3equiv. of NH3and generate Mg(BH4)2·3NH3. Subsequently,1equiv. of NH3and3equiv. of H2are released from Mg(BH4)2·3NH3to produce a [MgNBHNH3][BH4] polymer. The decomposition of [MgNBHNH3][BH4] proceeds via three steps, resulting in the release of one equiv. of H2for each step and formation of [MgNBNH2][BH4], MgNBNH2BH2and MgNBNHBH for the first, second and third decomposition step, respectively. Finally, at temperatures higher than400℃, an additional one equiv. of H2is liberated from the decomposition of MgNBNHBH to yield Mg and BN as the resultant products. This decomposition of Mg(BH4)2·3NH3is sensitive to the heating rate, which is responsible for variation of the composition of gases released from Mg(BH4)2·6NH3with the heating rates. At a low heating rate, the breakdown of N:→Mg2+bond and subsequent ammonia release is allowed to proceed more sufficiently. Whereas at a high heating rate, the local combination of Hδ-and Hδ+is more favored which induces a higher dehydrogenation amount.
     The effect of fluorine doping on the dehydrogenation properties of Mg(BH4)2·2NH3is investigated and the corresponding mechanisms are evaluated. Based on the interaction of [BH4]-and [BF4]-anions, the F-doped Mg(BH4)2·2NH3are successfully prepared. Hydrogen release from the F-doped Mg(BH4)2·2NH3initiates at approximate70℃with enhanced dehydrogenation kinetics. More importantly, the ammonia release is depressed completely. Mechanistic investigations reveal that the Hδ+-Hδ-interactionis are enhanced, thus resulting in the decreased dehydrogenation temperatures and the enhanced dehydrogenation kinetics. Moreover, the more favorable Hδ+-Hδ-local combination in the F-doped ammoniates is also responsible for the strengthing of N:→Mg2+bond and depressed ammonia release.
     Hydrogen storage properties and mechanisms of the Mg(BH4)2-2NH3-xMgH2composites are investigated systematically. After introducing MgH2, the dehydrogenation temperature of Mg(BH4)2-2NH3is distinctly decreased and ammonia release is absent. Hydrogen release from the Mg(BH4)2·2NH3-xMgH2composites initiates at approximate70℃and more than12wt%of hydrogen is desorbed. Mechanistic investigations reveal that the Hδ-in MgH2react with Hδ+in NH3more readily than the Hδ-in [BH4]-anions, thus leading to more favorable Hδ-Hδ+combination and hydrogen release. The modified Hδ--Hδ+combination also strengthens the N:→Mg2+bond and depresses subsequent ammonia release. Moreover, a novel MgBH4NH2compound is formed during the decomposition of Mg(BH4)2-2NH3-MgH2composite, which provides a feasible method for the low-temperature and controllable synthesis MgBH4NH2.
     The effects of nanoconfinement on the decomposition behaviors of Mg(BH4)2-6NH3are investigated. It is observed that hydrogen release from the nanoconfined Mg(BH4)2·6NH3occurs at the temperature range of40-175℃, much lower than that of the bulk Mg(BH4)2·6NH3. Inspiringly, hydrogen release from the nanoconfined Mg(BH4)2·6NH3is an endothermic process although it is exothermic in nature for the bulk Mg(BH4)2-6NH3. On one hand, the enhanced H8δ--Hδ+combination on high-energy surfaces and the shortened diffusion distances contribute to the improved dehydrogenation properties of the nanoconfined Mg(BH4)2·6NH3. On the other hand, the enhanced Hδ--Hδ+combination and change in decomposition pathway of Mg(BH4)2-6NH3caused by the constraining effect of inner wall of micropores are responsible for the change in the decomposition thermodynamics.
     The syntheses and formation mechanisms of Mg-based mixed-cation borohydride ammoniates are investigated. A series of mixed-cation borohydride ammoniates, including Li9Mg(BH4)11·6NH3, Li2Mg(BH4)4·6NH3, Li2Mg(BH4)4·3NH3, LiMg(BH4)3·2NH3and MgCa2(BH4)6·6NH3, are synthesized successfully. It is revealed that the NH3group acts as a "stabilizing agent" in the formation of mixed-cation borohydride ammoniates. And only the metal cations, whose borohydrides are ammoniate-forming species, can coexist in mixed-cation borohydride ammoniates. Li2Mg(BH4)4·6NH3crystalizes in a tetragonal P43212structure with very short dihydrogen bond of1.8360A which is the shortest in all the known borohydride ammoniates. Li2Mg(BH4)4·6NH3possesses a low onset temperature for dehydrogenation of approximately80℃and its full decomposition would give11.01equiv. of H2(equivalent to11.1wt%) and3.07equiv. of NH3. Moreover, a reversible hydrogen storge capacity of approximate4wt%could be achieved under450℃and an initial hydrogen pressure of100bar. Investigations on the decomposition mechanisms of Li2Mg(BH4)4·6NH3indicate that, at the initial stage, Li2Mg(BH4)4·6NH3decomposes to generate Li2Mg(BH4)4·3NH3, accompanying with the release of3equiv. of NH3. Subsequently, the decomposition of Li2Mg(BH4)4·3NH3reulsts in the formation of L1BH4, MgB2N3and H2. Finally, LiBH4reacts with MgB2N3to release the remaining hydrogen and generate the resultant products of metallic Mg, BN, LiH and elemental B. The N:→Mg2+coordination bond in Li2Mg(BH4)4·6NH3is stronger than that in Mg(BH4)2·6NH3, which is responsible for the depressed ammonia release in Li2Mg(BH4)4·6NH3. In addition, the hydrogen release from Li2Mg(BH4)4·6NH3at low temperatures is due to the existence of very short dihydrogen bonds, which, on the other hand, also facilitate the formation of Li2Mg(BH4)4-3NH3.
引文
[1]胡子龙.贮氢材料.北京:化学工业出版社,2002.
    [2]I. P. Jain. Hydrogen the fuel for 21st century. international journal of hydrogen energy 2009, 34:7368-78.
    [3]Statistical Review of World Energy 2013. BP P. L. C.; 2013.
    [4]孙宁,马凡华.氢内燃机的发展现状和动向.车用发动机2006:1-5.
    [5]Basic Research Needs for the Hydrogen Economy, Report on the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use.2nd edn ed. Washington, D. C. Office of Science, U.S. Department of Energy,2003.
    [6]Office of Energy Efficiency and Renewable Energy and The Freedom CAR and Fuel Partnership. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles. Washington, D. C.:U. S. Department of Energy,2003.
    [7]B. Bogdanovic and M. Schwickardi. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. Journal of Alloys and Compounds 1997,253: 1-9.
    [8]A. Dillon, K. Jones, T. Bekkedahl, C. Kiang, D. Bethune and M. Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997,386:377-9.
    [9]Y. D. Xia, Z. X. Yang and Y. Q. Zhu. Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A 2013,1:9365-81.
    [10]A. W. van den Berg and C. O. Arean. Materials for hydrogen storage:current research trends and perspectives. Chemical Communications 2008:668-81.
    [11]R. Strobel, J. Garche, P. Moseley, L. Jorissen and G. Wolf. Hydrogen storage by carbon materials. Journal of Power Sources 2006,159:781-801.
    [12]M. Jorda-Beneyto, F. Suarez-Garcia, D. Lozano-Castello, D. Cazorla-Amoros and A. Linares-Solano. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 2007,45:293-303.
    [13]E. Poirier, R. Chahine, P. Benard, D. Cossement, L. Lafi, E. Melancon, T. Bose and S. Desilets. Storage of hydrogen on single-walled carbon nanotubes and other carbon structures. Applied Physics A 2004,78:961-7.
    [14]M. Shiraishi, T. Takenobu, H. Kataura and M. Ata. Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms. Applied Physics A 2004,78:947-53.
    [15]A. G. Wong-Foy, A. J. Matzger and O. M. Yaghi. Exceptional H2 saturation uptake in microporous metal-organic frameworks. Journal of the American Chemical Society 2006, 128:3494-5.
    [16]J.-Y. Lee, C. D. Wood, D. Bradshaw. M. J. Rosseinsky and A. I. Cooper. Hydrogen adsorption in microporous hypercrosslinked polymers. Chem Commun 2006:2670-2.
    [17]J. G. Vitillo, G. Ricchiardi, G. Spoto and A. Zecchina. Theoretical maximal storage of hydrogen in zeolitic frameworks. Physical Chemistry Chemical Physics 2005,7:3948-54.
    [18]S.-i. Orimo, Y. Nakamori, J. R. Eliseo, A. Ziittel and C. M. Jensen. Complex hydrides for hydrogen storage. Chemical Reviews 2007,107:4111-32.
    [19]Y. Liu, H. Pan, M. Gao and Q. Wang. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. Journal of Materials Chemistry 2011,21:4743-55.
    [20]A. Zuttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron and C. Emmenegger. Hydrogen storage properties of LiBH4. Journal of Alloys and Compounds 2003,356:515-20.
    [21]F. C. Gennari, F. J. Castro and G. Urretavizcaya. Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying. Journal of Alloys and Compounds 2001,321:46-53.
    [22]G. Sandrock, J. Reilly, J. Graetz, W.-M. Zhou, J. Johnson and J. Wegrzyn. Accelerated thermal decomposition of AIH3 for hydrogen-fueled vehicles. Applied Physics A 2005,80: 687-90.
    [23]P. Wang, X.-D. Kang and H.-M. Cheng. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. The Journal of Physical Chemistry B 2005,109:20131-6.
    [24]P. Wang, X. D. Kang and H. M. Cheng. Improved Hydrogen Storage of TiF3-Doped NaAlH4. ChemPhysChem 2005,6:2488-91.
    [25]B. Bogdanovic, M. Felderhoff, A. Pommerin, F. Schueth and N. Spielkamp. Advanced Hydrogen-Storage Materials Based on Sc-, Ce-, and Pr-Doped NaAlH4. Advanced Materials 2006,18:1198-201.
    [26]A. Leon, O. Kircher, J. Rothe and M. Fichtner. Chemical state and local structure around titanium atoms in NaAlH4 doped with TiCl3 using X-ray absorption spectroscopy. The Journal of Physical Chemistry B 2004,108:16372-6.
    [27]J. Iniguez and T. Yildirim. First-principles study of Ti-doped sodium alanate surfaces. Applied Physics Letters 2005,86:103109-3.
    [28]J. iniguez, T. Yildirim, T. J. Udovic, M. Sulic and C. M. Jensen. Structure and hydrogen dynamics of pure and Ti-doped sodium alanate. Physical Review B 2004,70:060101.
    [29]S. Chaudhuri and J. T. Muckerman. First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface:a critical first step for reversible hydrogen storage in NaAlH4. The Journal of Physical Chemistry B 2005,109:6952-7.
    [30]J. Chen, N. Kuriyama, Q. Xu, H. T. Takeshita and T. Sakai. Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6. The Journal of Physical Chemistry B 2001,105: 11214-20.
    [31]Y. Kim, E.-K. Lee, J.-H. Shim, Y. W. Cho and K. B. Yoon. Mechanochemical synthesis and thermal decomposition of Mg(AlH4)2. Journal of Alloys and Compounds 2006,422: 283-7.
    [32]H. Morioka, K. Kakizaki, S.-C. Chung and A. Yamada. Reversible hydrogen decomposition of KAIH4. Journal of Alloys and Compounds 2003,353:310-4.
    [33]L. Zaluski, A. Zaluska and J. Strom-Olsen. Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis. Journal of Alloys and Compounds 1999,290:71-8.
    [34]J. Huot, S. Boily, V. Guther and R. Schulz. Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying. Journal of Alloys and Compounds 1999,283:304-6.
    [35]M. Mamatha, B. Bogdanovic, M. Felderhoff, A. Pommerin, W. Schmidt, F. Schuth and C. Weidenthaler. Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates. Journal of Alloys and Compounds 2006,407: 78-86.
    [36]S.-i. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S.-i. Towata and A. Zuttel. Dehydriding and rehydriding reactions of LiBH4. Journal of Alloys and Compounds 2005, 404:427-30.
    [37]J. F. Mao, Z. P. Guo, C. K. Poh, A. Ranjbar, Y. H. Guo, X. B. Yu and H. K. Liu. Study on the dehydrogenation kinetics and thermodynamics of Ca(BH4)2. Journal of Alloys and Compounds 2010,500:200-5.
    [38]K. Chlopek, C. Frommen, A. Leon, O. Zabara and M. Fichtner. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. Journal of Materials Chemistry 2007,17:3496-503.
    [39]M. J. v. Setten, G. A. d. Wijs, M. Fichtner and G. Brocks. A density functional study of o Mg(BH4)2. Chemistry of Materials 2008,20:4952-6.
    [40]J. E. Chen, Y. Zhang, Z. T. Xiong, G. T. Wu, H. L. Chu, T. He and P. Chen. Enhanced hydrogen desorption from the Co-catalyzed LiBH4-Mg (BH4)2 eutectic composite. international journal of hydrogen energy 2012,37:12425-31.
    [41]A. Al-Kukhun, H. T. Hwang and A. Varma. NbF5 additive improves hydrogen release from magnesium borohydride. international journal of hydrogen energy 2012,37:17671-7.
    [42]E. G. Bardaji, N. Hanada, O. Zabara and M. Fichtner. Effect of several metal chlorides on the thermal decomposition behaviour of a-Mg(BH4)2. international journal of hydrogen energy 2011,36:12313-8.
    [43]J. J. Vajo, S. L. Skeith and F. Mertens. Reversible storage of hydrogen in destabilized LiBH4. The Journal of Physical Chemistry B 2005,109:3719-22.
    [44]E. G. Bardaji, Z. Zhao-Karger, N. Boucharat, A. Nale, M. J. van Setten, W. Lohstroh, E. Rohm, M. Catti and M. Fichtner. LiBH4-Mg (BH4)2:a physical mixture of metal borohydrides as hydrogen storage material. The Journal of Physical Chemistry C 2011,115: 6095-101.
    [45]M. Fichtner, Z. Zhao-Karger, J. J. Hu, A. Roth and P. Weidler. The kinetic properties of Mg(BH4)2 infiltrated in activated carbon. Nanotechnology 2009,20:204029.
    [46]G. Soloveichik, J. H. Her, P. W. Stephens, Y. Gao, J. Rijssenbeek, M. Andrus and J. C. Zhao. Ammine magnesium borohydride complex as a new material for hydrogen storage: Structure and properties of Mg(BH4)2·2NH3. Inorganic Chemistry 2008,47:4290-8.
    [47]P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin and K. L. Tan. Interaction of hydrogen with metal nitrides and imides. Nature 2002,420:302-4.
    [48]H. L. Chu, Z. T. Xiong, G. T. Wu, T. He, C. Z. Wu and P. Chen. Hydrogen storage properties of Li-Ca-N-H system with different molar ratios of LiNH2/CaH2. international journal of hydrogen energy 2010,35:8317-21.
    [49]Z. T. Xiong, G. T. Wu, J. J. Hu and P. Chen. Ternary imides for hydrogen storage. Advanced Materials 2004,16:1522-5.
    [50]Z. T. Xiong, J. J. Hu, G. T. Wu and P. Chen. Hydrogen absorption and desorption in Mg-Na-N-H system. Journal of Alloys and Compounds 2005,395:209-12.
    [51]J. J. Hu, G. T. Wu, Y. F. Liu, Z. T. Xiong, P. Chen, K. Murata, K. Sakata and G. Wolf. Hydrogen release from Mg(NH2)2-MgH2 through mechanochemical reaction. The Journal of Physical Chemistry B 2006,110:14688-92.
    [52]Z. G. Huang and T. Autrey. Boron-nitrogen-hydrogen (BNH) compounds:recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy & Environmental Science 2012,5:9257-68.
    [53]P. Wang. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage. Dalton Transactions 2012,41:4296-302.
    [54]A. Staubitz, A. P. Robertson and I. Manners. Ammonia-borane and related compounds as dihydrogen sources. Chemical Reviews 2010,110:4079-124.
    [55]Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson and P. P. Edwards. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature materials 2008,7:138-41.
    [56]A. D. Sutton, A. K. Burrell, D. A. Dixon, E. B. Garner, J. C. Gordon, T. Nakagawa, K. C. Ott, J. P. Robinson and M. Vasiliu. Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science 2011,331:1426-9.
    [57]Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S.-i. Towata, A. Zuttel and S.-i. Orimo. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites:First-principles calculations and experiments. Physical Review B 2006, 74:045126.
    [58]E. Wiberg and R. Bauer. Magnesium aluminum hydride, Mg(AlH4)2. Zeitschrift fuer Naturforschung 1950,5b:397-8.
    [59]J. Kollonitsch, O. Fuchs and V. Gabor. New and known complex borohydrides and some of their applications in organic syntheses. Nature 1954,173:125-6.
    [60]H. C. Brown, E. J. Mead and B. C. Subba Rao. A Study of Solvents for Sodium Borohydride and the Effect of Solvent and the Metal Ion on Borohydride Reductions. Journal of the American Chemical Society 1955,77:6209-13.
    [61]H. C. Brown. Hydroboration:W. A. Benjamin, Inc.,1962:81-92.
    [62]R. Koster. Process for the Production of Alkali Metal and Alkaline Earth Metal Borohydrides:U. S. Patent 3,111,372,1958.
    [63]Z. G. Zhang, S. F. Zhang, H. Wang, J. W. Liu and M. Zhu. Feasibility study of the direct synthesis of Mg(BH4)2 complex hydrides by mechanical milling. Journal of Alloys and Compounds 2010,505:717-21.
    [64]V. N. Konoplev. Synthesis of magnesium tetrahydridoborate. Russian Journal of Inorganic Chemistry 1980,25:964-6.
    [65]T. Matsunaga, F. Buchter, P. Mauron, M. Bielman, Y. Nakamori, S. Orimo, N. Ohba, K. Miwa, S. Towata and A. Zuttel. Hydrogen storage properties of Mg[BH4]2. Journal of Alloys and Compounds 2008,459:583-8.
    [66]G. L. Soloveichik, M. Andrus, Y. Gao, J.-C. Zhao and S. Kniajanski. Magnesium borohydride as a hydrogen storage material:Synthesis of unsolvated Mg(BH4)2. international journal of hydrogen energy 2009,34:2144-52.
    [67]P. Zanella, L. Crociani, N. Masciocchi and G. Giunchi. Facile high-yield synthesis of pure, crystalline Mg(BH4)2. Inorganic Chemistry 2007,46:9039-41.
    [68]Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov and H. Hagemann. Porous and dense magnesium borohydride frameworks:synthesis, stability, and reversible absorption of guest species. Angewandte Chemie International Edition 2011,50:11162-6.
    [69]W. I. F. David, S. K. Callear, M. O. Jones, P. C. Aeberhard, S. D. Culligan, A. H. Pohl, S. R. Johnson, K. R. Ryan, J. E. Parker and P. P. Edwards. The structure, thermal properties and phase transformations of the cubic polymorph of magnesium tetrahydroborate. Physical Chemistry Chemical Physics 2012,14:11800-7.
    [70]O. Friedrichs, A. Remhof, A. Borgschulte, F. Buchter, S. Orimo and A. Zuttel. Breaking the passivation-the road to a solvent free borohydride synthesis. Physical Chemistry Chemical Physics 2010,12:10919-22.
    [71]Z. G. Zhang, H. Wang, J. W. Liu and M. Zhu. Synthesis and hydrogen storage characteristics of Mg-B-H compounds by a gas-solid reaction. international journal of hydrogen energy 2013,38:5309-15.
    [72]G. Severa, E. Ronnebro and C. M. Jensen. Direct hydrogenation of magnesium boride to magnesium borohydride:demonstration of> 11 weight percent reversible hydrogen storage. Chemical Communications 2010,46:421-3.
    [73]刘永锋,杨燕京,高明霞,潘洪革.一种Mg(BH4)2储氢材料的固相合成方法:中国专利201110092207.2.2011.
    [74]C. Pistidda, S. Garroni, F. Dolci, E. G. Bardaji, A. Khandelwal, P. Nolis, M. Dornheim, R. Gosalawit, T. Jensen and Y. Cerenius. Synthesis of amorphous Mg(BH4)2 from MgB2 and H2 at room temperature. Journal of Alloys and Compounds 2010,508:212-5.
    [75]H.-W. Li, T. Matsunaga, Y. G. Yan, H. Maekawa, M. Ishikiriyama and S.-i. Orimo. Nanostructure-induced hydrogenation of layered compound MgB2. Journal of Alloys and Compounds 2010,505:654-6.
    [76]S. Gupta, I. Z. Hlova, T. Kobayashi, R. V. Denys, F. Chen, I. Y. Zavaliy, M. Pruski and V. K. Pecharsky. Facile synthesis and regeneration of Mg(BH4)2 by high energy reactive ball milling of MgB2. Chemical Communications 2013,49:828-30.
    [77]R. Cerny, Y. Filinchuk, H. Hagemann and K. Yvon. Magnesium borohydride:synthesis and crystal structure. Angewandte Chemie 2007,119:5867-9.
    [78]J.-H. Her, P. W. Stephens, Y. Gao, G. L. Soloveichik, J. Rijssenbeek, M. Andrus and J.-C. Zhao. Structure of unsolvated magnesium borohydride Mg(BH4)2. Acta Crystallographica Section B:Structural Science 2007,63:561-8.
    [79]Y. Filinchuk, R. Cerny and H. Hagemann. Insight into Mg(BH4)2 with synchrotron X-ray diffraction:structure revision, crystal chemistry, and anomalous thermal expansion. Chemistry of Materials 2009,21:925-33.
    [80]L. George, V. Drozd, S. K. Saxena, E. G. Bardaji and M. Fichtner. Structural phase transitions of Mg(BH4)2 under pressure. The Journal of Physical Chemistry C 2008,113: 486-92.
    [81]A. Giannasi, D. Colognesi, L. Ulivi, M. Zoppi, A. J. Ramirez-Cuesta, E. Bardaji, E. Roehm and M. Fichtner. High resolution Raman and neutron investigation of Mg(BH4)2 in an extensive temperature range. The Journal of Physical Chemistry A 2010,114:2788-93.
    [82]A. V. Skripov, A. V. Soloninin, O. A. Babanova, H. Hagemann and Y. Filinchuk. Nuclear magnetic resonance study of reorientational motion in a-Mg(BH4)2. The Journal of Physical Chemistry C 2010,114:12370-4.
    [83]D. T. Shane, L. H. Rayhel, Z. Huang, J.-C. Zhao, X. Tang, V. Stavila and M. S. Conradi. Comprehensive NMR Study of Magnesium Borohydride. The Journal of Physical Chemistry C 2011,115:3172-7.
    [84]M. Eagles, B. Sun, B. Richter, T. R. Jensen, Y. Filinchuk and M. S. Conradi. NMR Investigation of Nanoporous y-Mg (BH4) 2 and Its Thermally Induced Phase Changes. The Journal of Physical Chemistry C 2012,116:13033-7.
    [85]A. V. Soloninin, O. A. Babanova, A. V. Skripov, H. Hagemann, B. Richter, T. R. Jensen and Y. Filinchuk. NMR Study of Reorientational Motion in Alkaline-Earth Borohydrides:β and y Phases of Mg(BH4)2 and a and β Phases of Ca(BH4)2. The Journal of Physical Chemistry C 2012,116:4913-20.
    [86]N. Hanada, K. Chlopek, C. Frommen, W. Lohstroh and M. Fichtner. Thermal decomposition of Mg(BH4)2 under He flow and H2 pressure. Journal of Materials Chemistry 2008,18:2611-4.
    [87]H.-W. Li, K. Kikuchi, Y. Nakamori, N. Ohba, K. Miwa, S. Towata and S. Orimo. Dehydriding and rehydriding processes of well-crystallized Mg(BH4)2 accompanying with formation of intermediate compounds. Acta Materialia 2008,56:1342-7.
    [88]T. Matsunaga, F. Buchter, K. Miwa, S. Towata, S. Orimo and A. Zuttel. Magnesium borohydride:A new hydrogen storage material. Renewable Energy 2008,33:193-6.
    [89]J. D. Jorgensen, D. G. Hinks and S. Short. Lattice properties of MgB2 versus temperature and pressure. Physical Review B 2001,63:224522.
    [90]R. J. Newhouse, V. Stavila, S.-J. Hwang, L. E. Klebanoff and J. Z. Zhang. Reversibility and improved hydrogen release of magnesium borohydride. The Journal of Physical Chemistry C 2010,114:5224-32.
    [91]S.-J. Hwang, R. C. Bowman, J. W. Reiter, J. Rijssenbeek, G. L. Soloveichik, J.-C. Zhao, H. Kabbour and C. C. Ahn. NMR confirmation for formation of [B12H12]2- complexes during hydrogen desorption from metal borohydrides. The Journal of Physical Chemistry C 2008, 112:3164-9.
    [92]M. Chong, A. Karkamkar, T. Autrey, S.-i. Orimo, S. Jalisatgi and C. M. Jensen. Reversible dehydrogenation of magnesium borohydride to magnesium triborane in the solid state under moderate conditions. Chemical Communications 2011,47:1330-2.
    [93]M. Van Setten, W. Lohstroh and M. Fichtner. A new phase in the decomposition of Mg(BH4)2:first-principles simulated annealing. Journal of Materials Chemistry 2009,19: 7081-7.
    [94]Y. Zhang, E. Majzoub, V. Ozolins and C. Wolverton. Theoretical prediction of different decomposition paths for Ca(BH4)2 and Mg(BH4)2. Physical Review B 2010,82:174107.
    [95]Y. Zhang, E. Majzoub, V. Ozolins and C. Wolverton. Theoretical Prediction of Metastable Intermediates in the Decomposition of Mg(BH4)2. The Journal of Physical Chemistry C 2012,116:10522-8.
    [96]M. Paskevicius, M. P. Pitt, C. J. Webb, D. A. Sheppard, U. Fils(?), E. M. Gray and C. E. Buckley. In-Situ X-ray Diffraction Study of y-Mg(BH4)2 Decomposition. The Journal of Physical Chemistry C 2012,116:15231-40.
    [97]J. Yang, X. Zhang, J. Zheng, P. Song and X. Li. Decomposition pathway of Mg(BH4)2 under pressure:Metastable phases and thermodynamic parameters. Scripta Materialia 2011, 64:225-8.
    [98]H.-W. Li, K. Kikuchi, Y. Nakamori, K. Miwa, S. Towata and S. Orimo. Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2. Scripta Materialia 2007,57:679-82.
    [99]Z. G. Zhang, H. Wang, J.-W. Liu and M. Zhu. Thermal decomposition behaviors of magnesium borohydride doped with metal fluoride additives. Thermochimica Acta 2013, 560:82-8.
    [100]C. Paduani and P. Jena. Role of Ti-based catalysts in the dehydrogenation mechanism of magnesium borohydride:A cluster approach, international journal of hydrogen energy 2013, 38:2357-62.
    [101]J. J. Jiang, J. Wei, H. Y. Leng, Q. Li and K.-C. Chou. Effect of Al on the hydrogen storage properties of Mg(BH4)2. international journal of hydrogen energy 2013,38:10919-25.
    [102]T. J. Marks and J. R. Kolb. Covalent transition metal, lanthanide, and actinide tetrahydroborate complexes. Chemical Reviews 1977,77:263-93.
    [103]J. Mao, Z. Guo, X. Yu, M. Ismail and H. Liu. Enhanced hydrogen storage performance of LiAlH4-MgH2-TiF3 composite. international journal of hydrogen energy 2011,36:5369-74.
    [104]Y. F. Zhou, Y. F. Liu, W. Wu, Y. Zhang, M. X. Gao and H. G. Pan. Improved hydrogen storage properties of LiBH4 destabilized by in situ formation of MgH2 and LaH3. The Journal of Physical Chemistry C 2011,116:1588-95.
    [105]Y. F. Liu, K. Luo, Y. F. Zhou, M. X. Gao and H. G. Pan. Diffusion controlled hydrogen desorption reaction for the LiBH4/LiNH2 system. Journal of Alloys and Compounds 2009, 481:473-9.
    [106]Y. Zhou, Y. Liu, Y. Zhang, M. Gao and H. Pan. Functions of MgH2 in hydrogen storage reactions of the 6LiBH4-CaH2 reactive hydride composite. Dalton Transactions 2012,41: 10980-7.
    [107]X. B. Yu, Y. H. Guo, D. L. Sun, Z. X. Yang, A. Ranjbar, Z. P. Guo, H. K. Liu and S. X. Dou. A combined hydrogen storage system of Mg(BH4)2-LiNH2 with favorable dehydrogenation. The Journal of Physical Chemistry C 2010,114:4733-7.
    [108]Y. J. Yang, M. X. Gao, Y. F. Liu, J. H. Wang, J. Gu, H. G. Pan and Z. X. Guo. Multi-hydride systems with enhanced hydrogen storage properties derived from Mg(BH4)2 and LiAlH4. international journal of hydrogen energy 2012,37:10733-42.
    [109]Y. F. Liu, Y. J. Yang, Y. F. Zhou, Y. Zhang, M. X. Gao and H. G. Pan. Hydrogen storage properties and mechanisms of the Mg(BH4)2-NaAlH4 system. international journal of hydrogen energy 2012,37:17137-45.
    [110]J. Z. Yang, H. Fu, P. Song, J. Zheng and X. G. Li. Reversible dehydrogenation of Mg(BH4)2-LiH composite under moderate conditions. international journal of hydrogen energy 2012,37:6776-83.
    [111]Z.-Z. Fang, X.-D. Kang, P. Wang, H.-W. Li and S.-I. Orimo. Unexpected dehydrogenation behavior of LiBH4/Mg(BH4)2 mixture associated with the in situ formation of dual-cation borohydride. Journal of Alloys and Compounds 2010,491:L1.
    [112]A. Nale, M. Catti, E. G. Bardaji and M. Fichtner. On the decomposition of the 0.6 LiBH4-0.4 Mg (BH4)2 eutectic mixture for hydrogen storage. international journal of hydrogen energy 2011,36:13676-82.
    [113]T. Durojaiye, A. Ibikunle and A. J. Goudy. Hydrogen storage in destabilized borohydride materials. international journal of hydrogen energy 2010,35:10329-33.
    [114]A. A. Ibikunle and A. J. Goudy. Kinetics and modeling study of a Mg(BH4)2/Ca(BH4)2 destabilized system. international journal of hydrogen energy 2012,37:12420-4.
    [115]S. Sartori, K. D. Knudsen, Z. Zhao-Karger, E. G. Bardaij, M. Fichtner and B. C. Hauback. Small-angle scattering investigations of Mg-borohydride infiltrated in activated carbon. Nanotechnology 2009,20:505702.
    [116]Y. G. Yan, Y. S. Au, D. Rentsch, A. Remhof, P. E. de Jongh and A. Ziittel. Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites. Journal of Materials Chemistry A 2013,1:11177-83.
    [117]M. A. Wahab, Y. A. Jia, D. Yang, H. Zhao and X. Yao. Enhanced hydrogen desorption from Mg(BH4)2 by combining nanoconfinement and a Ni catalyst. Journal of Materials Chemistry A 2013,1:3471-8.
    [118]P. Schouwink, V. D'Anna, M. B. Ley, L. v. M. Lawson Daku, B. Richter, T. R. Jensen, H. Hagemann and R. Cerny. Bimetallic Borohydrides in the System M(BH4)2-KBH4 (M= Mg, Mn):On the Structural Diversity. The Journal of Physical Chemistry C 2012,116:10829-40.
    [119]E. A. Nickels, M. O. Jones, W. I. David, S. R. Johnson, R. L. Lowton, M. Sommariva and P. P. Edwards. Tuning the decomposition temperature in complex hydrides:synthesis of a mixed alkali metal borohydride. Angewandte Chemie International Edition 2008,47:2817-9.
    [120]D. Ravnsbask, Y. Filinchuk, Y. Cerenius, H. J. Jakobsen, F. Besenbacher, J. Skibsted and T. R. Jensen. A Series of Mixed-Metal Borohydrides. Angewandte Chemie International Edition 2009,48:6659-63.
    [121]H. Hagemann, M. Longhini, J. W. Kaminski, T. A. Wesolowski, R. Cerny, N. Penin, M. H. S(?)rby, B. C. Hauback, G. Severa and C. M. Jensen. LiSc(BH4)4:a novel salt of Li+and discrete Sc(BH4)4-complex anions. The Journal of Physical Chemistry A 2008,112:7551-5.
    [122]T. Ikeshoji, E. Tsuchida, S. Takagi, M. Matsuo and S.-i. Orimo. Magnesium ion dynamics in Mg(BH4)2(1-x)X2x (X= Cl or AlH4) from first-principles molecular dynamics simulations. RSC Advances 2014.4:1366-70.
    [123]T. Noritake, K. Miwa, M. Aoki, M. Matsumoto, S.-i. Towata, H.-W. Li and S.-i. Orimo. Dehydrogenation properties and crystal structure analysis of Mg(BH4)(NH2). Journal of Alloys and Compounds 2013,580:S85-S9.
    [124]T. Noritake, K. Miwa, M. Aoki, M. Matsumoto, S.-i. Towata, H.-W. Li and S.-i. Orimo. Synthesis and crystal structure analysis of complex hydride Mg(BH4)(NH2). international journal of hydrogen energy 2013,38:6730-5.
    [125]Z. Chen, Z.-n. Chen, A.-a. Wu, G.-t. Wu, Z.-t. Xiong, P. Chen and X. Xu. Theoretical Studies on Dehydrogenation Reactions in Mg;(BH4)2(NH2)2 Compounds. Chinese Journal of Chemical Physics 2012,25:676-80.
    [126]G. F. Huff, A. D. McElroy and A. R. M. Electrochemical method for the preparation of metal borohydrides:U. S. Patent 2,855,353,1958.
    [127]D. R. Schultz and R. W. Parry. Chemical Evidence for the Structure of the "Diammoniate of Diborane." I. Evidence for the Borohydride Ion and for the Dihydro-diammineboron(III) Cation. Journal of the American Chemical Society 1958,80:4-8.
    [128]V. N. Konoplev and T. A. Silina. Ammonia derivatives of magnesium borohydride. Zhurnal Neorganicheskoi Khimii 1985,30:1125-8.
    [129]R. I. Wagner and L. R. Grant. Magnesium borohydride diammoniate and triammoniate:The United States of America, U. S. Patent 4,604,271,1986.
    [130]S. R. Johnson, W. I. David, D. M. Royse, M. Sommariva, C. Y. Tang, F. Fabbiani, M. O. Jones and P. P. Edwards. The monoammoniate of lithium borohydride, Li(NH;)BH4:an effective ammonia storage compound. Chemistry-An Asian Journal 2009,4:849-54.
    [131]Y. H. Guo, X. B. Yu, W. W. Sun, D. L. Sun and W. N. Yang. The Hydrogen-Enriched Al-B-N System as an Advanced Solid Hydrogen-Storage Candidate. Angewandte Chemie International Edition 2011.50:1087-91.
    [132]H. L. Chu, G. T. Wu, Z. T. Xiong, J. P. Guo, T. He and P. Chen. Structure and hydrogen storage properties of calcium borohydride diammoniate. Chemistry of Materials 2010,22: 6021-8.
    [133]Z. W. Tang, Y. B. Tan, Q. F. Gu and X. B. Yu. A novel aided-cation strategy to advance the dehydrogenation of calcium borohydride monoammoniate. Journal of Materials Chemistry 2012,22:5312-8.
    [134]Y. H. Guo, Y. X. Jiang, G. L. Xia and X. B. Yu. Ammine aluminium borohydrides:an appealing system releasing over 12 wt% pure H2 under moderate temperature. Chemical Communications 2012,48:4408-10.
    [135]Y. H. Guo, G. L. Xia, Y. H. Zhu, L. Gao and X. B. Yu. Hydrogen release from amminelithium borohydride, LiBH4-NH3. Chemical Communications 2010,46:2599-601.
    [136]P. A. Chater, W. I. David, S. R. Johnson, P. P. Edwards and P. A. Anderson. Synthesis and crystal structure of Li4BH4(NH2)3. Chemical Communications 2006:2439-41.
    [137]Z. W. Tang, F. Yuan, Q. F. Gu, Y. B. Tan, X. W. Chen, C. M. Jensen and X. B. Yu. Scandium and vanadium borohydride ammoniates:Enhanced dehydrogenation behavior upon coordinative expansion and establishment of Hδ+…-δH interactions. Acta Materialia 2013,61:3110-9.
    [138]H. Miyaoka, T. Ichikawa, H. Fujii and Y. Kojima. Hydrogen Desorption Reaction between Hydrogen-Containing Functional Groups and Lithium Hydride. The Journal of Physical Chemistry C 2010,114:8668-74.
    [139]D. P. Kim, K. T. Moon, J. G. Kho, J. Economy, C. Gervais and F. Babonneau. Synthesis and characterization of poly (aminoborane) as a new boron nitride precursor. Polymers for Advanced Technologies 1999,10:702-12.
    [140]J. Baumann, F. Baitalow and G. Wolf. Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release. Thermochimica Acta 2005,430:9-14.
    [141]R. Halseid, P. J. Vie and R. Tunold. Effect of ammonia on the performance of polymer electrolyte membrane fuel cells. Journal of Power Sources 2006,154:343-50.
    [142]R. Z. S(?)rensen, J. S. Hummelsh(?)j, A. Klerke, J. B. Reves, T. Vegge, J. K. Narskov and C. H. Christensen. Indirect, reversible high-density hydrogen storage in compact metal ammine salts. Journal of the American Chemical Society 2008,130:8660-8.
    [143]Y. H. Hu and E. Ruckenstein. Ultrafast reaction between LiH and NH3 during H2 storage in Li3N. The Journal of Physical Chemistry A 2003,107:9737-9.
    [144]Y. B. Tan, Y. H. Guo, S. F. Li, W. Sun, Y. H. Zhu, Q. Li and X. B. Yu. A liquid-based eutectic system:LiBH4-NH3-nNH3BH3 with high dehydrogenation capacity at moderate temperature. Journal of Materials Chemistry 2011,21:14509-15.
    [145]Z.-Z. Fang, X.-D. Kang, Z.-X. Yang, G. S. Walker and P. Wang. Combined effects of functional cation and anion on the reversible dehydrogenation of LiBH4. The Journal of Physical Chemistry C 2011,115:11839-45.
    [146]L. C. Yin, P. Wang, Z. Z. Fang and H. M. Cheng. Thermodynamically tuning LiBH4 by fluorine anion doping for hydrogen storage:A density functional study. Chemical Physics Letters 2008,450:318-21.
    [147]M. Corno, E. Pinatel, P. Ugliengo and M. Baricco. A computational study on the effect of fluorine substitution in LiBH4. Journal of Alloys and Compounds 2011,509:S679-S83.
    [148]I. Saldan. A prospect for LiBH4 as on-board hydrogen storage. Central European Journal of Chemistry 2011,9:761-75.
    [149]A. Finch, P. J. Gardner and N. Hill. Synthesis and thermodynamic functions of rubidium and caesium tetrachloroborates. J Chem Soc, Dalton Trans 1975:357-9.
    [150]E. C. Baughan. Structural radii, electron-cloud radii, ionic radii and solvation. Coordinative Interactions:Springer; 1973. p.53-71.
    [151]R. H. Heyn, I. Saldan, M. H. Serby, C. Frommen, B. Arstad, A. M. Bougza, H. Fjellvag and B. C. Hauback. Structural and spectroscopic characterization of potassium fluoroborohydrides. Physical Chemistry Chemical Physics 2013,15:11226-30.
    [152]Y. J. Yang, Y. F. Liu, Y. Zhang, Y. Li, M. X. Gao and H. G. Pan. Hydrogen storage properties and mechanisms of Mg(BH4)2-2NH3-MgH2 combination systems. Journal of Alloys and Compounds 2014,585:674-80.
    [153]Y. J. Yang, Y. F. Liu, Y. Li, M. X. Gao and H. G. Pan. Heating Rate-Dependent Dehydrogenation in the Thermal Decomposition Process of Mg(BH4)2-6NH3. The Journal of Physical Chemistry C 2013,117:16326-35.
    [154]Y. J. Yang, Y. F. Liu, Y. Li, M. X. Gao and H. G. Pan. Synthesis and Thermal Decomposition Behaviors of Magnesium Borohydride Ammoniates with Controllable Composition as Hydrogen Storage Materials. Chemistry-An Asian Journal 2013,8:476-81.
    [155]P. A. Chater, W. I. David and P. A. Anderson. Synthesis and structure of the new complex hydride Li2BH4NH2. Chemical Communications 2007:4770-2.
    [156]Y. Zhang, K. Shimoda, T. Ichikawa and Y. Kojima. Activation of Ammonia Borane Hybridized with Alkaline-Metal Hydrides:A Low-Temperature and High-Purity Hydrogen Generation Material. The Journal of Physical Chemistry C 2010,114:14662-4.
    [157]T. He, Z. T. Xiong, G. T. Wu, H. L. Chu, C. X. Wu, T. Zhang and P. Chen. Nanosized Co-and Ni-catalyzed ammonia borane for hydrogen storage. Chemistry of Materials 2009,21: 2315-8.
    [158]H. Wu, W. Zhou and T. Yildirim. Alkali and alkaline-earth metal amidoboranes:structure, crystal chemistry, and hydrogen storage properties. Journal of the American Chemical Society 2008,130:14834-9.
    [159]Y. H. Guo, W. W. Sun, Z. P. Guo, H. K. Liu, D. L. Sun and X. B. Yu. Dehydrogenation promotion of LiBH4NH3 through heating in ammonia or mixing with metal hydrides. The Journal of Physical Chemistry C 2010,114:12823-7.
    [160]Y. S. Chua, W. Li, G. T. Wu, Z. T. Xiong and P. Chen. From Exothermic to Endothermic Dehydrogenation-Interaction of Monoammoniate of Magnesium Amidoborane and Metal Hydrides. Chemistry of Materials 2012,24:3574-81.
    [161]J. J. Vajo. Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Current Opinion in Solid State and Materials Science 2011,15: 52-61.
    [162]H. Wu, W. Zhou, K. Wang, T. J. Udovic, J. J. Rush, T. Yildirim, L. A. Bendersky, A. F. Gross, S. L. Van Atta and J. J. Vajo. Size effects on the hydrogen storage properties of nanoscaffolded Li3BN2H8. Nanotechnology 2009,20:204002.
    [163]M. Fichtner. Properties of nanoscale metal hydrides. Nanotechnology 2009,20:204009.
    [164]M. Paskevicius, D. A. Sheppard and C. E. Buckley. Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. Journal of the American Chemical Society 2010,132:5077-83.
    [165]W. Y. Li, C. S. Li, H. Ma and J. Chen. Magnesium nanowires:enhanced kinetics for hydrogen absorption and desorption. Journal of the American Chemical Society 2007,129: 6710-1.
    [166]T. K. Nielsen, U. Bosenberg, R. Gosalawit, M. Dornheim, Y. Cerenius, F. Besenbacher and T. R. Jensen. A reversible nanoconfined chemical reaction. ACS nano 2010,4:3903-8.
    [167]N. Brun, R. Janot, C. Sanchez, H. Deleuze, C. Gervais, M. Morcrette and R. Backov. Preparation of LiBH4@carbon micro-macrocellular foams:tuning hydrogen release through varying microporosity. Energy & Environmental Science 2010,3:824-30.
    [168]R. K. Bhakta, J. L. Herberg, B. Jacobs, A. Highley, R. Behrens Jr, N. W. Ockwig, J. A. Greathouse and M. D. Allendorf. Metal-Organic Frameworks As Templates for Nanoscale NaAlH4. Journal of the American Chemical Society 2009,131:13198-9.
    [169]J. B. Gao, P. Adelhelm, M. H. Verkuijlen, C. Rongeat, M. Herrich, P. J. M. van Bentum, O. Gutfleisch, A. P. Kentgens, K. P. de Jong and P. E. de Jongh. Confinement of NaAlH4 in nanoporous carbon:impact on H2 release, reversibility, and thermodynamics. The Journal of Physical Chemistry C 2010,114:4675-82.
    [170]K. Yates and R. West. Monochromatized Ag Lα X-rays as a source for higher energy XPS. Surface and interface analysis 1983,5:133-8.
    [171]K. C. Prince, V. Feyer, A. Tadich, L. Thomsen and B. C. C. Cowie. Photoabsorption and photoemission of magnesium diboride at the Mg K edge. Journal of Physics:Condensed Matter 2009,21:405701.
    [172]C. Guimon, D. Gonbeau, G. Pfister-Guillouzo, O. Dugne, A. Guette, R. Naslain and M. Lahaye. XPS study of BN thin films deposited by CVD on SiC plane substrates. Surface and interface analysis 1990,16:440-5.
    [173]R. Cerny, G. Severa, D. B. Ravnsbaek, Y. Filinchuk, V. D'Anna, H. Hagemann, D. r. Haase, C. M. Jensen and T. R. Jensen. NaSc(BH4)4: a novel scandium-based borohydride. The Journal of Physical Chemistry C 2009,114:1357-64.
    [174]D. B. Ravnsb(?)k, L. H. S(?)rensen, Y. Filinchuk, F. Besenbacher and T. R. Jensen. Screening of metal borohydrides by mechanochemistry and diffraction. Angewandte Chemie International Edition 2012,51:3582-6.
    [175]A. Leineweber, M. W. Friedriszik and H. Jacobs. Preparation and Crystal Structures of Mg(NH3)2Cl2, Mg(NH3)2Br2, and Mg(NH3)2I2. Journal of Solid State Chemistry 1999,147: 229-34.
    [176]Y. Filinchuk, D. Chernyshov and R. Cerny. Lightest borohydride probed by synchrotron X-ray diffraction:experiment calls for a new theoretical revision. The Journal of Physical Chemistry C 2008,112:10579-84.
    [177]S. H. Lee, V. R. Manga and Z.-K. Liu. Effect of Mg, Ca, and Zn on stability of LiBH4 through computational thermodynamics. international journal of hydrogen energy 2010,35: 6812-21.
    [178]J. Y. Lee, D. Ravnsb(?)k, Y.-S. Lee, Y. Kim, Y. Cerenius, J.-H. Shim, T. R. Jensen, N. H. Hur and Y. W. Cho. Decomposition reactions and reversibility of the LiBH4-Ca(BH4)2 composite. The Journal of Physical Chemistry C 2009,113:15080-6.
    [179]Y. G. Yan, A. Remhof, P. Mauron, D. Rentsch, Z. Lodziana, Y.-S. Lee, H.-S. Lee, Y. W. Cho and A. Zuttel. Controlling the Dehydrogenation Reaction toward Reversibility of the LiBH4-Ca(BH4)2 Eutectic System. The Journal of Physical Chemistry C 2013,117:8878-86.
    [180]A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron and C. Emmenegger. LiBH4 a new hydrogen storage material. Journal of Power Sources 2003,118:1-7.
    [181]Y. H. Guo, H. Wu, W. Zhou and X. B. Yu. Dehydrogenation tuning of ammine borohydrides using double-metal cations. Journal of the American Chemical Society 2011, 133:4690-3.
    [182]G. L. Xia, Q. F. Gu, Y. H. Guo and X. B. Yu. Ammine bimetallic (Na, Zn) borohydride for advanced chemical hydrogen storage. Journal of Materials Chemistry 2012,22:7300-7.
    [183]W. W. Sun, X. W. Chen, Q. F. Gu, K. S. Wallwork, Y. B. Tan, Z. W. Tang and X. B. Yu. A New Ammine Dual-Cation (Li,Mg) Borohydride:Synthesis, Structure, and Dehydrogenation Enhancement. Chemistry-A European Journal 2012,18:6825-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700