异波折流板厌氧反应器处理低浓度污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种污染物的种类和数量呈上升趋势,同时人类对水的需求量越来越大和现有废水处理技术难以得到推广应用,水环境遭受非常严重的污染。因此,如何提高污水处理效率、降低能耗,是当今环境科学界所要解决的一个关键问题。基于传质理论及双层分阶段多生物相机理,笔者设计了异波折板厌氧反应器,旨在通过优化反应器结构以提高系统的传质效率,同时在保证系统微生物量和活性的前堤下,大大强化厌氧反应器的去除功效。为考察水解酸化工艺-后续生物处理技术的运行功效,设计了异波折板水解酸化-A2O一体化反应器,并进行伴同试验研究。
     实验室的小试实现了水解酸化段的高效性,对啤酒废水的有机污染物去除率和去除速率大大提高。当进水COD浓度在450~900mg/L时,高效水解酸化反应器对溶解性COD的去除率达到(40±4)%。
     用不同粒径粉煤灰加速启动异波折板复合厌氧反应器,使其启动时间大大缩短,连续启动运行50d即可启动成功,并使厌氧反应器的后续运行功效得以强化。基于试验结果查明了粉煤灰加速启动厌氧反应器最佳粒径范围的同时,也阐明了异波折板厌氧反应装置启动得以加速的机理在于粉煤灰具有孔隙率高、比表面积大、比重适宜等物理特性。
     异波折板中试试验结果表明,在25℃±2℃条件下,反应器的最佳HRT为6h。此时所对应的COD、TN、TP平均去除率分别为78.58%、35.15%、39.17%;最适厌氧污泥区容积百分比为45%~65%;温度变化对混合两相厌氧消化的酸化段和产甲烷段分布无显著影响。反应器于HRT<6h,SRT≥200d(或污泥零排放)条件下,异波折板反应器可控制于酸化段。在25℃±2℃条件下,酸化段的最佳HRT为4h。酸化段在发挥较强酸化功效的同时,其有机去除功效亦极为显著,此时所对应的COD、TP、TN平均去除率分别为52.24%、22.28%、25.77%。水解酸化段及两相厌氧时,反应器最佳进水COD浓度均处于150~800mg/L。基于试验结果,阐明了异波折板复合式厌氧反应器混合两相厌氧及水解酸化段高效性机理在于系统具有高效传质和双层分阶段多生物相特性。
     异波折板水解酸化-A2O一体化反应器的伴同试验研究结果表明,当进水COD浓度于240~600mg/L,总HRT为8h,混合液回流比(r)、污泥回流比(R)分别为250%和100%,污泥停留时间(SRT)为15d条件下,温度为27℃条件下,异波折板水解酸化-A2O一体化反应器的COD、TN、TP去除率分别为96.34%、62.37%、82.08%。低温条件下系统对COD、TN、TP平均去除率仍能维持高效。阐明了异波折板水解酸化-A2O一体化反应器高效机理在于系统具有高微生物量和高氧吸收转移效率特性。
     应用费用-效益分析方法,通过基建费用和运行费用节约的估算,可知本研究成果的节能降耗效果十分显著。
With the demands of quantity and quality for water are increasing rapidly and a lot of wastewater treatment processes are difficult to be used abroad, the situation of water pollution is aggravating at a startling speed. Therefore, how to enhance the efficiency and to reduce consumption is the key to solve these problems. And the key to enhance the efficiency is to promote mass transfer efficiency of water treatment process and improve the biomass of system under the condition of keeping higher activity of microorganism. The transfer-reaction kinetics and how to enhance microorganism biomass of system were studied deeply during exploring high efficient opposite folded plate anaerobic reactor (OFPHAR). Base on the mass transfer mechanism and two-double integrated staged multi-phase anaerobe (TSMPA), the theories of high efficient OFPHAR were put forward as follow: 1) It should focus on enhance mass transfer of OFPHAR achieve high efficient. Namely, the fluid of swift water and tiny whirlpool come from kinetics of the process which make the mass transfer better; 2) based on the TSMPA theories, the system was designed as together with the multi-phase anaerobe of compartments longitudinally down reactor, the two-double phase of sludge-biomembrane in every compartment could maintain high biomass concentration. By take two meatures as above, the COD removal efficience of system was enhanced markedly.
     For purpose of enhancing mass transfer in the system, the reactor was modified with the structure characteristic of opposite folded plate. This structure characteristic of reactor can change water power characteristic and improve the term of mass transfer in the reactor to increase bio-reaction velocity; and the system with the characteristic of multi-phase anaerobe of compartments longitudinally down reactor and two-double phase of sludge- biomembrane in every compartment. This characteristic of reactor can improve the biomass concentration in the system. Under the condition of keeping higher activity of microorganism, the higher mass transfer and biomass would improve the organic matters removal efficiently.
     In order to verify that high efficient hydrolysis-acidogenosis phase can feed good water quality to following aerobic treatment and enhance the high removal efficience of all the process, the opposite folded plate hydrolysis and acidification-A2O integrative reactor was designed by this research. The characteristic of hybrid actived sludge-contact oxidation in aerobic tank at A2O stage maybe enhance removal efficiency markedly.
     The results of 30 months’laboratory-scale and pilot-scale experiment indicatied that the efficacy of OFPHAR and following aerobic treatment were high efficient. The results and conclusions are shown as followed:
     By taking hydraulic meature, plenty of turbulent current and diverse scale whirling current generated in the system, which enhances mass-transfer efficiency markedly. And the system buffered with Na2CO3 can fortified wastewater alkalinity and prevent from pH decreasing because VFAs accumulation was avoided, which can enhance the activity of microorganism. As mass-transfer efficiency was enhanced markedly and the system pH value was controlled at 4.8-6.27, the high efficient hydrolysis and acidification was achieved with higher organic removal efficiency and rate. At this phase, the optimal COD concentration is 450~900mg/L and optimal HRT was 4h. Under the optimal condition, the average SCOD removal rate of hydrolysis and acidification phase was 43%±4%. Under the condition that COD concentration was 500mg/L and optimal HRT was 8h, the average SCOD removal rate of two-phase anaerobic digestion was 88.9%. The COD removal efficiency was still 75.8% at low temperature of 10℃. The results of this study indicated that the effect of temperature on pollutant removal efficiency isn’t remarkable and it is feasible to apply this OFPAR to treat low concentration sewage at psychrophilic temperature in north China. As a result, an pilot-scale opposite folded plate hybrid anaerobic reactor (OFPHAR) was designed and applied to treat low concentration sewage.
     In order to accelerate the speed of starte up reactor, 1#, 2# and 3# OFPHARs were applied to start-up study. Therefore, the anaerobic sludge-fly ash (the ratio of anaerobic sludge to fly ash was 10: 1) was added into system as inoculation sludge. The results indicated that the OFPARs have been started up when them have been running 50 days and the efficacy of follow running was enhanced under the condition that inoculated with anaerobic sludge being mixed with fly ash. Based on the results of trial, the mechanism of fly ash enhancement efficacy of start-up and follow running phase of OFPHAR can be due to larger specific surface area and porosity of fly ash. And the results of following trial at short HRT indicating that the optimal particles of fly ash to enhancement efficacy of OFPAR was 20~83μm. The reason that fly ash optimal particles ranged 20~83μm is it has larger specific area and isn’t easy to coagulate as mass.
     When the HRT≥6h and the sludge retention time (SRT) was controlled 120 days, the pilot-scale opposite folded plate hybrid anaerobic reactor (OFPHAR) was Two-phase Anaerobic system. The trial results indicated that the optimal HRT was 6h at (25±2)℃, and the corresponding removal rates of COD, TN and TP removal rates were 78.58%, 35.15%, 39.17% respectively. The optimal anaerobic section rate and the optimal influent COD concentration were respectively 45%~65% and 150~800mg/L. Under HRT=6h, the effect of temperature on OFPHAR was investigated. The COD, TN and TP removal rates were 64.37%, 20.72%, 23.65%, while the specific mathane production capacity decreased to 1.85 mL(gVSS·h)-1 at (7±1)℃. Simultaneously, there was no effect of temperature on the distribution of acidogenic phase and methane phase. The trial results indicated that low temperature had adverse effect on the removal rates of COD, TN and TP and methanogen activity, while the removal efficacy and methanogen activity still could maintain high level. So, it is feasible to apply the proposed OFPHAR to treat low concentration and low temperature sewage in north China.
     When the HRT < 6h and the sludge retention time (SRT)≥200 days, the OFPHAR)was acidogenic phase system. The trial results indicated that the optimal HRT was 4h at (25±2)℃, and the corresponding removal rates of COD, TP and TN removal rates were52.24%, 22.28%, 25.77% respectively. The optimal influent COD concentration was 150~800mg/L. The trial results indicated that low temperature had adverse effect on the removal rates of COD, TP and TN, while the removal efficacy and the acidogenic efficacy still could maintain high level. The bio-degradability of wastewater was improved markedly and the following aerobic treatment was fed good water quality after the wastewater was treated by acidogenic phase system even at low temperature. So, it is feasible to apply the proposed OFPHAR to treat low concentration and low temperature sewage in north China.
     According to trial results, the high efficiencies of proposed OFPHAR can be due to high mass-transfer efficiency and two-double integrated staged multi-phase anaerobe (TSMPA): 1) The biochemical reaction and the removal efficacy would be enhanced markedly because hydraulic condition is modified and resulted in higher mass transfer efficiency by the characteristic structure of OFPHAR. 2) The two-double phase of sludge-biomembrane in every compartment integrated staged multi-phase anaerobe of compartments longitudinally down reactor are advantaged to maintain higher biomass concentration and enhance acidogenic and methanogenic activity, which would enhance the removal efficacy of bioreactor.
     Opposite folded plate hydrolysis and acidification-A2O integrative reactor was designed to treat low strength sewage. The results of 10 months indicated that the optimal hydraulic retention time (HRT) was 8h (the HRT of hydrolysis and acidification stage was 4h, and the HRT of A2O stage was 4h); the sludge retention time (SRT) of active sludge was 15 days; the optimal influent COD concentration was 240~600mg/L; the optimal mixed-liquor return ratio (R) - sludge return ratio (r) was 250%-100%. Under these conditions, the COD, TN and TP removal rate were 96.34%, 62.37% and 82.08% at (25±2)℃, respectively. When the temperature decreased to 7℃, the COD, TN and TP removal rate decreased to 86.35%, 50.25% and 65.68%. Based on the results of trial, the mechanisms of higher integrative reactor efficacy in treatment of low strength sewage were owed to high efficient mass-transfer of opposite folded plate at hydrolysis and acidification stage and the hybrid actived sludge-contact oxidation in aerobic tank at A2O stage. So, it is feasible to apply the proposed opposite folded plate hydrolysis and acidification-A2O integrative reactor to treat low concentration and low temperature sewage in north China.
     According to trial results, the high efficiency of proposed opposite folded plate hydrolysis and acidification-A2O integrative reactor can be due to high mass-transfer efficiency of acidogenic phase and the hybrid actived sludge-contact oxidation in aerobic tank at A2O stage. High mass-transfer efficiency of acidogenic phase was explained as above. The high efficiency of A2O stage can be due to the high biomass concentration and high oxygen radical absorption capacity and transfer efficiency, which would enhance the removal efficacy of COD, TN and TP at A2O stage markedly.
     When the OFPHAR was applied to treat wastewater as partial wastewater treatment system, the energy saving and consumption reduction could be evaluated as follow: The capital cost is saved 2.4%. According as the COD removal rate f hydrolysis and acidification stage is 40%, the energy of fan drive can be saved over 40%. Based on the energy cost of fan drive is 60% as all operation cost, the operation cost would be saved 24%. According as the excess sludge yield is decreased of 20%, and the treatment cost of excess sludge is 30% as all operation cost, the operaton cost of excess sludge treatment would be saved 6%. So, the saving in energy and consumption amount to 32.4%.
     All in all, the study of OFPHAR and following aerobic are application value. The bio-reactor with low construction, cost and energy requirements would enjoy widely application , which is continually demanded by both the policy makers and the general public in north China. The economic benefit, social benefit and environmental benefit are markedly.
引文
[1]金兆丰,邓慧萍,黄建元,等. 21世纪的水处理[M].北京:化学工业出版社, 2003.
    [2]钱正英,张光斗.中国可持续发展水资源战略研究[M].中国水利水电出版社, 2001: 28-38.
    [3]国家环保总局. 2006年中国环境状况公报[M], 2007: 1-20.
    [4]王金霞,黄季,向青.我国水资源面临的挑战和思考[R].科技日报, 2000, 6–23 .
    [5]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社, 2002.
    [6]夏北成.环境污染物生物降解[M].北京:化学工业出版社, 2002.
    [7]钱易.废水生物处理的发展与前景-环境科学与进展[M].清华大学出版社, 1998.
    [8] M. Henze. Wastewater Treatment[M]. Springer Press Company, 1996.
    [9]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社, 1988.
    [10]常娥,齐亚林,乌小兵,等.产氢Enterbacter sakazakii HP的分离及产氢特性[J].微生物学通报, 2007, 34(2): 270-274.
    [11]任南琪,郑国香.高效产氢突变体UV-d48的筛选及释氢行为[J].化工学报, 2007, 58(3): 755-758.
    [12]李永峰,任南琪,陈瑛,等.发酵产氢细菌分离培养的厌氧实验操作技术[J].哈尔滨工业大学学报, 2004, 36(12): 1589-1592, 1694.
    [13]陈双雅,东秀珠.一个新的产氢细菌的鉴定及产氢特性的研究[J].微生物学报, 2004, 44(4): 411-416.
    [14]林明,任南琪,马汐平,等.混合菌种非固定化技术制氢反应器产氢效能[J].哈尔滨工业大学学报, 2002, 34(6): 815-819, 825.
    [15]任南琪,许丽英,张颖,等.产氢发酵新菌Ethanoligenens sp B49对铁的依赖性及产氢途径初控[J].环境科学学报, 2006, 26(10): 1643-1650.
    [16] MaCarty P L.One Hundred Years of Anaerobic Digestion[M]. Anaerobic Digestion. Elsevier Biomedical Press, 1982.
    [17]王凯军,秦人伟.发酵工业废水处理[M].北京:化学工业出版社, 2000.
    [18] R. E. Speeece. Anaerobic Biotechnology for Industrial Wastewater[M]. Nashville: Archae Press, 1996.
    [19]孙立,管锡郡.厌氧反应器综述与展望[J].青岛建筑工程学院学报, 2003, 24(4): 82-86.
    [20]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社, 1999, 12(4): 243-252.
    [21]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社. 2000, 09(2): 15-21.
    [22]王凯军.低浓度污水厌氧水解处理工艺[M].中国环境科学出版社, 1991.
    [23]宋铁红.不等距异波复合厌氧反应器高效机理及水力特性研究[D].长春:吉林大学环境与资源学院, 2008.
    [24]吕盛扬,何争光.水解酸化-CASS工艺处理天然骨素生产废水[J].工业用水与废水, 2007,38(1): 92-93.
    [25]郑筱黑,光建新,范春健.水解酸化-二级接触氧化处理DOP废水[J].工业水处理, 2007, 27(4): 85-87.
    [26]台明青,赵艳芳,杨华熙,等.水解酸化+接触氧化工艺处理中药废水工程[J].水处理技术, 2007, 33(2): 83-85.
    [27]沈连峰,吴泽鑫,赵勇,等.物化-水解酸化-接触氧化法处理淀粉废水[J].工业水处理, 2007, 27(6): 81-83.
    [28] Hong Zhu, Ji-hua Chen. Study of hydrolysis and acidification process to minimize excess biomass prodution[J]. Journal of Hazardous Marerials, 2005, 127(1-3): 221-227.
    [29] Ling Chen, Wei Zhong Jiang, Yutaka Kitamura, et al. Enhancement of hydrolysis and acidification of solid organic waste by a rotational drum fermentation system with methanogenic leachate recirculation[J]. Bioresource Technology, 2006, 98(11): 2194-2200.
    [30] L. Guerrero, F. Omil, R. Mendez, et al. anaerobic hydrolysis and acidogensis of wastewaters from food industrines with high content of organic solids and protein[J]. Wat. Res. 1999, 33(15): 3281-3290.
    [31] Jing Gan, Ling Chen, Baoming Li, et al. A rotational drum fermentation system with water flushing for enhancing hydrolysis and acidification of solid organic wastes[J]. Bioresource Technology, 2008, 99(7): 2571-2577.
    [32] Xiangying Wang, Guangming, Zeng, Jianlin Zhu. Treatment of Jean-wastewater by combined coagulation, hydrolysis/acidication and fenton oxidation[J]. Journal of hazardous materials, 2007, 94(7): 1-27.
    [33] Kuhn E.P.,Microbial transformation of substituted benzenes during infiltration of water to ground water[J].Environ.Sci.Technol,1985:961-968.
    [34] Habets L H A. Anaerobic treatment of inuline effluent in an internal circulation reactor[J]. Wat Sci Tech., 1997, 35(10):189-197.
    [35] Pereboom J H F. Size distribution model for methanogenic granules from full scale UASB and IC reactors. Wat Sci Tech., 1994, 30(12):211-221.
    [36] Pereboom J H F, Vereijken T L F M. Methanogenic granule development in full scale internal circulation reactors[J]. Wat Sci Tech, 1994, 30(8): 9-21.
    [37] Driessen W, Yspeert P. Anaerobic treatment of low, medium and high strength effluent in the agro-industry[J]. Wat Sci Tech, 1999, 40(8): 221-228.
    [38] Agdag, Osman Nuri, Sponza. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems[J]. Process Biochemistry, 2005, 40(2): 895-902.
    [39] Yehuda Miron, Grietje Zeeman, Jules B. Van Lier. The role of sludge retention time in thehydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems[J]. Water Research, 2000, 34(5): 1705-1713.
    [40] Young-Ho A. Kyung-Sok M.and Richard E.S. Pre-acidification anaerobic sludge bed process treating brewery wastewater[J].Water Research,2001,(35(18):4267–4276.
    [41] Kuhn E.P.,Microbial transformation of substituted benzenes during infiltration of water to ground water[J]. Environ.Sci.Technol.1985, (6): 961-968.
    [42] Riazema A.etal Bactericidal effecf of long chain fatty acids in anaerobic digestion [J] Water Environ.Res, 1994, (1): 40-49.
    [43]王凯军.低浓度污水厌氧化(水解)处理[M].北京:中国环境科学出版社, 1991.82-91.
    [44]刘军,郭茜,瞿永彬.厌氧水解生物法处理城市污水的研究[J].给水排水, 2000, 26(7): 10-13.
    [45]陈新宇,陈翼孙.水解酸化-生物接触氧化处理难降解丁苯橡胶废水的研究[J].给水排水, 1997, 23(2): 32-35.
    [46]任南琪.产酸发酵细菌演替规律研究-pH≤5条件下ORP的影响[J].哈尔滨建筑大学学报,1999, 32(2): 30-34.
    [47]陶有胜.水解酸化-生物接触氧化工艺处理啤酒废水工程实例[J].环境工程, 1998, 16(4): 20-22.
    [48] Lettings G, Rebac S, Zeeman G, et al. Challenge of psychrophilic anaerobic wastewater treatment. Trends in Biotechnology, 2001.19 (9): 363-370.
    [49] El-Mashad H M, Zeeman G, Loon W K P van, et al. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure [J]. Bioresource Technol, 2004, 95(2): 191-201.
    [50]杜月,陈胜,孙德智.移动床生物膜反应器对垃圾渗滤液短程硝化研究[J].环境科学, 2007, 28(5): 1039-1043.
    [51]张薇,左剑恶,崔龙涛,等.中温和高温厌氧生物产氢反应器连续运行的研究[J].环境科学, 2006, 27(1): 63-68.
    [52] Sean Connaughton, Gavin Collins, Vincent O’Flaherty. Psychrophilic and mesophilic anaerobic digestion of brewery effluent(A comparative study[J]. Water Research, 2006, 40(13): 2503-2510.
    [53] Anne-Marie Enright, Sharon McHugh, Gavin Collins, et al. (2005)Low-temperature anaerobic biological treatment of solvent-containing pharmaceutical wastewater[J]. Water Research, 2005, 39(19): 4587-4596.
    [54] Tarek A. Elmitwalli, Jesko Soellner, Arie De Keizer, et al. Biodegradability and change of physical characteristics of particles during anaerobic digestion of domestic sewage[J]. Water Research, 2001, 35(5): 1311-1317.
    [55] Sizgerist H, Gujer W. Mass transfer mechanisms in a heterotrophic biofilm[J]. Wat Res, 1985, 19(12):765-766.
    [56]罗建洪,费德君,杨明,等.乳状液膜法提取制革废水中Cr3+的传质模型研究[J].膜科学与技术, 2008, 28(1): 60-65.
    [57]王国强,徐宁,倪亚明.微乳液膜分离活性染料的传质动力学研究[J].同济大学学报, 2005, 33(5): 636-639.
    [58]居沈贵,曾勇平,祝宁东,等.脱除废水中氨氮的传质动力学实验及模型计算[J].江苏工业学院学报, 2005, 17(1): 16-19.
    [59]高艳玲,于德强,王汛.传统活性污泥工艺的传质强化-均匀受限工艺的研究与应用[J].中国环境管理干部学院学报, 2004, 14(3): 46-49.
    [60]邵丕红,韩相奎,艾胜书,等.异波折板多段两相厌氧城市污水处理工艺试验研究[J].吉林大学学报, 2007, 37(4): 789-792.
    [61]韩相奎,桑连海,叶长兵,等.高效水解酸化废水处理技术初步研究[J].环境科学学报, 2003, 23(6): 721-725.
    [62]张代均,曹琳,严晨敏,等.生物膜多基质模型及其对BAF处理合成污水的模拟[J].中国环境科学, 2005, 25(2): 231-235.
    [63]查金荣,等.传递过程原理及应用[M],北京:冶金工业出版社, 1997, 49-55.
    [64]方大酉.两相流动力学[M].北京:国防科技出版社, 1998, 98-103.
    [65]谭天恩,金一中.传质—反应过程[M].浙江:浙江大学出版社, 1990, 10-22.
    [66]戴干策,等.传递现象导论[M].北京:化学工业出版社, 1996.
    [67] H.Q. Yu, H.H.P. Fang, J.H. Tay. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactor by aluminum chloride[J]. Chemosphere, 2001, 44(1): 31-36.
    [68] Shigeki Uemura, Hideki Harada. Treatment of sewage by a UASB reactor under moderate to low temperature conditions[J]. Bioresource Technology, 2000, 72(3): 275-282.
    [69] J.C. Akunna, M. Clark. Performance of a granular-bed anaerobic baffled reactor (GRABBR) treating whisky distillery wastewater[J]. Bioresource Technology, 2000, 74(3): 257-261.
    [70] Largus T. Angenent, Shihwu Sung. Development of anaerobic migrating blanket reactor (AMBR), a novel anaerobic treatment system[J]. Wat. Res., 2001, 35(7): 1739-1747.
    [71] Fen-xia Ye, Dong-sheng Shen, Xiao-shan Feng. Anaerobic granule development for removal of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor[J]. Process Biochemistry, 2004, 39(10): 1249-1256.
    [72] Lili Ding, Xiaorong Wang, Yixin Zhu, et al. Effect of pH on phosphine production and the fate of phosphorus during anaerobic process with granular sludge[J]. Chemosphere, 2005, 59(1): 49-54.
    [73] D.J. Batstone, J. Keller, L.L. Blackall. The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass[J]. Water Research, 2004, 38(6): 1390-1404.
    [74]桑连海.高效水解酸化工艺处理废水试验研究[D].长春:吉林大学环境与资源学院, 2002.
    [75]韩相奎,桑连海,叶长兵,等.高效水解酸化废水处理技术研究[J].环境科学学报, 2003, 23(6): 721-725.
    [76]杨百忍,佘宗莲,赵来利,等. ABR反应器中颗粒污泥的培养及其特性研究[J].中国给水排水, 2007, 23(5): 73-77.
    [77]沈耀良,赵丹,王承武,等. ABR反应器的水力特征研究[J].中国给水排水, 2003, 19(11): 1-3.
    [78]宋银燕,沈耀良,王惠民. ABR处理低浓度废水的研究进展[J].江苏环境科技, 2006, 19(3): 52-54.
    [79]宋铁红,高艳娇,张勇. ABR反应器处理低浓度污水启动试验研究[J].环境科学与技术, 2006, 29(1): 26-27.
    [80] Alette A.M. Langenhoff, Narisara Intrachandra, C. Stuckey. Treatment of dilute slouble and colloidal wastewater using an anaerobic baffled reactor: influence of hydraulic retention time[J]. Wat. Res. 2000, 34(4): 1307-1317.
    [81] Soledad Gutiérrez, Alberto Hernándaz, María Viňas. Mechanism of degradation of wool wax in the anaerobic treatment of woolscouring wastewater[J]. Wat. Sci. Tech., 1999, 40(8): 17-23.
    [82] K. Stamatelatou, I.V. Skiadas, G. Lyberatos. On the behavior of the periodic anaerobic baffled reactor (PABR) during the transition from carbohydrate to protein-based feeding[J]. Bioresource Technology, 2004, 92(3): 321-326.
    [83] Zonglian She, Xilai Zheng, Bairen Yang, et al. Granule development and performance in sucrose fed anaerobic baffled reactors[J]. Journal of Biotechnology, 2006, 122(2): 198-208.
    [84] Alette A.M. Langenhoff, David C. Stuckey. Treatment of dilute wastewater using an anaerobic baffled reactor: effect of low temperature[J]. Wat. Res. 34(15): 3867-3875.
    [85]张勇,龚敏,赵九旭,等. EGSB-SBR组合工艺对城市污水脱氮除磷试验研究[J].环境科学与技术, 2007, 30(5): 68-71.
    [86]金杭,王淑梅.生物脱氮除磷技术及其发展趋势[J].广州环境科学, 2006, 21(2): 9-13.
    [87]杨嘉谟,刘华洋,高凤.环境生物技术在废水除磷脱氮中的应用及进展[J].武汉工程大学学报, 2007, 29(2): 44-46, 50.
    [88]陈雷,王艺.填料传质性能对污水生物反应处理工艺的影响研究[J].环境污染与防治, 2007, 29(8): 612-615.
    [89]刘晓龙,王艺,赵勇胜.水力旋转填料生物接触氧化处理城市污水的研究[J].吉林大学学报, 2004, 34(增刊): 126-130.
    [90]邹华生,廖晓燕.生物填料塔处理餐厅污水传质反应研究[J].化学工程, 2006, 34(3): 56-59.
    [91]张永丽,许唯临,刘钟文,等.多孔悬浮填料SBR工艺和传统SBR工艺的对比研究[J].四川大学学报, 2007, 39(2): 66-70.
    [92]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社, 2006. 173-185.
    [93]王艺.城市污水生物处理工艺中传质机理及其载体填料的研究[D].长春:吉林大学环境与资源学院, 2005.
    [94] A. P. Herrmann, H. D. Janke. Cofementation of rutin and hesperidin during two-stage anaerobic pre-Treatment of high-loaded brewery wastewater[J]. Wat. Res. 2001, 35(11): 2583-2588.
    [95]宋乾武,王之晖,刘捷,等.生物助剂在制浆废水处理中的应用研究[J].给水排水, 2007, 33(3): 71-73
    [96]王春杰,高永.膜生物反应器去除病毒的影响因素[J].河北建筑工程学院学报, 2007, 25(1): 52-53, 56.
    [97]任南琪,唐婧,宫曼丽.生物载体强化的连续流生物制氢反应器的运行特性[J].环境科学, 2006, 27(6): 1176-1180.
    [98]杜大恒,陈胜,孙德智,等.好氧生物流化床处理抗生素废水的试验研究[J].工业水处理, 2005, 25(12): 29-33.
    [99]孙毅,朱光灿.附着缺氧-生物膜联用处理聚酯废水的研究[J].兰州石职业技术学院学报, 2005, 5(3): 3-5.
    [100]夏汉平,柯宏华,邓钊平,等.人工湿地处理炼油废水的生态效益研究[J].生态学报, 2003, 23(7): 1344-1355.
    [101] Choi M H, Hee Park Y. Production of yeast biomass using waste Chinese cabbage[J]. Biomass and Bioenergy, 2007, 25(4): 221-226.
    [102]吴小付,李磊,罗汉金,等.亲水性多孔载体在流化床中的生物膜形成过程分析[J].环境工程学报, 2008, 2(6): 727-732.
    [103]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社, 2002.
    [104]肖鸿,场平,郭勇,等.生物膜反应器中生物膜脱落的机理及数学模型[J].化工环保, 2005, 25(1): 23-28.
    [105]王占生,等.微污染水源饮用水处理[M].北京:中国建筑工业出版社, 1999.
    [106]刘雨,王岐东.生物膜增长动力学模型[J].北京轻工业学院学报, 1997, 15(2): 28-31.
    [107]杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展[J].环境科学研究, 13(5): 50-53.
    [108]邓洪亮,潘永亮,杨平.内循环生物流化床反应器数学模型分析[J].四川大学学报, 2001, 33(2): 52-56.
    [109]方芳,郭劲松,刘冉,等.缺氧生物滤池处理城市污水模型与仿真[J].重庆环境科学, 2005, 28(4): 86-90.
    [110]陈黎阳,柴立和.生物膜动力学的研究现状及展望[J].力学进展, 2005, 35(3): 411-416.
    [111]赵景联.填充床生物膜反应器动力学模型[J].工程数学学报, 1994, 11(1): 82-88.
    [112]韩洪军,徐春艳.厌氧反应器处理涤纶聚酯废水的动力学模型与应用[J].湖南科技大学学报, 2005, 20(2): 76-79.
    [113]张亚范,李如群.厌氧反应器处理工业废水的动力学模型与应用[J].电站系统工程, 2005, 21(2): 57-58.
    [114]何炜,王世和.厌氧颗粒污泥流化床的动力学参数测定[J].环境科学研究, 2004, 17(4): 70-73.
    [115]王世和,何炜.厌氧颗粒污泥流化床降解有机物的动力学分析[J].环境科学, 1999, 20(4): 33-37.
    [116] Bruce E. Rittmann, Douglas Stilwell, Akiyoshi Ohashi. The transient-state, multiple-species biofilm model for biofiltration processes[J]. Water Research, 2002, 36(9): 2342-2356
    [117] Trulear M G, Characklis W G. Dynamics of biofilm processes. J Wat Pollut Control Fed[J], 1982, 54:1288-1301.
    [118] Carucci, A., Lindrea, K., Majone, M., et al. Dynamics of the anaerobic utilization of organic substrates in an anaerobic/aerobic sequencing batch reactor[J]. Water Science and Technology, 1995, 31(2): 35-43.
    [119] Bruce E. Rittmann, Douglas Stilwell, Akiyoshi Ohashi. The transient-state, multiple-species biofilm model for biofiltration processes[J]. Water Research, 2002, 36(9): 2342-2356.
    [120] N. A. Gashkina, V. V. Puklakov, E. R. Kremenetskaya. Dynamics of Phosphorus and Balance Estimate of Its Exchange Processes with the Bed in the Mozhaisk Reservoir during Vegetation Period[J].Water Research, 2000, 31(6): 649-659.
    [121]信欣,胡细全,蔡鹤生,等. ABR处理生活污水的指标沿程变化及动力学研究[J].环境科学与技术, 2006, 29(8): 8-9, 14-15.
    [122]张自杰,周帆.活性污泥生物学与反应动力学[M].北京:中国环境科学出版社, 1989.
    [123]杨开,庄仲辉.活性污泥动力学模型解析(1)·CSIR型反应器[J].武汉理工大学学报, 2002, 24(11): 10-12.
    [124]杨开,贺佳杰.活性污泥法动力学模型解析(2)·PF型反应器[J].武汉理工大学学报, 2002, 24(11): 45-48.
    [125]顾夏声.废水生物处理数学模型[M].北京:清华大学出版社, 1993, 120-160.
    [126]王银川,王松.生物接触氧化法处理污水的动力学分析[J].工业安全与环保, 2007, 33(8): 14-16.
    [127]蔡涛,宋碧玉.生物接触氧化法处理柑橘罐头废水的动力学研究[J].工业用水与废水, 2006, 37(6): 16-19.
    [128]杨青,张林生,李国新.压力式接触氧化法处理农药废水的动力学研究[J].沈阳建筑大学学报, 2007, 23(4): 647-650.
    [129]何强.预挂膜加速厌氧生物膜反应器启动的试验研究[J].给水排水,2001,27(5):27-29.
    [130]崔玉波,尹军,曲波,等.厌氧填料板反应器的启动试验[J].中国给水排水.2002.18(7):75-76.
    [131]牛樱,陈季华.兼氧-好氧工艺处理高浓度化工废水[J].工业水处理,2000,20(8):8-10.
    [132]赵昕,倪晋仁,叶正芳.盐度对固定化曝气生物滤池中微生物的影响[J].环境科学, 2007, 28(7): 1553-1559.
    [133]严媛媛,孙力平,冯雷雨. SBR法处理还原段DSD酸废水脱氢酶活性的研究[J].环境科学与技术, 2007, 30(3): 87-90.
    [134]崔蕴霞,肖锦,陈群,等. TTC/TCS对生物处理系统生化反应能力的影响[J].中山医科大学学报, 2000, 21(4S): 50-52.
    [135]田晴,肖玉男,陈季华.上流式生物活性炭滤池沿程TTC-DHA生物活性的研究[J].东华大学学报, 2006, 32(3): 29-33.
    [136]邢林林,王竞,曲媛媛,等.生物强化对MBR系统生物特性及群落结构的影响[J].环境工程学报, 2007, 1(4): 70-73.
    [137]陈立波,李风亭.压力曝气生物反应器处理废水的研究[J].同济大学学报, 2007, 35(9): 1219-1224.
    [138]马放,任南琪,杨基先,等.污染控制-微生物学实验[J].哈尔滨:哈尔滨工业大学出版社, 2002, 104-135.
    [139] J. Yin, X. J. Tan, N. Q. Ren, et,al. (2005). Evaluation of heavy metal inhibition of activated sludge by TTC and INT-electron transport system activity tests. Water Science and Technology. 52, 231-239.
    [140] Nuri Azbar, Pepi Ursillo,Richard E.Speece. Effect of configuration and substrate complexity on the performance of anaerobic processes[J].Water research, 2001,35(3):817-829.
    [141]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社, 2006.
    [142]韩相奎,桑连海,叶长兵,等.高效水解酸化废水处理技术初步研究[J].环境科学学报,2003,23(6): 721-725.
    [143]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    [144] Razo-Flores E, Luijton M, Donlon BA, et al. Biodegradation of selected azo dye under methanogenic conditions [J]. Water Sci Technol, 1997, 36(6-7): 65-72.
    [145]高景峰,彭永臻,王淑莹. DO和ORP与SBR法硝化反硝化的相关关系[J].哈尔滨建筑大学学报, 2002, 35(1): 61-65, 93.
    [146]任南琪.产酸发酵细菌演替规律研究-pH≤5条件下ORP的影响[J].哈尔滨建筑大学学报, 1999, 32(2): 29-34.
    [147]高大文,彭永臻,王淑莹,等.利用ORP和pH控制豆制制品废水的处理过程[J].哈尔滨工业大学学报, 2003, 35(6): 647-650.
    [148]曾薇,彭永臻,王淑莹.以DO、ORP、pH作为两段SBR工艺的实时控制参数[J].环境科学学报, 2003, 23(2): 252-256.
    [149]马勇,彭永臻,王淑莹,等.以氧化还原电位作为缺氧-好氧法工艺反硝化反应模糊控制的参数[J].现代化工, 2004, 24(2): 39-43.
    [150]高大文,彭永臻,王淑莹,等.利用ORP和pH控制豆制品废水的处理过程[J].哈尔滨工业大学学报, 2003, 35(6): 647-650.
    [151]吴志超,顾国维.高度有机废水膜生物工艺处理的中试研究[J].环境科学学报,2001,21(1):34-38.
    [152]华彬,陆永生,王贝黎,等.含生物活性介质废水体系的流变行为研究[J].环境工程, 2000, 23(2): 23-25.
    [153]姜维东,张可,徐新霞,等.曝气和厌氧污水聚合物溶液粘度差异及机理分析[J].油气地质与采收率, 2007, 14(6): 69-72.
    [154]吴柏志,李宜强,张琪,等. PBS菌的趋化性与提高原油采收率机理[J].油田化学, 2004,21(4): 372-390.
    [155]叶长兵,刘文,韩相奎,等.异波折板水解酸化反应装置启动试验研究[J].哈尔滨商业大学学报, 2006, 2(6): 32-35.
    [156]叶长兵,韩相奎,汤洁等.异波折板水解酸化废水处理技术高效性机理研究[J].哈尔滨商业大学学报, 2007, 23(4): 411-414.
    [157] Pufial, A., Trevisan, M., Rozzi, A., et al. 2006. Influence of C/N ratio on the start-up of up-flow anaerobic filter reactors. Water Res. 34(9): 2614-2619.
    [158] Romain C., Renaud E., Hélène C., et al. 2007. Influence of hydrodynamic conditions on the start-up of methanogenic inverse turbulent bed reactors [J]. Water Research, 41(3): 603-612.
    [159]王夙,张利群,吴敏,等. 2007. UASB反应器处理棉浆粕黑液的快速启动研究[J].中国给水排水, 23(3): 53-56.
    [160]何建宗. 2003.快速启动UASB+AF反应器[J].硫磷设计与粉体工程, 31(4): 21-23.
    [161]张少辉,郑平,华玉妹. 2004.反硝化生物膜启动厌氧氨化氧化反应器的研究[J].环境科学学报, 24(2): 220-224.
    [162]张广,贾廷耀,万山. 2007.粉煤灰分类及其在混凝土中的应用[J].国外建材科技, 28(2): 23-26.
    [163]盛骤,谢式千,潘承毅.概率与数理统计[M].北京:高等教育出版社, 2001.
    [164] Jianlong, Wang; Jing, Kang. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor [J]. Process Biochemistry, 2005, 40(5): 1973-1978.
    [165] Zheng Yu-Ming, Yu Han-Qing, ShengGuo-Ping. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor [J]. Process Biochemistry, 2005, 40(2): 645-650.
    [166] Linlin u, Jianlong Wang, Xianghua Wen. The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules [J]. Process Biochemistry, 2005, 40(1): 5-11.
    [167] Pevere, A., Guibaud, G., van Hullebusch, E., et.al. Viscosity evolution of anaerobic granular sludge [J]. Biochemical Engineering Journal, 2006, 27(3): 315-322.
    [168]孙寓姣,左剑恶,李建平,等.厌氧颗粒污泥中微生物种群变化的分子生物学解析[J].中国环境科学, 2006, 26(2): 183-187.
    [169]张文艺,翟建平,李琴. 2006.粉煤灰吸附法处理污水机理[J].粉煤灰综合利用, 2, 54-56.
    [170]王治军,王伟,张锡辉. ASBR处理高浓度悬浮固体废物的工艺特性[J].环境科学, 2006, 27(6): 1107-1110.
    [171]邹联沛,王国平,董煜,等. SRT对膜生物反应器出水水质的影响及其控制途径的研究[J].水处理技术, 2005, 31(4): 70-73.
    [172]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社, 2002.
    [173]韩相奎,叶长兵,林年丰,等.异波折板高效水解酸化废水的处理技术[J].中国环境科学,2004, 24(3): 360-363.
    [174]查金荣,陈家镛.传递过程原理及应用[M].北京:金工业出版社, 1997. 49-55.
    [175]谭天恩,金一中.传质—反应过程[M].杭州:浙江大学出版社, 1990. 10-22.
    [176] Barber W P, Stuckey D C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review [J]. Water Research, 1999, 33(7): 1559-1578.
    [177] Harper, W. F. Jr. Application of anaerobic and aerobic Activated Sludge to Phosphorus-Deficient Wastewater Treatment[J]. Water Environment Research, 2005, 77(3):234-245.
    [178] Y. Ubukata, D. Tomlinson, A. Addagada, A. Shafagati. Fundamental Mechanisms of Phosphate Removal by Anaerobic/Aerobic Activated Sludge in Treating Municipal Wastewater[J]. 2005, 6(1):51-56.
    [179] Tsuneda Satoshi, Ohno Takashi, Soejima Koichi, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J]. Biochemical Engineering Journal, 2006, 27(3): 191-196.
    [180] I????k Mustafa, Sponza Delia Teresa. Biological treatment of acid dyeing wastewater using a sequential anaerobic/aerobic reactor system[J]. Enzyem and Microbial Technology, 2006, 38(7): 887-892.
    [181] I????k Mustafa, Sponza Delia Teresa. Monitoring of toxicity and intermediates of C.I. Direct Black 38 azo dye through decolorization in an anaerobic/aerobic sequential reactor system[J]. Journal of Hazardous Materials, 2004, 114(1-3): 29-39.
    [182] Frijters C.T. M.J., Vos R.H. Scheffer G.,et al. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system[J]. Water Research, 2006, 40(6): 1249-1257.
    [183] Sponza, Delia Teresa, Is?k Mustafa. Toxicity and intermediates of C.I. Direct Red 28 dye through sequential anaerobic/aerobic treatment[J]. Process Biochemistry, 2005, 40(8): 2735-2744.
    [184] Shaw C.B., Carliell, C.M., Wheatley A.D. Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors[J]. Water Research, 2002, 36(8): 1993-2001
    [185] Agdag, Osman Nuri, Sponza. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems[J]. Process Biochemistry, 2005, 40(2): 895-902.
    [186] Sponza, Delia Teresa, Atalay, et al.Treatment of trichlorotoluene in an anaerobic/aerobic sequential reactor system[J]. Process Biochemistry, 2005, 40(1): 69-82.
    [187] Sponza, D.T., Isik M. Decolorization and azo dye degradation by anaerobic/aerobic sequential process[J]. Enzyem and Microbial Technology, 2002, 31(1-2): 102-110.
    [188]刘宝玲. A2/O工艺改善污水处理除磷脱氮的措施[J]. 2003, 16(2): 65-67.
    [189] Tzu-Yi Pai. Modeling nitrite and nitrate variations in A2O process under different return oxic mixed liquid using an extended model [J]. Process Biochemistry, 2007, 42(3): 978-987.
    [190]任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究[J].给水排水, 2002, 6(6): 7-10.
    [191]周斌.改良型A2/O工艺的除磷脱氮运行效果[J].中国给水排水, 2001, 17(7): 46-48.
    [192] Tzu-Yi Pai. Modeling nitrite and nitrate variations in A2O process under different raturn oxic mixed liquid using and extended model[J], Process Biochemisty, 2007, 42(6): 978-987.
    [193] Yong-zhen Peng, Xiao-lian Wang, Bai-kun Li. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process[J]. Desalination, 2006, 189(1): 155-164.
    [194] S. J. You, C.L. Hsu, S.H. Chuang, et al. Nitrication efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems[J]. Water Research, 2003, 37(10): 2281-2290.
    [195]曹斌,黄霞,北中敦,等. A2/O-膜生物反应器强化生物脱氮除磷中试研究[J].中国给水排水, 2007, 23(3): 22-26.
    [196]刘宝玲. A2/O工艺改善污水处理除磷脱氮的措施[J].污染防治技术, 2003, 16(2): 65-67.
    [197]付国楷,周琪,杨殿海,等.倒置A2/O工艺的短程生物脱氮中试[J].中国给水排水, 2006, 22(17): 38-41.
    [198]毕学军,张波.倒置A2/O工艺生物脱氮除磷原理及其生产应用[J].环境工程, 2006, 24(3): 29-30, 9.
    [199]丁永伟,王琳,王宝贞.复合式A2/O工艺中污泥沉降特性及污泥减量研究[J].水处理技术, 2006, 32(8): 30-33.
    [200]毕学军,王振江,孙英华,等.改良A2/O生物脱氮除磷工艺生产性应用研究[J].青岛理工大学学报, 2005, 26(5): 50-54.
    [201]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水, 2000, 26(12): 1-4.
    [202]卢培利,张代钧,许丹宇.废水生物脱氮中N2O和NOX的来源及生成机理[J].重庆大学学报.
    [203]赵可.腐殖土填料生化反应器处理生活污水的特性及运行效能研究[D].哈尔滨:哈尔滨工业大学学报, 2008.
    [204]郝晓地,汪慧贞,钱易,等.欧洲城市污水处理技术新概念—可持续生物除磷脱氮工艺(上)[J].给水排水, 2002, 28(6): 6-11.
    [205]娄金生,谢水波,何少华,等.生物脱氮除磷原理与应用[M].长沙:国防科技大学出版社, 2002.
    [206]叶长兵,韩相奎,汤洁,等.复合式异波折流板厌氧反应器处理低浓度污水的效能[J].中国给水排水, 2008, 24(9): 38-41.
    [207]付婉霞,冯萃敏.一体化膜生物反应器用于中水处理的经济效益分析[J].给水排水, 2002, 28(8): 53-56.
    [208]王焕忠,蔡宏远,蒋生婷.七星公司综合污水治理应用技术及效益分析[J].煤矿环境保护, 2002, 16(4): 36-37, 64.
    [209]蔡志清,吴振中,徐林昌,等.鸡场粪污水综合处理技术及效益分析[J].中国沼气, 2003,21(2): 20-22.
    [210]王云彪,邹丽芳,江守启.吉林西部构建人工湿地处理污水的可行性与效益分析[J].吉林水利, 2004, 267(11): 1-2, 6.
    [211]李响.秦皇岛港污水回用工程介绍及效益分析[J].工业用水与废水, 2005, 36(4): 75-77.
    [212]邵英贵,胡建阁,穆冬燕,等.二羧酸车间酸性含氰污水处理装置经济效益分析[J].化工技术经济, 2006, 24(2): 29-31.
    [213]周海川,林玉娣,马玉林.城市综合污水处理厂出水消毒成本-效益分析[J].环境科学研究, 2002, 15(5): 55-57, 61.
    [214]曹洪勋,刘秋欣.轧钢废水全循环综合利用经济效益分析[J].辽宁城乡环境科技, 2001, 21(3): 30-32.
    [215]叶长兵.异波折板高效水解酸化废水处理技术初步研究[D].长春:吉林大学环境与资源学院, 2004, 61-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700