不同温度下安吉白茶差异表达基因的分离、鉴定及CsPDS3基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安吉白茶是一低温诱导白化的特异茶树品种,早春时节低温条件下其叶片具有阶段性返白-复绿现象。本文第一部分,通过人工模拟15℃、19℃、23℃三个不同环境温度培养安吉白茶,选取各温度下性状特征最明显的芽下第二叶为材料,研究温度对光合作用相关色素、叶绿体超微结构以及基因表达的影响;同时通过qRT-PCR技术,检测了不同温度下生长的安吉白茶叶片中质体发育早期阶段相关基因、光合作用系统相关基因以及类胡萝卜素生物合成途径中关键酶基因的表达水平。第二部分,应用Gateway技术体系构建了茶树类胡萝卜素合成途径中关键酶基因—八氢番茄红素脱氢酶3基因(Camellia Sinensis Phytoene Desaturase3,CsPDS3)的RNAi载体,并将其转入根癌农杆菌GV3101;探索了农杆菌渗入法(Agroinfiltration)在茶树基因功能研究中的可行性,并利用该方法初步研究了CsPDS3基因功能。本文主要研究结果如下:
     1.选取不同温度下性状特征最明显的安吉白茶芽下第二叶为材料,以常规茶树品种福鼎大白茶作为对照,研究温度对光合作用相关色素及叶绿体超微结构的影响。结果表明,安吉白茶叶片叶绿素和p-胡萝卜素含量随着温度的上升而增加,叶绿体在15℃和19℃条件下发育异常。
     2.应用cDNA-AFLP技术,结合银染方法,分析三个培养温度条件下安吉白茶差异表达基因。选取其中85个重复性好的差异条带,进行回收、测序及Blastx比对,结果有40条差异条带比对出同源序列。根据Blastx比对结果,可分为以下几类:物质及能量代谢,次生代谢,抗性相关,细胞结构蛋白及细胞周期,蛋白代谢,转录因子,信号转导,功能未知。另有45条TDFs未找到同源序列。
     3.通过qRT-PCR技术,检测了不同温度下生长的安吉白茶叶片中质体发育早期阶段相关基因、光合作用系统相关基因以及类胡萝卜素生物合成途径中关键酶基因的表达水平。结果表明,质体发育早期阶段和儿茶素合成相关基因在19℃条件下表达最高,光合作用系统相关基因以及类胡萝卜素生物合成途径中关键酶基因大部分随着温度的升高而表达上调。
     4.根据cDNA-AFLP分离得到的丝氨酸/苏氨酸蛋白磷酸酶基因(bsu-protein phosphatase)片段,采用Primer Premier5.0软件设计扩增两端的特异引物,并通过SMART-RACE技术分别扩增出其3’和5’末端序列,成功获得该基因全长cDNA序列(GenBank登录号JN255182),并命名为茶树CsBsul基因。所得序列全长3166bp,其开放阅读框编码888个氨基酸,蛋白分子量约为97358.3Da。该基因的氨基酸序列与葡萄、杨梅、蓖麻、马铃薯、番茄、拟南芥中的Bsul基因编码的氨基酸序列分别有88%、87%、86%、85%、85%、79%的同源性。茶树丝氨酸/苏氨酸蛋白磷酸酶基因的克隆为进一步了解茶树油菜素内酯(BRs)的信号转导奠定了基础。
     5.根据CsPDS3(Camellia sinensis phytoene desaturase3, CsPDS3) cDNA片段(GenBank登录号KC955235)设计引物,通过SMART-RACE技术分别扩增出其3’和5’末端序列,成功获得该基因全长cDNA序列(GenBank登录号KC915039),并将其命名为CsPDS3基因。所得序列全长2326bp,其开放阅读框编码582个氨基酸,蛋白分子量约为64954.9Da。该基因推测的氨基酸序列与葡萄柚、柿子、菊花、葡萄、拟南芥、杏、苦瓜、木瓜、本氏烟、南瓜的相似性分别为87%、86%、85%、84%、84%、84%、82%、82%、82%、81%。CsPDS3基因的全长克隆为进一步研究安吉白茶的白化机理奠定了基础。
     6.应用Gateway技术体系构建了茶树CsPDS3基因的RNAi载体,经PCR和DNA测序获得验证,并将其转入根癌农杆菌GV3101。
     7.探索了农杆菌渗入法在茶树基因功能研究中的可行性,并通过该方法初步研究了类胡萝卜素合成途径中CsPDS3基因的功能,并成功得到转基因茶树白化叶片。
Tea cultivar Anji Baicha is a special green-revertible albino mutant in early spring. The present thesis was consisted of two parts. In the first part, the albino tea plants were placed in artificial climate incubators at15℃,19℃and23℃, respectively. The second leaf with significant feature was used for photosynthesis related pigments, chloroplast ultrastructures and gene expression. Besides, expression levels of genes involved in etioplast development in early stage, photosynthesis system, and key enzymes genes in carotenoid biosynthesis, in Anji Baicha leaf under different temperatures, which were detected by qRT-PCR. In the second part, the RNAi vector of CsPDS3, a key gene involved in carotenoid biosynthetic pathway, was constructed via Gateway cloning system, and it was transformed it to agrobacterium GV3101. The function of CsPDS3gene was characterized in vivio via agroinfiltration, which explored the feasibility of this method in the study of gene function in tea plant. The results of this thesis were listed as follows:
     1. In order to study the impact of temperature on photosynthesis related pigments and chloroplast ultrastructures, the second leaf with significant feature of Anji baicha under different temperatures was selected for further analysis by using common cultivar Fudingdabai as control. The results indicated that chlorphyll and β-carotene increase with temperature rise, and chlorplast abnormal in15℃and19℃.
     2. In the present study, the gene expression profiling of a green-revertible albino mutant Anji Baicha at different temperatures was analyzed by using cDNA-AFLP. A total of85differentially expressed genes were isolated. Bioinfomation analysis revealed that differentially expressed genes could be grouped into9functions covering material and energy metabolism, secondary metabolism, defence/disease, cell structure protein and cell cycle, protein metabolism, transcription factor, signal transduction, function unknown and no hits, respectively.
     3. Expression levels of genes involved in etioplast development in early stage, photosynthesis system, key enzymes genes in carotenoid biosynthesis, in Anji Baicha leaf under different temperatures, which were detected by qRT-PCR. The results demonstrated that genes involved in etioplast development in early stage and catechin biosynthesis related genes were high expression in19℃, while most genes involved in photosynthesis system and carotenoid biosynthesis were up-regulated expression with risen temperature.
     4. According to cDNA-AFLP analysis, TDF Bsul was obtaineed. The specific primers were designed by Primer Premier5.0. Based on the fragment, the full-length of serine/threonine-protein phosphatase, Bsul with3166bp (GenBank Accession No. JN255182) cDNA was obtained via rapid amplification of cDNA ends (RACE), named as CsBsul gene. It contained an open reading frame (ORF) encoding a protein of888amino acid residues with a predicable molecular mass of97358.3Da. The deduced amino acid sequence of CsBsul showed88%,87%,86%,85%,85%,79%homology with serine/threonine-protein phosphatase, Bsul genes from Vitis vinifera, Morella rubra, Ricinus communis, Solanum tuberosum, Solanum lycopersicum, Arabidopsis thaliana, respectively. The cloning and sequencing analysis of CsBsul gene established a solid foundation for further study on the signal transduction of brassinosteroids (BRs) in tea plant.
     5. According to partial cDNA of CsPDS3(Genebank Accession No. KC955235), we designed primers for amplification. Based on the fragment, the full-length of CsPDS3with2326bp (GenBank Accession No. KC915039) cDNA was obtained via rapid amplification of cDNA ends (RACE), named CsPDS3gene. It contained an open reading frame (ORF) encoding a polypeptide of582amino acid residues with a predicable molecular mass of64954.9Da. The deduced amino acid sequence showed87%,86%,85%,84%,84%,84%,82%,82%,82%,81%homology with CsPDS3from Citrus x paradise, Diospyros kaki, Chrysanthemum, Vitis vinifera, Arabidopsis thaliana, Prunus armeniaca, Momordica charantia, Carica papaya, Nicotiana benthamiana and Cucurbita moschata, respectively. Cloning full-length cDNA of CsPDS3gene establishes a good foundation for further study on the abino mechanism in Anji Baicha.
     6. The CsPDS3gene RNAi vector were constructed via Gateway cloning system, which RNAi vector were confirmed by PCR and DNA sequencing, and transformed it to agrobacterium G V3101.
     7. The function of CsPDS3, a gene involved in carotenoid biosynthethtic pathway, was analyzed via agroinfiltration, which exploring the feasibility of this method in the study of gene function in tea plant and obtaining transgenic albino tea leaf.
引文
[1]Mascia PN, Robertson DS. Studies of chloroplast development in four maize mutants defective in chlorophyll biosynthesis[J]. Planta.1978,143(2): 207-211.
    [2]Miles D. The role of high chlorophyll fluorescence photosynthesis mutants in the analysis of chloroplast thylakoid membrane assembly and function [maize][J]. Maydica.1994,39(1):35-45.
    [3]Dunford R, Walden RM. Plastid genome structure and plastid-related transcript levels in albino barley plants derived from anther culture[J]. Current genetics.1991,20(4):339-347.
    [4]Jacquard C, Nolin F, Hecart C et al. Microspore embryogenesis and programmed cell death in barley:effects of copper on albinism in recalcitrant cultivars[J]. Plant Cell Reports.2009,28(9):1329-1339.
    [5]侯典云.小麦返白系叶绿体基因组分析及叶绿体超微结构和差异表达蛋白质研究[D].杨凌:西北农林科技大学博士学位论文,2009.
    [6]苏小静,汪沛洪.小麦突变体返白系返白机理的研究Ⅰ:返白阶段叶绿体超微结构观察[J].西北农林科技大学学报(自然科学版).1990,18(2):73-79.
    [7]Fluhr R, Cseplo A. Induction and selection of chloroplast-coded mutations in Nicotiana[J]. Methods in Enzymology.1986,118:611-623.
    [8]McHale NA, Hanson KR, Zelitch I. A nuclear mutation in Nicotiana sylvestris causing a thiamine-reversible defect in synthesis of chloroplast pigments [J]. Plant physiology.1988,88(3):930-935.
    [9]Long D, Martin M, Sundberg E et al. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis:identification of an albino mutation induced by Ds insertion[J]. Proceedings of the National Academy of Sciences. 1993,90(21):10370-10374.
    [10]Sundberg E, Slagter JG, Fridborg I et al. ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria[J]. The Plant Cell Online.1997,9(5):717-730.
    [11]Li Q, Huang J, Liu S et al. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar[J]. Proteome Science.2011, 9(1):1-12.
    [12]Ma CL, Chen L, Wang XC et al. Differential expression analysis of different albescent stages of'Anji Baicha'(Camellia sinensis (L.) O. Kuntze) using cDNA microarray[J]. Scientia Horticulturae.2012,148(4):246-254.
    [13]Ebrahim MK, Vogg G, Osman MN et al. Photosynthetic performance and adaptation of sugarcane at suboptimal temperatures[J]. Journal of plant physiology.1998,153(5):587-592.
    [14]Allen DJ, Ort DR. Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends in plant science.2001,6(1):36-42.
    [15]Yang M-T, Chen S-L, Lin C-Y et al. Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings[J]. Planta.2005,221(3):374-385.
    [16]Bertamini M, Muthuchelian K, Rubinigg M et al. Low-night temperature increased the photoinhibition of photosynthesis in grapevine (Vitis vinifera L. cv. Riesling) leaves[J]. Environmental and experimental botany.2006,57(1): 25-31.
    [17]Baker N. Development of chloroplast photochemical functions[J]. Topics in photosynthesis.1984,5:208-252.
    [18]Feierabend J. Capacity for chlorophyll synthesis in heat-bleached 70S ribosome-deficient rye leaves[J]. Planta.1977,135(1):83-88.
    [19]Hodgins R, van Huystee R. Porphyrin metabolism in chill stressed maize (Zea mays L.)[J]. Journal of plant physiology.1986,125(3-4):325-336.
    [20]Marles M, Gruber MY, Scoles GJ et al. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus[J]. Phytochemistry.2003,62(5):663-672.
    [21]Jacquard C, Mazeyrat-Gourbeyre F, Devaux P et al. Microspore embryogenesis in barley:anther pre-treatment stimulates plant defence gene expression[J]. Planta.2009,229(2):393-402.
    [22]Guy CL. Cold accelimation and freezing stress tolerance:role of protein metabolism [J]. Annual review of plant biology.1990,41(1):187-223.
    [23]Granick S. Magnesium vinyl pheoporphyrin a5, another intermediate in the biological synthesis of chlorophyll[J]. Journal of Biological Chemistry.1950, 183(2):713-730.
    [24]McWilliam J, Naylor A. Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn[J]. Plant physiology.1967,42(12):1711-1715.
    [25]Powles SB. Photoinhibition of photosynthesis induced by visible light[J]. Annual Review of Plant Physiology.1984,35(1):15-44.
    [26]Aro E-M, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics.1993,1143(2):113-134.
    [27]Ogren E, Rosenqvist E. On the significance of photoinhibition of photosynthesis in the field and its generality among species[J]. Photosynthesis Research.1992,33(1):63-71.
    [28]李素芳,成浩,虞富莲,等.安吉白茶阶段性返白过程中氨基酸的变化[J].茶叶科学.1996,16(2):153-154.
    [29]杜颖颖.新梢白化茶树品种白化机理研究[D].杭州:浙江大学博士学位论文,2009.
    [30]成浩,李素芳,陈明,等.安吉白茶特异性状的生理生化本质[J].茶叶科学.1999,19(2):87-92.
    [31]李素芳,陈树尧,成浩.茶树阶段性返白现象的初步研究[J].中国茶叶.1994,16(2):26-27.
    [32]李素芳,陈树尧,成浩.茶树阶段性返白现象的研究--叶绿体超微结构的变化[J].茶叶科学.1995,15(1):23-26.
    [33]王新超,赵丽萍,姚明哲,等.安吉白茶正常与白化叶片基因表达差异的初步研究[J].茶叶科学.2008,28(1):50-55.
    [34]Bachem CWB, Hoeven RSVD, Bruijn SMD et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development[J]. The Plant Journal.1996,9(5):745-753.
    [35]Donson J, Fang Y, Espiritu-Santo G et al. Comprehensive gene expression analysis by transcript profiling[J]. Plant molecular biology.2002,48(1): 75-97.
    [36]陈亮,杨亚军,虞富莲.中国茶树种质资源研究的主要进展和展望[J].植物遗传资源学报.2004,5(4):389-392.
    [37]王丽鸳,成浩,周健.茶树DNA分子标记及基因工程研究进展[J].茶叶科学.2004,24(1):12-17.
    [38]马春雷,陈亮.茶树功能基因分离克隆研究进展[J].分子植物育种.2006,4(3(S)):16-22.
    [39]陆建良,林晨,骆颖颖,等.茶树重要功能基因克隆研究进展[J].茶叶科学.2007,27(2):95-103.
    [40]江昌俊.茶树分子生物学研究进展[J].茶业通报.2008,30(2):51-58.
    [41]成浩,陈明.茶叶片阶段性返白过程中色素蛋白复合体的变化[J].植物生理学通讯.2000,36(4):300-304.
    [42]Du Y, Chen H, Zhong W et al. Effect of temperature on accumulation of chlorophylls and leaf ultrastructure of low temperature induced albino tea plant[J]. African Journal of Biotechnology.2008,7(12):1881-1885.
    [43]Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant physiology.1949,24(1):1-15.
    [44]潘顺顺,陆建良,杨晓丽,等.茶饮料中微量色素物质的HPLC分析方法研究[J].茶叶科学.2007,27(4):343-348.
    [45]李娟,刘硕谦,刘仲华,等.一种改良的茶树高质量RNA快速提取方法[J].福建茶叶.2007,4:34-35.
    [46]吴扬,邓婷婷,李娟,等.茶树cDNA-AFLP银染技术体系的建立[J].中国农学通报.2011,27(19):94-99.
    [47]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta] [Delta] CT method[J]. Methods. 2001,25(4):402-408.
    [48]袁玲.安吉白茶阶段性返白过程中差异表达基因的分离及部分基因全长cDNA克隆[D].长沙:湖南农业大学硕士学位论文,2012.
    [49]吴扬.应用cDNA-AFLP技术分离安吉白茶阶段性返白过程的差异表达基因[D].长沙:湖南农业大学硕士学位论文,2010.
    [50]Callis J, Vierstra RD. Protein degradation in signaling[J]. Current opinion in plant biology.2000,3(5):381-386.
    [51]Hershko A, Ciechanover A, Varshavsky A. The ubiquitin system[J]. Nature medicine.2000,6(10):1073-1081.
    [52]Pickart CM. Mechanisms underlying ubiquitination[J]. Annual review of biochemistry.2001,70(1):503-533.
    [53]O'Mahony PJ, Oliver MJ. The involvement of ubiquitin in vegetative desiccation tolerance[J]. Plant molecular biology.1999,41(5):657-667.
    [54]Sgourakis NG, Patel MM, Garcia AE et al. Conformational dynamics and structural plasticity play critical roles in the ubiquitin recognition of a UIM domain[J]. Journal of molecular biology.2010,396(4):1128-1144.
    [55]邓婷婷,吴扬,李娟,等.茶树泛素活化酶基因全长cDNA克隆及序列分析[J].茶叶科学.2012,32(6):500-508.
    [56]李娟.安吉白茶高氨基酸性状相关基因的全长cDNA克隆及功能的初步研究[D].长沙:湖南农业大学博士学位论文,2011.
    [57]李勤.安吉白茶新梢生育期间蛋白质组学及茶氨酸体外生物合成的研究[D].长沙:湖南农业大学博士学位论文,2011.
    [58]Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. In:Post-Transcriptional Control of Gene Expression in Plants:Springer; 1996:191-222.
    [59]Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology[J]. Annual review of physiology.1999,61(1):243-282.
    [60]Latijnhouwers M, Xu X-M, Moller SG. Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development[J]. Planta.2010, 232(3):567-578.
    [61]Hou D, Xu H, Du G et al. Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (triticum aestivum) FA85[J]. BMB Reports. 2009,42(7):450-455.
    [62]熊立瑰.安吉白茶阶段性返白期间酚类物质代谢关键酶基因表达的动态变化研究[D].长沙:湖南农业大学硕士学位论文,2012.
    [63]孙钦秒,冷静.高等植物光系统Ⅱ:捕光色素蛋白复合体结构与功能研究的新进展[J].植物学通报.2000,17(4):289-301.
    [64]Pfundel E, Bilger W. Regulation and possible function of the violaxanthin cycle[J]. Photosynthesis Research.1994,42(2):89-109.
    [65]Campisi L, Fambrini M, Michelotti V et al. Phytoene accumulation in sunflower decreases the transcript levels of the phytoene synthase gene[J]. Plant Growth Regulation.2006,48(1):79-87.
    [66]Niyogi KK, Grossman AR, Bjorkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion[J]. The Plant Cell Online.1998,10(7):1121-1134.
    [67]Premkumar R, Ponmurugan P, Manian S. Growth and photosynthetic and biochemical responses of tea cultivars to blister blight infection[J]. Photosynthetica.2008,46(1):135-138.
    [68]Mariya J, Sasikumar R, Balasubramanian M et al. Influence of light on catechin biosynthesis in tea[J]. Tea.2003,24:80-86.
    [69]Liu Y, Gao L, Xia T el al. Investigation of the Site-Specific Accumulation of Catechins in the Tea Plant (Camellia sinensis (L.) O. Kuntze) via Vanillin-HCI Staining[J]. Journal of agricultural and food chemistry.2009,57(21): 10371-10376.
    [70]刘亚军.茶树酯型儿茶素合成途径及酚类物质积累特异性研究[D].合肥:安徽农业大学博士学位论文,2011.
    [71]Mori K, Sugaya S, Gemma H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition[J]. Scientia Horticulturae.2005,105(3):319-330.
    [72]Dela G, Or E, Ovadia R el al. Changes in anthocyanin concentration and composition in'Jaguar'rose flowers due to transient high-temperature conditions[J]. Plant Science.2003,164(3):333-340.
    [73]Iriti M, Faoro F. Chemical diversity and defence metabolism:how plants cope with pathogens and ozone pollution[J]. International journal of molecular sciences.2009,10(8):3371-3399.
    [74]Bartley GE, Scolnik PA. Plant carotenoids:pigments for photoprotection, visual attraction, and human health[J]. The Plant Cell.1995,7:1027-1038.
    [75]Demmig Adams B, Adams Ⅲ WW, Barker DH et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiologia Plantarum.1996,98(2): 253-264.
    [76]Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco[J]. Plant physiology.2002,128(2): 439-453.
    [77]Lindgren LO, Stalberg KG, Hoglund A-S. Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid[J]. Plant physiology.2003,132(2):779-785.
    [78]Bartley GE, Scolnik P. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase[J]. Journal of Biological Chemistry.1993,268(34):25718-25721.
    [79]Chamovitz D, Sandmann G, Hirschberg J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis[J]. Journal of Biological Chemistry.1993,268(23):17348-17353.
    [80]Simkin AJ, Laboure A-M, Kuntz M et al. Comparison of carotenoid content, gene expression and enzyme levels in tomato (Lycopersicon esculentum) leaves[J]. ZEITSCHRIFT FUR NATURFORSCHUNG C.2003,58(5/6): 371-380.
    [81]Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J]. The Plant Cell Online.1990,2(4):279-289.
    [82]Cogoni C, Irelan J, Schumacher M et al. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation[J]. The EMBO journal.1996,15(12):3153-3163.
    [83]Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell.1995,81(4):611-620.
    [84]Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature.1998, 391(6669):806-811.
    [85]Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development[J]. Nature cell biology. 1999,2(2):70-75.
    [86]Tchurikov NA, Chistyakova LG, Zavilgelsky GB et al. Gene-specific silencing by expression of parallel complementary RNA in Escherichia coli[J]. Journal of Biological Chemistry.2000,275(34):26523-26529.
    [87]朱龙付,张献龙.RNAi及其在植物遗传改良中的应用[J].华中农业大学学报.2004,23(4):472-477.
    [88]Baulcombe D. RNA silencing in plants[J]. Nature.2004,431(7006):356-363.
    [89]Bernstein E, Caudy AA, Hammond SM et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature.2001, 409(6818):363-366.
    [90]Elbashir SM, Harborth J, Lendeckel W et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature.2001, 411(6836):494-498.
    [91]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs[J]. Genes & development.2001,15(2):188-200.
    [92]Holen T, Amarzguioui M, Wiiger MT et al. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor[J]. Nucleic acids research.2002,30(8):1757-1766.
    [93]Zamore PD, Tuschl T, Sharp PA et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell. 2000,101(1):25-34.
    [94]Zhang H, Kolb FA, Brondani V et al. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP[J]. The EMBO journal. 2002,21(21):5875-5885.
    [95]Jorgensen RA, Atkinson RG, Forster RL el al. An RNA-based information superhighway in plants[J]. Science.1998,279(5356):1486-1487.
    [96]Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1 [J]. Science.2003,301(5639):1545-1547.
    [97]Travella S, Klimm TE, Keller B. RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat[J]. Plant physiology.2006,142(1):6-20.
    [98]Worby C A, Simonson-Leff N, Dixon JE. RNA interference of gene expression (RNAi) in cultured Drosophila cells[J]. Science Signaling.2001,95:1-8.
    [99]Xia H, Mao Q, Paulson HL et al. siRNA-mediated gene silencing in vitro and in vivo[J]. Nature biotechnology.2002,20(10):1006-1010.
    [100]Rossi L, Escudero J, Hohn B et al. Efficient and sensitive assay for T-DNA-dependent transient gene expression[J]. Plant Molecular Biology Reporter.1993,11(3):220-229.
    [101]Kapila J, De Rycke R, Van Montagu M et al. An Agrobacterium-mediated transient gene expression system for intact leaves[J]. Plant Science.1997, 122(1):101-108.
    [102]Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves[J]. The Plant Journal.2000,22(6): 543-551.
    [103]Spolaore S, Trainotti L, Casadoro G. A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium[J]. Journal of Experimental Botany.2001,52(357):845-850.
    [104]Sohi HH, Jourabchi E, Khodabandeh M. Transient expression of human growth hormone in potato (Solanum tuberosum), tobacco (Nicotiana tobacum) and lettuce (Lactuca sativa) leaves by agroinfiltration[J]. Iranian Journal of Biotechnology (IJB).2005,3(2):109-113.
    [105]Choi JJ, Klosterman SJ, Hadwiger LA. A promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance [J]. Phytopathology.2004,94(6):651-660.
    [106]Santos-Rosa M, Poutaraud A, Merdinoglu D et al. Development of a transient expression system in grapevine via agro-infiltration[J]. Plant Cell Reports. 2008,27(6):1053-1063.
    [107]Hoffmann T, Kalinowski G, Schwab W. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration:a rapid assay for gene function analysis[J]. The Plant Journal.2006,48(5):818-826.
    [108]Fischer R, Vaquero - Martin C, Sack M et al. Towards molecular farming in the future:transient protein expression in plants[J]. Biotechnology and applied biochemistry.1999,30(2):113-116.
    [109]Johansen LK, Carrington JC. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system[J]. Plant physiology.2001,126(3):930-938.
    [110]Takeda A, Tsukuda M, Mizumoto H et al. A plant RNA virus suppresses RNA silencing through viral RNA replication [J]. The EMBO journal.2005,24(17): 3147-3157.
    [111]张凌娣,王朝辉,王献兵,等.两种植物病毒编码蛋白的基因沉默抑制子功能鉴定[J].科学通报.2005,50(3):219-224.
    [112]Niyogi KK. Photoprotection revisited:genetic and molecular approaches[J]. Annual Review of Plant Physiology and Plant Molecular Biology.1999,50: 333-359.
    [113]汪敏.RNAi介导的pds基因沉默及其对光合作用的影响[D].天津:天津大学博士学位论文,2011.
    [114]Moskalenko A, Karapetyan N. Structural role of carotenoids in photosynthetic membranes[J]. Zeitschrift fuer Naturforschung. Section C.1996,51(11): 763-771.
    [115]Cunningham Jr F, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants[J]. Annual review of plant biology.1998,49(1):557-583.
    [116]Linden H, Lucas MM, Felipe MR et al. Immunogold localization of phytoene desaturase in higher plant chloroplasts[J]. Physiologia Plantarum.1993,88(2): 229-236.
    [117]刘兆明,刘宗旨,白庆庆武,等.Agroinfiltration在植物分子生物学研究中的应用[J].生物工程学报.2002,18(4):411-414.
    [118]Cutter AD, Payseur BA, Salcedo T et al. Molecular correlates of genes exhibiting RNAi phenotypes in Caenorhabditis elegans[J]. Genome research. 2003,13(12):2651-2657.
    [119]Kerschen A, Napoli CA, Jorgensen RA et al. Effectiveness of RNA interference in transgenic plants[J]. FEBS letters.2004,566(1):223-228.
    [120]Wetzel CM, Rodermel SR. Regulation of phytoene desaturase expression is independent of leaf pigment content in Arabidopsis thaliana[J]. Plant molecular biology.1998,37(6):1045-1053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700