氧化亚铁硫杆菌生物浸出雄黄系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雄黄为四硫化四砷(As4S4)含量超过90%的天然砷化合物。在古代中国与印度医学中,雄黄通常被作为药物治疗多种疾病。近年来,体内外实验证实雄黄可有效治疗多种形式的癌症。药用雄黄的传统制备方法包括酸提、煅烧,膜分离,以及机械研磨,然而,药用雄黄水溶性低、胃肠道吸收差、毒性高,以及生物利用度低的缺点严重限制了它的临床应用。生物浸出技术是近年来发展起来的一项湿法冶金技术,我们将这一技术与药用雄黄制备交叉融合,利用天然嗜酸微生物对雄黄进行微生物浸出。最近的研究证实:氧化亚铁硫杆菌作用雄黄的浸出液在体内外实验中均显示很强的抗癌活性。相比传统制备方法,雄黄的生物浸出能显著增强雄黄的可溶性和生物利用度,并且该方法具有效率高,环境友好度高,低成本的特性。
     论文测定了亚铁离子与元素硫在单一和混合能源中生物浸出雄黄的效率。在所有设定的浸出条件下,A. ferrooxidans BY-3显著增强雄黄的溶解。而且,在只有亚铁离子存在的浸出体系中砷的浸出效率要高于其它浸出实验组。在不添加任何能源的实验组中有较高的砷浓度浓度的,这一浸出砷浓度水平高于培养基中只有硫的浸出体系,但是低于培养基中添加了亚铁离子与元素硫的浸出体系。线性和非线性模型拟合了实验数据,非线性模型显示生物浸出雄黄存在砷的溶出与移除的双效作用,而在线性模型中只存在缓慢的浸出,而没有明显砷的移除现象。
     在A. ferrooxidans BY-3对雄黄的生化改性研究中,通过SEM/EDS, XRD, Raman对生物浸出后的雄黄矿物表面特征,以及A. ferrooxidans BY-3粘附于雄黄表面的行为的分析,显示雄黄改性前后均未发现副雄黄的光谱,不存在雄黄的光化现象;同时,雄黄中所含有的少量As2O3在溶解于浸出体系之后,被菌株生物转化作用转化为低毒性的As(Ⅴ)。从而证实了生物浸出技术可有效解决传统雄黄炮制与贮存所面临的两大难题:氧化与光化作用对雄黄品质与药效的不利影响。
     在A. ferrooxidans BY-3生物浸出雄黄环境参数的优化研究中,通过实验数据和线性模型的分析,确定了雄黄生物浸出的最优条件为:pH1.5,35℃,20%接种量,亚铁浓度1.0g/L,矿浆密度1.5%w/v。
     在抗砷菌株A. ferrooxidans BY-3细胞表面化学研究中,TEM测定了A.ferrooxidans BY-3菌细胞表面存在吸附的颗粒物质,经XRD分析证实为Fe3+复合物[Fe3O4, KFe33+(SO4)2(OH)6,等]及含砷物质[KAsO3, Na2(H2As40g)],表明A. ferrooxidans BY-3对浸出体系中可溶性砷具有极强的吸附能力;FT-IR光谱显示A. ferrooxidans BY-3的表面含有多种的化学基团如-OH或-NH、-CH、-CN、蛋白的酰胺Ⅰ类-CONH-、蛋白的酰胺Ⅱ类-CONH-、-COOH、-CN、C-O、-CH。A. ferrooxidans BY-3细胞表面存在的这些化学基团在生物吸附中发挥重要作用。
     在系统生物学思想指导下,论文应用生物信息学方法设计并初步构建了A.ferrooxidans生物浸出数据整合系统(DISBAf),包括生物浸出基质数据库(DBS),生物浸出相关金属离子螯合蛋白数据库(MIRP), A.ferrooxidans生物信息数据库(Af-info),嗜酸菌菌种数据库(DAf),以及生物浸出动力学模型数据库(DDMB),为进一步实现A.ferrooxidans生物浸出雄黄体系的计算机仿真,建立了研究平台。
Realgar is a naturally occurring arsenic sulfide. It contains over 90% tetra-arsenic tetra-sulfide (As4S4). In ancient Chinese and Indian medicine, realgar was commonly applied as a drug to treat various ailments. In recent years, realgar has been confirmed to be clinically effective for treatment of several forms of cancer in vitro and in vivo. Traditional means of preparing realgar include acid extraction, calcination, membrane dialysis, and mechanical milling. However, disadvantages such as low solubility in water, inadequate absorption of gastrointestinal, high toxicity, and poor bioavailability have seriously limited clinical applications of realgar. Bioleaching, a long-standing technology in hydrometallurgy, has recently been applied to preparation of realgar using indigenous acidophilic microorganisms in the field of pharmaceuticals. Recent studies have confirmed bioleaching solution with stronger antitumor activities, both in vitro and in vivo, of realgar extracted using A. ferrooxidans. It compared to the traditional methods mentioned above, bioleaching of realgar produces extraordinary increases in solubility and bioavailability and is efficient, ecologically safe, low cost and characterized by easy storage for realgar preparation. The characteristics of the bioleaching of realgar by Acidithiobacillus ferrooxidans BY-3(A. ferrooxidans) were investigated in this work. We examined the effects of using ferrous iron and elemental sulfur as the sole and mixed energy sources on the bioleaching of realgar. Under all experimental conditions, A. ferrooxidans BY-3 significantly enhanced the dissolution of realgar. Moreover, arsenic was more efficiently leached using A. ferrooxidans BY-3 in the presence of ferrous iron than in other culture conditions. A high concentration of arsenic was observed in the absence of alternative energy sources. This concentration was higher than that in cultures with sulfur only and lower than that in cultures with ferrous iron and sulfur. Linear or nonlinear models best fit the experimental data; the nonlinear model exhibited the dual effects of dissolution and removal on the bioleaching of realgar, whereas the linear model only applied to situations of slow bioleaching rather than removal.
     The characteristics of biochemical modification of realgar using A. ferrooxidans were investigated. SEM/EDS, XRD, and Raman observations were performed to elucidate the surface morphology of powder realgar and its interactions with A. ferrooxidans BY-3. The results show pararealgar was not found in after and before bioleaching. It suggested that the light-induced alteration of realgar to pararealgar that does not exist. The bioleaching of realgar can decrease toxicity by A. ferrooxidans BY-3. Moreover, modified realgar are more soluble than crude realgar in the solution. Therefore, it has been proven that the bioleaching of realgar can effectively solve the problem of partial oxidation and light-induced degradation products in traditional methods of preparing realgar. The effects of a range of operational parameters, including temperature, pH, bacteria population, ferrous iron concentration, and pulp density, on the efficiency of the bioleaching process were investigated. Experimental results demonstrated that optimum conditions in bioleaching of realgar were as follows:pH,1.5; 35℃; inoculum (v/v),20%; ferrous iron concentration,1.0 g/L; pulp density (w/v),1.5%. Surface chemical studies of A. ferrooxidans with reference to arsenic tolerance were studied. TEM observations were performed to elucidate the surface A. ferrooxidans BY-3. The results show that the existence of particulate matter on the surface of the A. ferrooxidans BY-3. The X-ray diffraction (XRD) assay indicated that the particulate matter contains Fe3+ compound [Fe3O4, KFe33+(SO4)2(OH)6,.etc] and arsenic-containing substances [KAsO3, Na2(H2As4O8)]. Fourier transform infrared spectroscopy (FTIR) analysis revealed the existence of different chemical groups (-OH or-NH,-CH,-CN,-CONH-,-CONH-,-COOH,-CN, C-O,-CH) on the surface of A. ferrooxidans BY-3. These chemical groups have a vital role to play in uptake of metals and metalloids by A. ferrooxidans BY-3. Under the guideline of systems biology, we had been preliminary built data integration system for bioleaching of A. ferrooxidans (DISBAf), which contains a series of dataset, the database of bioleaching substrates (DBS), the database of bioleaching metallic ion-related proteins (MIRP), the database of A. ferrooxidans bioinformation (Af-info), the database of Acidithiobacillus spp. (DAf) and the database for dynamics's model of bioleaching (DDMB), respectively. DISBAf will be sever as a versatile database and analysis platform for bioleaching of realgar, and achievement simulation for computer simulation.
引文
Abhilash, Singh, S., Mehta, K.D., Kumar, V, Pandey, B.D., Pandey, V.M.2009. Dissolution of uranium from silicate-apatite ore by Acidithiobacillus ferrooxidans. Hydrometallurgy,95(1-2),70-75.
    Afkar, E., Lisak, J., Saltikov, C., Basu, P., Oremland, R.S., Stolz, J.F.2003. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS 10. FEMS Microbiol Lett,226(1),107-112.
    Ahmann, D., Roberts, A., Krumholz, L., Morel, F.1994. Microbe grows by reducing arsenic. Nature, 371(6500),750.
    Ahonen, L., Tuovinen, O.H.1989. Microbiological oxidation of ferrous iron at low temperatures. Appl Environ Microbiol,55(2),312.
    Allegretti, P., Furlong, J., Donati, E.2006. The role of higher polythionates in the reduction of chromium (VI) by Acidithiobacillus and Thiobacillus cultures. J Biotechnol,122(1),55-61.
    Anderson, G., Williams, J., Hille, R.1992. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem,267(33),23674.
    Anthony, J.W., A.Bideaux, R., W.Bladh, K., C.Nichols, M.2000. Handbook of Mineralogy, Volume IV, Arsenates, Phosphates, Vanadates. Mineral Data Publishing.
    Appia-Ayme, C., Quatrini, R., Denis, Y., Denizot, F., Silver, S., Roberto, F., Veloso, F., Valdes, J., Pablo Cardenas, J., Esparza, M., Orellana, O., Jedlicki, E., Bonnefoy, V., Holmes, D.S.2006. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans. Hydrometallurgy,83(1-4),273-280.
    Asta, M.P., Cama, J., Martinez, M., Gimenez, J.2009. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater,171(1-3),965-72.
    Ayache, J., Beaunier, L., Boumendil, J., Ehret, G., Laub, D.2010. Sample Preparation Handbook for Transmission Electron Microscopy:Methodology.1st Edition ed. Springer.
    Baillet, F., Magnin, J.-P., Cheruy, A., Ozil, P.1998. Chromium precipitation by the acidophilic bacterium Thiobacillus ferrooxidans. Biotechnol Lett,20(1),95-99.
    Balaz, P., Choi, W.S., Dutkova, E.2007. Mechanochemical modification of properties and reactivity of nanosized arsenic sulphide As4S4.JPhys Chem Solid,68(5-6),1178-1183.
    Balaz, P., Fabian, M., Pastorek, M., Cholujova, D., Sedlak, J.2009. Mechanochemical preparation and anticancer effect of realgar As4S4 nanoparticles. Mater Lett,63(17),1542-1544.
    Balaz, P., Sedlak, J.2010. Arsenic in cancer treatment:challenges for application of realgar nanoparticles (a minireview). Toxins,2(6),1568-1581.
    Barrie, D.J., Hallberg, B.K.2008. Carbon, iron and sulfur metabolism in acidophilic micro-organisms. in:Adv Microb Physiol, (Ed.) K.P. Robert, Vol.54, Academic Press, pp.201-255.
    Barron, J.L.C., Lueking, D.R.1990. Growth and maintenance of Thiobacillus ferrooxidans cells. Appl Environ Microbiol,56(9),2801.
    Batini, C., Lenzerini, M., Navathe, S.B.1986. A comparative analysis of methodologies for database schema integration. ACM Comput Surv,18(4),323-364.
    Bayat, O., Sever, E., Bayat, B., Arslan, V., Poole, C.2009. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Appl Biochem Biotechnol,152(1),117-26.
    Bentley, R., Chasteen, T.G. 2002. Microbial methylation of metalloids:arsenic, antimony, and bismuth. Microbiol Mol Biol Rev,66(2),250.
    Bobrowicz, P., Wysocki, R., Owsianik, G., Goffeau, A., U aszewski, S.1997. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast,13(9),819-828.
    Boon, M., Brasser, H., Hansford, G., Heijnen, J.1999a. Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Hydrometallurgy,53(1),57-72.
    Boon, M., Ras, C., Heijnen, J.1999b. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures. Appl Microbiol Biotechnol,51(6),813-819.
    Bosecker, K.1997. Bioleaching:metal solubilization by microorganisms. FEMS Microbiol Rev, 20(3/4),591-604.
    Brandl, H.2008. Microbial Leaching of Metals. Wiley-VCH Verlag GmbH.
    Breed, A., Dempers, C., Searby, G., Gardner, M., Rawlings, D., Hansford, G. 1999. The effect of temperature on the continuous ferrous iron oxidation kinetics of a predominantly Leptospirillum ferrooxidans culture. Biotechnol Bioeng,65(1),44-53.
    Cai, L., Wang, G. 2009. Advance on Studies of Arsenic-resistant Microorganisms and Molecular Mechanisms. Microbiology(08),1253-1259.
    Ceskova, P., M. Mandl, S. Helanova, Kasparovska., J.2002. Kinetic studies on elemental sulfur oxidation by Acidithiobacillus ferrooxidans:sulfur limitation and activity of free and adsorbed bacteria. Biotechnol Bioeng,78,24-30.
    Chen, N.N., Huang, S.L., Xiang, Y., Zhang, D.J., Guo, A.X., Chen, A.P.2007a. Effects of inactivated rabbit serum containing compound realgar and natural indigo tablet on cell line NB4. Chin J Integr Med,5(1),65-9.
    Chen, P., Li, H.2010. From general system theory to post genome era's system s biolog. China Journal of Bioinformation (04),299-301.
    Chen, P., Yan, L., Leng,F., Nan, W., Yue, X., Zheng, Y., Feng, N., Li, H.2011. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresour Technol,102(3),3260-3267.
    Chen, Q., Liu, X.1996. Discussion on processing technology of realgar. Chinese Traditional Patent Medicine(01),22-23.
    Chen, W.-x., Zhang, F., Yang, H.-c., Liu, S., Guo, X., Li, J.2007b. The effect of realgar on apoqtosis of transplanted ovarian SKOV3 carcinoma cells in nude mice. Tumor,176(10),787-790.
    Chinese Pharmacopoeia Committee.2005. Pharmacopoeia of the People's Republic of China, People's Press. Beijing, China, pp.236.
    Chinese Pharmacopoeia Committee.2010. Pharmacopoeia of the People's Republic of China, People's Press. Beijing, China, pp.316.
    Clark, A.1970. Alpha-arsenic sulfide, from Mina Alacran, Pampa Larga, Chile. Am Mineral,55(7-8), 1338-1344.
    Colmer, A.R., Hinkle, M.1947. The role of microorganisms in acid mine drainage. Science,106(2751), 253.
    Crundwell, F.1994. Mathematical modelling of batch and continuous bacterial leaching. Chem Eng J Biochem Eng J,54(3),207-220.
    Cruz, R., Lazaro, I., Rodriguez, J.M., Monroy, M., Gonzalez, I.1997. Surface characterization of arsenopyrite in acidic medium by triangular scan voltammetry on carbon paste electrodes. Hydrometallurgy,46(3),303-319.
    Daniel Kupka, Mark Dopson, Olli H. Tuovinen.2007. Sulfur Oxidation and Coupled Iron Reduction at Low Temperatures. Adv Mat Res,20-21,584-584.
    Daoud, J., Karamanev, D.2006. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner Eng,19(9),960-967.
    Das, A., Modak, J.M., Natarajan, K.A.1998. Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie Van Leeuwenhoek,73(3),215-22.
    Devasia, P., Natarajan, K., Sathyanarayana, D., Rao, G. 1993. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Appl Environ Microbiol,59(12),4051.
    Ding, X.2009. Caenorhabditis Elegans as a Model Organism for the Identification of the Antibacterial and Anti-cancer Activity, and Toxicity from Realgar Bioleaching Solution. in:School of Life Science, Lanzhou University. Lanzhou.
    Douglass, D.L., Shing, C., Wang, G. 1992. The light-induced alteration of realgar to pararealgar. Am Mineral,77,1266-1274.
    Du, W.2008. Bioleaching of Realgar, Bacteriostasis Function and Medical Efficacy of Realgar Microorganism Lixivium. in:School of Life Science, Lanzhou University. Lanzhou.
    Duquesne, K., Lieutaud, A., Ratouchniak, J., Muller, D., Lett, M.C., Bonnefoy, V.2008. Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.:from the strain isolation to the gene study. Environ Microbiol,10(1),228-237.
    Edwards, K., Bond, P., Banfield, J.2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals:a chemotactic response to sulphur minerals? Environ Microbiol,2(3), 324-332.
    Egal, M., Casiot, C., Morin, G., Parmentier, M., Bruneel,O., Lebrun, S., Elbaz-Poulichet, F.2009. Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As (Ⅲ)-rich acid mine water. Chem Geol,265(3-4),432-441.
    Espejo, R.T., Romero, P.1987. Growth of Thiobacillus ferrooxidans on Elemental Sulfur. Appl Environ Microbiol,53(8),1907-12.
    Ferguson, S.J., Ingledew, W.J.2008. Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH:Ⅰ. Acidithiobacillus ferrooxidans as a paradigm. Biochim Biophys Acta,1777(12),1471-9.
    Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L.2010. Effectiveness of Cupressus sempervirens cones as biosorbent for the removal of basic dyes from aqueous solutions in batch and dynamic modes. Bioresour Technol,101(24),9500-9507.
    Fowler, T.A., Crundwell, F.K.1999. Leaching of zinc sulfide by Thiobacillus ferrooxidans:bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol,65(12),5285-92.
    Franzmann, P.D., Haddad, C.M., Hawkes, R.B., Robertson, W.J., Plumb, J.J.2005. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of the Ratkowsky equation. Miner Eng,18(13-14),1304-1314.
    Gehrke, T., Hallmann, R., Kinzler, K., Sand, W.2001. The EPS of Acidithiobacillus ferrooxidans—a model for structure-function relationships of attached bacteria and their physiology. Water Sci Technol,43(6),159-67.
    Giaveno, A., Donati, E.2001. Bioleaching of heazelwoodite by Thiobacillus spp. Process Biochem 36(10),955-962.
    Gimenez, J., Martinez, M., de Pablo, J., Rovira, M., Duro, L.2007. Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater,141(3),575-580.
    Gladysheva, T.B., Oden, K.L., Rosen, B.P.1994. Properties of the arsenate reductase of plasmid R773. Biochemistry,33(23),7288-7293.
    Gomez, J., Caro, I., Cantero, D.1996. Kinetic equation for growth of Thiobacillus ferrooxidans in submerged culture over aqueous ferrous sulphate solutions. J Biotechnol,48(1-2),147-152.
    Gomez, J.M., Cantero, D.2003. Kinetic study of biological ferrous sulphate oxidation by iron-oxidising bacteria in continuous stirred tank and packed bed bioreactors. Process Biochem, 38(6),867-875.
    Gonzalez, R., Gentina, J.C., Acevedo, F.1999. Attachment behaviour of Thiobacillus ferrooxidans cells to refractory gold concentrate particles. Biotechnol Lett,21(8),715-718.
    Green, H.H.1918. Isolation and Description of a Bacterium causing Oxidation of Arsenite to Arsenate in Cattle Dipping Baths. Union of South Africa, of Agriculture,5th and 6th Repts. of the Director of Veterinary Research.,593-610.
    Harvey, P., Crundwell, F.1997. Growth of Thiobacillus ferrooxidans:a novel experimental design for batch growth and bacterial leaching studies. Appl Environ Microbiol,63(7),2586.
    He, Y., Huang, Q.-h., Liu, Y., Chen, L.2009. Recent development of sample pretreatment techniques and speciation analysis for arsenic. Water Purification Technology,28(03),10-13+44.
    Hong, B.2006. Influence of Microbes on Biogeochemistry of Arsenic -Mechanism of Arsenic Mobilization in Groundwater. Advances in science 21(1).
    Hu, X.M., Liu, F., Ma, R.2010. Application and assessment of Chinese arsenic drugs in treating malignant hematopathy in China. Chin J Integr Med,16(4),368-77.
    Hubbard, G.U.1981. Computer-assisted data base design. Van Nostrand Reinhold.
    Jaisankar, S., Modak, J.M.2009. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans:Experiments and modeling. Biotechnol Prog,25(5),1328-42.
    Ji, G., Silver, S.1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA,89(20),9474.
    Ji, S.f., Zhang, Y., Xie, F.q., Cai, L.z., Liu, M.2000. Comparative study on pharmacodynamics of realgar of unprocessed and yoghourt prepared Academic periodical of Changchun college of traditional Chinese medicine(01),44-45.
    Jiang, H., Ding, J.H., Zhang, Y.H., Shi, S.T., Gao, S., Gong, H.Z., Sun, G.F.2009. Study on water processing conditions of Realgar. Zhong Yao Cai,32(1),26-8.
    Jiang, S.2004. Construction and Preliminary Analyses of the Database of Copper-chelating Proteins, Shandong normal university. Shandong.
    Johnson, D.1995. Selective solid media for isolating and enumerating acidophilic bacteria. JMicrobiol Meth,23(2),205-218.
    Jones, C.A., Kelly, D.1983. Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition. J Chem Tech Biotechnol. Biotechnol,33(4),241-261.
    Jones, R.A., Koval, S.F., Nesbitt, H.W.2003. Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochim Cosmochim Acta,67(5),955-965.
    Kashyap, D.R., Botero, L.M., Franck, W.L., Hassett, D.J., McDermott, T.R.2006. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol,188(3),1081.
    Kawabe, Y., Inoue, C., Suto, K., Chida, T.2003. Inhibitory effect of high concentrations of ferric ions on the activity of Acidithiobacillus ferrooxidans. JBiosci Bioeng,96(4),375-379.
    Koch, I., Sylvester, S., Lai, V.W.M., Owen, A., Reimer, K.J., Cullen, W.R.2007. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills. Toxicol Appl Pharmacol,222(3),357-364.
    Kulp, T., Hoeft, S., Asao, M., Madigan, M., Hollibaugh, J., Fisher, J., Stolz, J., Culbertson, C., Miller, L., Oremland, R.2008. Arsenic (Ⅲ) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science,321(5891),967.
    Kupka, D., Liljeqvist, M., Nurmi, P., Puhakka, J.A., Tuovinen, O.H., Dopson, M.2009. Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3. Res Microbiol,160(10),767-74.
    Kyono, A.2010. Growth and Raman spectroscopic characterization of As4S4 (II) single crystals. J Cryst Growth,312(23),3490-3492.
    Lazaro I, Cruz R, Gonzalez I, M, M.1997a. Electrochemical oxidation of arsenopyrite in acidic media. Int J Miner Process,50(1-2),63-75.
    Lazaro I, Gonzalez I, Cruz R, MG, M.1997b. Electrochemical study of orpiment (As2S3) and realgar (As2S2) in acidic medium. JElectrochem Soc,144,4128-4132.
    Leathen, W.W., McIntyre, L.D., Braley, S.1951. A medium for the study of the bacterial oxidation of ferrous iron. Science,114(2959),280.
    Leduc, L.G., Ferroni, G.D.1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Rev,14(2),103-119.
    Leng, F.2009. Comparative study on resistance of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans to inorganic arsenic compounds. in:School of Life Science, Vol. Ph.D, Lanzhou University. lanzhou, pp.125.
    Leng, F., Li, K., Zhang, X., Li, Y., Zhu, Y, Lu, J., Li, H.2009. Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy,98(3-4),235-240.
    Lengke, M.F., Tempel, R.N.2003. Natural realgar and amorphous AsS oxidation kinetics. Geochim Cosmochim Acta 67(5),859-871.
    Levican, G., Ugalde, J.A., Ehrenfeld, N., Maass, A., Parada, P.2008. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria:predictions and validations. BMC Genomics,9,581.
    Li, C.-y., Wei, X.-d., Wang, K., Wang, X., Liu, X.2008a. Mechanism of Water Grind Processing of Realgar. China Pharmacy, No.225(27),2151-2153.
    Li, H., Du, W.2008. Application of leachate of realgar with microorganism in preparation antibacterial and antivirus drug. China.
    Li, H., Zhang, X., Xie, Q., Wang, X.2008b. Application of leachate of realgar with microorganism in preparation antineoplastic drug.
    Li, H., Zhi, D., Zhang, J.2006. A druggery combination contained cinnabar and/or realgar.
    Lilova, K., Karamanev, D., Flemming, R.L., Karamaneva, T.2007. Biological oxidation of metallic copper by Acidithiobacillus ferrooxidans. Biotechnol Bioeng,97(2),308-16.
    Liu, J., Lu, Y., Wu, Q., Goyer, R.A., Waalkes, M.P.2008a. Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exp Ther,326(2),363-8.
    Liu, M., Branion, R., Duncan, D.1988. The effects of ferrous iron, dissolved oxygen, and inert solids concentrations on the growth of Thiobacillus ferrooxidans. Can J Chem Eng,66(3),445-451.
    Liu, M., Pu, D.m.2007. Research advance of realgar. Lishizhen Medicine and Materia Medica Research,139(04),982-984.
    Liu, R., Pu, D., Liu, Y., Cheng, Y., Yin, L., Li, T., Zhao, L.2008b. Induction of SiHa Cells Apoptosis by Nanometer Realgar Suspension and Its Mechanism. Journal of Huazhong University of Science and Technology (Medical Sciences)(03),317-321.
    Lizama, H.M., Suzuki, I.1989. Synergistic competitive inhibition of ferrous iron oxidation by Thiobacillus ferrooxidans by increasing concentrations of ferric iron and cells. Appl Environ Microbiol,55(10),2588.
    Lloyd, J., Oremland, R.2006. Microbial transformations of arsenic in the environment:from soda lakes to aquifers. Elements,2(2),85.
    Long, H., Dixon, D.G.2007. Pressure oxidation kinetics of orpiment (As2S3) in sulfuric acid. Hydrometallurgy,85(2-4),95-102.
    Marquez, M., Gaspar, J., Bessler, K.E., Magela, G 2006. Process mineralogy of bacterial oxidized gold ore in Sao Bento Mine (Brasil). Hydrometallurgy,83(1-4),114-123.
    Makita, M., Esperon, M., Pereyra, B., Lopez, A., Orrantia, E.2004. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. BMC Biotechnol,4,22.
    Malasarn, D., Keeffe, J.R., Newman, D.K.2008. Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol,190(1),135.
    Malhotra, S., Tankhiwale, A., Rajvaidya, A., Pandey, R.2002. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Bioresour Technol,85(3),225-234.
    Mandal, B.K., Suzuki, K.T.2002. Arsenic round the world:a review. Talanta,58(1),201-235.
    Mao, J., Sun, X., Liu, J., Zhang, Q., Liu, P., Huang, Q., Li, K., Chen, Q., Chen, Z., Chen, S.2010. As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc Natl Acad Sci USA,107(50),21683.
    Mason, L., Rice, N.2002. The adaptation of Thiobacillus ferrooxidans for the treatment of nickel-iron sulphide concentrates. Miner Eng,15(11),795-808.
    Mattuschka, B., Straube, G., Trevors, J.1994. Silver, copper, lead and zinc accumulation by Pseudomonas stutzeri AG259 and Streptomyces albus:electron microscopy and energy dispersive X-ray studies. Biometals,7(2),201-208.
    Merroun, M.L., Geipel, G., Nicolai, R., Heise, K.H., Selenska-Pobell, S.2003. Complexation of uranium (VI) by three eco-types of Acidithiobacillus ferrooxidans studied using time-resolved laser-induced fluorescence spectroscopy and infrared spectroscopy. Biometals,16(2),331-9.
    Meruane, G., Salhe, C., Wiertz, J., Vargas, T.2002. Novel electrochemical—enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnol Bioeng,80(3),280-8.
    Meruane, G., Vargas, T.2003. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5-7.0. Hydrometallurgy,71(1-2),149-158.
    Mesa, M., Macias, M., Cantero, D.2002. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans. Biotechnol Prog,18(4),679-685.
    Mishra, D., Kim, D.J., Ralph, D.E., Ahn, J.G., Rhee, Y.H.2008. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag,28(2),333-8.
    Modak, J.M., Natarajan, K.1995. Development of special strains of Thiobacillus ferrooxidans for enhanced bioleaching of sulphide minerals. Biohydrometallurgical Processing. Santiago: University of Chile,33¨C46.
    Mohan, D., Pittman, J.C.U.2007. Arsenic removal from water/wastewater using adsorbents-A critical review. J Hazard Mater,142(1-2),1-53.
    Molchanov, S., Gendel, Y., Ioslvich, I., Lahav, O.2007. Improved experimental and computational methodology for determining the kinetic equation and the extant kinetic constants of Fe (II) oxidation by Acidithiobacillus ferrooxidans. Appl Environ Microbiol,73(6),1742.
    Muller, D., M¨|digue, C., Koechler, S., Barbe, V., Barakat, M., Talla, E., Bonnefoy, V., Krin, E., Ars¨¨ne-Ploetze, F., Carapito, C.2007. A tale of two oxidation states:bacterial colonization of arsenic-rich environments. PLoS Genet,3(4), e53.
    Nemati, M., Harrison, S.T.L., Hansford, G.S., Webb, C.1998. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects. Biochem Eng J,1(3),171-190.
    Nemati, M., Webb, C.1998. Inhibition effect of ferric iron on the kinetics of ferrous iron. Biotechnol Lett,20(9),873-877.
    Nemati, M., Webb, C.1997. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnol Bioeng,53(5),478-486.
    Ni, Y.Q., Yang, Y., Bao, J.T., He, K.Y., Li, H.Y.2007. Inter- and intraspecific genomic variability of the 16S-23S intergenic spacer regions (ISR) in representatives of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. FEMS Microbiol Lett,270(1),58-66.
    Nikolov, L., Karamanev, D.1992. Kinetics of the ferrous iron oxidation by resuspended cells of Thiobacillus ferrooxidans. Biotechnol Prog,8(3),252-255.
    Nyavor, K., Egiebor, N.O., Fedorak, P.M.1996. The effect of ferric ion on the rate of ferrous oxidation by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol,45(5),688-691.
    O'Day, P.2006. Chemistry and mineralogy of arsenic. Elements,2(2),77.
    Okereke, A., Stevens Jr, S.E.1991. Kinetics of iron oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol,57(4),1052.
    Oremland, R., Stolz, J.2003. The ecology of arsenic. Science,300(5621),939.
    Oremland, R.S., Stolz, J.F.2005. Arsenic, microbes and contaminated aquifers. Trends Microbiol,13(2), 45-49.
    Oremland, R.S., Stolz, J.F., Hollibaugh, J.T.2004. The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol Ecol,48(1),15-27.
    Ozturk, S., Aslim, B., Suludere, Z.2010. Cadmium (Ⅱ) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour Technol,101(24),9742-9748.
    Paez-Espino, D., Tamames, J., de Lorenzo, V., Canovas, D.2009. Microbial responses to environmental arsenic. Biometals,22(1),117-130.
    Park, H.S., Lee, J.U., Ahn, J.W.2007. The effects of Acidithiobacillus ferrooxidans on the leaching of cobalt and strontium adsorbed onto soil particles. Environ Geochem Health,29(4),303-12.
    Peng, X., Jin, Y., Liang, Y, Lu, H.2006. Computer simulation of biological dynamic networks Computers and Applied Chemistry(04),317-323.
    Plumb, J.J., Muddle, R., Franzmann, P.D.2008. Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms. Miner Eng,21(1),76-82.
    Polya, D., Charlet, L.2009. Environmental science:Rising arsenic risk? Nat Geosci,2(6),383-384.
    Pradhan, D., Mishra, D., Kim, D.J., Ahn, J.G., Chaudhury, G.R., Lee, S.W.2010. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles. J Hazard Mater,175(1-3),267-73.
    Qin, J., Rosen, B.P., Zhang, Y., Wang, G., Franke, S., Rensing, C.2006. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A,103(7),2075.
    Quatrini, R., Appia-Ayme, C., Denis, Y, Jedlicki, E., Holmes, D.S., Bonnefoy, V.2009. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics,10,394.
    Quatrini, R., Jedlicki, E., Holmes, D.S.2005. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol,32(11-12), 606-14.
    Rahman, A., Vahter, M., Ekstr m, E., Persson, L.2010. Arsenic Exposure in Pregnancy Increases the Risk of Lower Respiratory Tract Infection and Diarrhea During Infancy in Bangladesh. Environmental health perspectives.
    Ren, W.X., Li, P.J., Zheng, L., Fan, S.X., Verhozina, V.A.2009. Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans. J Hazard Mater,162(1),17-22.
    Renock, D., Becker, U.2010. A first principles study of the oxidation energetics and kinetics of realgar. Geochim Cosmochim Acta,74(15),4266-4284.
    Rojas-Chapana, J.A., Bartels, C.C., Pohlmann, L., Tributsch, H.1998. Co-operative leaching and chemotaxis of thiobacilli studied with spherical sulphur/sulphide substrates. Process Biochem, 33(3),239-248.
    Saltikov, C.W., Newman, D.K.2003. Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A,100(19),10983.
    Sampson, M., Phillips, C., Ball, A.2000. Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis. Miner Eng,13(6),643-656.
    Sand, W., Gehrke, T.2006. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(Ⅲ) ions and acidophilic bacteria. Res Microbiol,157(1), 49-56.
    Sand, W., Gehrke, T., Jozsa, P.-G., Schippers, A.2001. (Bio)chemistry of bacterial leaching--direct vs. indirect bioleaching. Hydrometallurgy,59(2-3),159-175.
    Sanhueza, A., Ferrer, I.J., Vargas, T., Amils, R., Sanchez, C.1999. Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy, 51(1),115-129.
    Santini, J.M., Sly, L.I., Schnagl, R.D., Macy, J.M.2000. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine:phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol,66(1),92.
    Sato, T., Kobayashi, Y.1998. The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. JBacteriol,180(7),1655.
    Shen, Z.-Y.2006. Application of systems biology and information medicine to integrated traditional Chinese and Western medicine. Chin J Integr Med(02),111-113.
    Shiers, D.W., Ralph, D.E., Watling, H.R.2010. A comparative study of substrate utilisation by Sulfobacillus species in mixed ferrous ion and tetrathionate growth medium. Hydrometallurgy, 104(3-4),363-369.
    Silverman, M.P., Lundgren, D.G. 1959. Studies on the chemoautotrophic iron bacterium Thiobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cellular yields. J Bacteriol,77(5),642-647.
    Stolz, J.F., Basu, P., R.S., O.2010. Microbial arsenic metabolism:new twists on an old poison. Microbe(5),1.
    Styriakova, I., Bhatti, T.M., Bigham, J.M., Styriak, I., Vuorinen, A., Tuovinen, O.H.2004. Weathering of phlogopite by Bacillus cereus and Acidithiobacillus ferrooxidans. Can J Microbiol,50(3), 213-9.
    Sugio, T., Domatsu, C., Tano, T., Imai, K.1984. Role of ferrous ions in synthetic cobaltous sulfide leaching of Thiobacillus ferrooxidans. Appl Environ Microbiol,48(3),461.
    Sugio, T., Komoda, T., Okazaki, Y., Takeda, Y, Nakamura, S., Takeuchi, F.2010. Volatilization of metal mercury from Organomercurials by highly mercury-resistant Acidithiobacillus ferrooxidans MON-1. Biosci Biotechnol Biochem,74(5),1007-12.
    Sun, F., Chen, N.-n., Cheng, Y.-b.2008. Compound realgar and natural indigo tablets in treatment of acute promyelocytic leukemia:a summary of experience in 204 cases. Chin J Integr Med(06), 639-642.
    Suzuki, I., Lizama, H., Tackaberry, P.1989. Competitive inhibition of ferrous iron oxidation by thiobacillus ferrooxidans by increasing concentrations of cells. Appl Environ Microbiol,55(5), 1117.
    Swee Ngin, T., Jean, W.H.Y., Yan Fei, N.2010. Arsenic exposure from drinking water and mortality in Bangladesh. The Lancet,376(9753),1641-1642.
    Turk, T., Alp, x, brahim, Deveci, H.2010. Adsorption of As(V) from Water Using Nanomagnetite. J Environ Eng,136(4),399-404.
    Tie, B., Wang, C.1993. A preliminary study on processing method of realgar. Chinese Traditional Patent Medicine(07),19-21.
    Trentelman, K., Stodulski, L., Pavlosky, M.1996. Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal. Chem, 68(10),1755-1761.
    Tributsch, H.2001. Direct versus indirect bioleaching. Hydrometallurgy,59(2-3),177-185.
    Tse, W.P., Cheng, C.H., Che, C.T., Lin, Z.X.2008. Arsenic trioxide, arsenic pentoxide, and arsenic iodide inhibit human keratinocyte proliferation through the induction of apoptosis. J Pharmacol Exp Ther,326(2),388-94.
    Tuovinen, O., Kelly, D.1973. Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2-fixation and iron oxidation as measures of growth. Arch Microbiol,88(4),285.
    Underwood, A.1953. Simultaneous Titration of Fe and Cu with EDTA Spectrophotometric Endpoints. Anal. Chem,25,1910.
    Valdes, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R.,2nd, Eisen, J.A., Holmes, D.S. 2008. Acidithiobacillus ferrooxidans metabolism:from genome sequence to industrial applications. BMC Genomics,9,597.
    Valdes, J., Veloso, F., Jedlicki, E., Holmes, D.2003. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics,4(1), 51.
    Valli, M., Malmensten, B., Persson, I.1994. Interactions between sulphide minerals and alkylxanthates 9. A vibration spectroscopic study of the interaction between arsenopyrite, millerite, molybdenite, orpiment and realgar and ethylxanthate and decylxanthate ions in aqueous solution. Colloid Surface Physicochem EngAspect,83(3),219-225.
    Van Drie, J.H., Weininger, D., Martin, Y.C.1989. ALADDIN:An integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures. J Comput Aided Mol Des,3(3),225-251.
    Vanden Hoven, R.N., Santini, J.M.2004. Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14:the arsenite oxidase and its physiological electron acceptor. BBA-Bioenergetics,1656(2-3), 148-155.
    Vasken Aposhian, H., Zakharyan, R.A., Avram, M.D., Sampayo-Reyes, A., Wollenberg, M.L.2004. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol,198(3),327-335.
    Vaughan, D.J.2006. Arsenic. Elements,2(2),71.
    Vogel, A.1989. Vogel's textbook of quantities chemical analysis.5th ed. ed. London:Longman Group Ltd.
    Wang, G., Kennedy, S.P., Fasiludeen, S., Rensing, C., DasSarma, S.2004. Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol,186(10),3187.
    Wang, H.-b., Pang, Q., Fu, Z., Zhao, G.-y., Ding, F., Luan, L.-m., Guo, H., Xu, J.-j., Xu, S.-c.2010. Cellular apoptosis of C6 glioma induced by realgar in vitro. Journal of Shandong University (Health Sciences), v.48;No.209(01),21-24,29.
    Wang, J., Mu, L.1999. Recent advance in clinical research of arsenical. Capital Mdeicine(06),33-34.
    Wang, L., Zhou, G.B., Liu, P., Song, J.H., Liang, Y., Yan, X.J., Xu, F., Wang, B.S., Mao, J.H., Shen, Z.X., Chen, S.J., Chen, Z.2008. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA,105(12),4826-31.
    Wang, L.W., Shi, Y.L., Wang, N., Gou, B.D., Zhang, T.L., Wang, K.2009. Association of oxidative stress with realgar-induced differentiation in human leukemia HL-60 cells. Chemotherapy,55(6), 460-7.
    Wang, X., Gong, W.2005. Study on Application of Microbiology in Bioleaching. Journal of Wuhan University of Technology(03),56-58.
    Wang, X.B., Xi, R.G., Li, Z.L., Ren, R.M., Huang, S.L.2002. Preparation of Nanoparticle Realgar Powders. Pharmaceutical Journal of Chinese People's Liberation Army(03),129-134.
    Wiertz, J.V., Mateo, M., Escobar, B.2006. Mechanism of pyrite catalysis of As(III) oxidation in bioleaching solutions at 30℃ and 70℃. Hydrometallurgy,83(1-4),35-39.
    Wolfe-Simon, F., Blum, J.S., Kulp, T.R., Gordon, G.W., Hoeft, S.E., Pett-Ridge, J., Stolz, J.F., Webb, S.M., Weber, P.K., Davies, P.C.W., Anbar, A.D., Oremland, R.S.2011. A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus. Science.
    Wood, T.C., Salavagionne, O.E., Mukherjee, B., Wang, L., Klumpp, A.F., Thomae, B.A., Eckloff, B.W., Schaid, D.J., Wieben, E.D., Weinshilboum, R.M.2006. Human arsenic methyltransferase (AS3MT) pharmacogenetics. JBiol Chem,281(11),7364.
    Wu, A., Yin, S., Wang, H., Qin, W., Qiu, G.2009. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation. Bioresour Technol,100(6),1931-1936.
    Wu, H., Yang, Y., Jiang, S.J., Chen, L.L., Gao, H.X., Fu, Q.S., Li, F., Ma, B.G., Zhang, H.Y 2005. DCCP and DICP:construction and analyses of databases for copper-and iron-chelating proteins. Genomics Proteomics Bioinformatics,3(1),52-57.
    Wu, X., Y, J., QIU, G., Liu, X., W, W.2008. Isolation of Acidithiobacillus ferrooxidans strains and effect of anions on their ferrous ions oxidation capacities. The Chinese Journal of Nonferrous Metals,2(18),349-355.
    Xi, R.G., Huang, J., Li, D., Wang, X.B., Wu, L.J.2008. Roles of PI3-K/Akt pathways in nanoparticle realgar powders-induced apoptosis in U937 cells. Acta Pharmacol Sin,29(3),355-63.
    Xia, L., Yin, C., Dai, S., Qiu, G., Chen, X., Liu, J.2010. Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor. J Ind Microbiol Biotechnol,37(3),289-95.
    Xiaobo, W., Xi, R.-G., Shi, Y., Yao, W., Song, X.-N., Sui, M., Yang, X.-B.2008. Preparation Studies of Realgar Nano-particles. Pharmaceutical Journal of Chinese People's Liberation Army, v.24(06), 471-474.
    Xie, Q.J., Zhang, X., Wang, X., Bai, L., Li, H.Y.2009. The inhibitory effects of Realgar bioleaching solution on S180 ascites-tumor and its toxicity. Zhong Yao Cai,32(6),933-6.
    Xu, J.L., Xu, X.X., Zhou, X.Y., Zhang, P., Zhang, C.Z.2007. Microscopic raman imaging spectra of realgar and light-induced degradation products in realgar. Spectroscopy and Spectral Analysis, 27(3),577-80.
    Xu, Z., Huang, K.2009. Correlation to Metabolism and Toxicity of Arsenic. China Pharmaceuticals(12),19-21.
    Yamamura, S., Ike, M., Fujita, M.2003. Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. JBiosci Bioeng,96(5),454-460.
    Yan, L.2010. Magnetic and biosorptive properties of Acidithiobacillus ferrooxidans. in:School of Life Science, Vol. Ph.D, Lanzhou University. Lanzhou, pp.119.
    Yan, L., Yin, H., Zhang, S., Duan, J., Li, Y., Chen, P., Li, H.2010a. Organoarsenic resistance and bioremoval of Acidithiobacillus ferrooxidans. Bioresour Technol,101(16),6572-5.
    Yan, L., Yin, H., Zhang, S., Leng, F., Nan, W., Li, H.2010b. Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater,178(1-3), 209-17.
    Yang, X., Zhang, X., Fan, Y., Li, H.2008. The leaching of pentlandite by Acidithiobacillus ferrooxidans with a biological-chemical process. Biochem Eng J,42(2),166-171.
    Ye, H.-q.2005. Study on the antitumor mechanism of realgar nanoparticles, Vol. Ph.D, Huazhong University of Science and Technology, pp.89.
    Ye, H.Q., Gan, L., Yang, X.L., Xu, H.B.2005. Membrane toxicity accounts for apoptosis induced by realgar nanoparticles in promyelocytic leukemia HL-60 cells. Biol Trace Elem Res,103(2),117-32.
    Yuan, S., Zhang, G., Tian, S., Li, X., Li, M., Wang, H., Ding, P., Lu, Y 1988. Study on an Improved Method of Realgar Processing. China Journal of Chinese Materia Medica(08),17-21+62.
    Yuichi, T., Naoki, H., Yasumasa, K., Masami, T.2005. Effect of Jarosite on the Removal of Arsenic ions in Sulfuric Acid Solution. Shigen-to-Sozai,212,597-602.
    Zargar, K., Hoeft, S., Oremland, R., Saltikov, C.W.2010. Identification of a Novel Arsenite Oxidase Gene, arxA, in the Haloalkaliphilic, Arsenite-Oxidizing Bacterium Alkalilimnicola ehrlichii Strain MLHE-1. JBacteriol,192(14),3755-3762.
    Zhang, J.2007. Preparation of realgar bioleaching solution with bacteria and its activities in anti-tumor. in:School of Life Science, Vol. in:Ph.D. thesis, Lanzhou University. Lanzhou, pp. ch.5:63-65.
    Zhang, J., Zhang, X., Ni, Y., Yang, X., Li, H.2007. Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochem,42(9),1265-1271.
    Zhang, Q.-Y, Mao, J.-H., Liu, P., Huang, Q.-H., Lu, J., Xie, Y.-Y., Weng, L., Zhang, Y, Chen, Q., Chen, S.-J., Chen, Z.2009. A systems biology understanding of the synergistic effects of arsenic sulfide and Imatinib in BCR/ABL-associated leukemia. Proc Natl Acad Sci USA,106(9),3378-3383.
    Zhang, X.-W., Yan, X.-J., Zhou, Z.-R., Yang, F.-F., Wu, Z.-Y, Sun, H.-B., Liang, W.-X., Song, A.-X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q.-Y, Yang, H.-Y, Huang, Q.-H., Zhou, G.-B., Tong, J.-H., Zhang, Y., Wu, J.-H., Hu, H.-Y., de The, H., Chen, S.-J., Chen, Z.2010a. Arsenic Trioxide Controls the Fate of the PML-RARa Oncoprotein by Directly Binding PML. Science, 328(5975),240-243.
    Zhang, X.2009. Biological extraction of realgar and Its antitumor activities on hepatic cancer in vitro and in vivo, in:School of Life Science, Lanzhou University. Lanzhou, pp.52.
    Zhang, X., Xie, Q.J., Wang, X., Wang, B., Li, H.Y.2010b. Biological extraction of realgar by Acidithiobacillus ferrooxidans and its in vitro and in vivo antitumor activities. Pharm Biol,48(1), 40-7.
    Zhang, Y., Li, C., Tang, Y., Dong, H.1995. Research on the Avoiding Calcination of Realgar. Journal of Chinese Medicinal Materials(02),78-80.
    Zhang, Y.m., Ji, S.F., Cai, L.z., Xie, F.q., Liu, M.2000. Comparative study on toxicology of realgar of unprocessed and yoghourt prepared. Academic periodical of Changchun college of traditional Chinese medicine(01),46-47.
    Zhao, Q.H., Zhang, Y, Liu, Y, Wang, H.L., Shen, YY, Yang, W.J., Wen, L.P.2010. Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med Oncol,27(2),203-12.
    Zhong, M.2007. Advancesof studies on method processing of realgar to reduce toxicity. China Pharmacy,195(33),2633-2635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700