微生物侵蚀黄铁矿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物氧化黄铁矿作用是自然界中存在的一种极为普遍的微生物新陈代谢作用方式,黄铁矿自形成到被氧化的一系列生物地球化学过程可以有效反映沉积环境中氧化还原反应界面的波动。近年来关于微生物氧化黄铁矿的研究已经成为地球生物学研究领域的热点问题,然而绝大多数的研究工作多集中于铁氧化细菌氧化黄铁矿的实验室研究,对自然条件下的微生物氧化黄铁矿的过程及特点知之甚少。
     本文首次将微生物侵蚀黄铁矿的地质记录研究与微生物氧化黄铁矿的实验研究以及现代深海热液硫化物的微生物氧化研究相结合。通过对比不同氧化条件下黄铁矿表面所形成的坑痕结构以及次生矿物等的差异,揭示微生物氧化黄铁矿的作用过程、作用机制、控制因素等相关信息。这些认识有助于我们更加深刻的理解铁和硫元素的生物地球化学循环,同时也为我们研究早期微生物代谢作用的起源和演化提供一个全新的思路。
     论文的主要研究内容包括沉积物中的微生物氧化黄铁矿研究和微生物氧化黄铁矿实验研究。沉积物中的微生物氧化黄铁矿研究涉及古代沉积地层中的微生物氧化黄铁矿地质记录以及现代深海热液硫化物的微生物氧化研究两部分内容,其中前者主要包括样品的岩石学分析、黄铁矿晶体表面坑痕结构特征、次生矿物组成以及微生物群落化石等,后者主要包括硫化物成分分析、黄铜矿和黄铁矿晶体表面坑痕结构特征以及黄铁矿表面的微生物群落研究等内容。微生物氧化黄铁矿实验研究主要包括嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)和嗜酸性氧化硫硫杆菌(A.thiooxidans)氧化黄铁矿的作用机制、黄铁矿晶体表面坑痕结构特征、次生矿物、溶液pH值和Fe3+离子浓度的变化等。
     通过对上述内容的深入研究,取得如下认识:
     地层中的自形晶黄铁矿形成于埋藏作用过程,并且在成岩作用的最早期阶段受到微生物侵蚀作用的影响。微生物在侵蚀黄铁矿的过程中会在黄铁矿晶体表面形成一系列的特征性的坑痕结构,这些坑痕结构在形态和大小上都与微生物氧化黄铁矿实验所得到的结果相一致。
     现代深海热液硫化物的主要矿物成分为黄铁矿和黄铜矿,并且在这些金属硫化物晶体表面保存有大量的坑痕结构,其中黄铜矿晶体表面主要为多边形坑痕结构,黄铁矿晶体表面则以圆形-椭圆形坑痕结构为主。
     嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)在氧化黄铁矿的过程中采取接触间接式作用机制。随着微生物氧化作用的持续进行,溶液中的H+、Fe3+离子浓度明显升高,黄铁矿晶体表面出现大量的圆形-多边形(主要为六边形)坑痕结构,部分坑痕内部甚至保存有菌体结构,并且在坑痕周围有大量的次生矿物沉淀。嗜酸性氧化硫硫杆菌(Athiooxidans)对于嗜酸性氧化亚铁硫杆菌CA. ferrooxidans)氧化黄铁矿具有明显的促进作用。
     此外,论文章详细描述了样品中的微生物群落,笔者认为这些杆菌状微生物是矿化保存下来的铁氧化细菌。
Microbial oxidation of pyrite is one of the most common microbial metabolisms existing in the nature. A series of biogeochemical process from the formation to oxidation of pyrite reflects the fluctuation of the REDOX reaction interface. In recent years, the study of microbial oxidation of pyrite has become a hot issue in the field of geobiology. However, most of the researches are mainly focused on the laboratory studies; the study of microbial oxidation of pyrite in natural conditions is rare.
     In this paper, we combined the study of geological records of microbial dissolution of pyrite with the microbial oxidation of pyrite experiments in laboratory and the microbial oxidation of sulfide minerals in modern submarine hydrothermal sediments for the first tine. All of the details such as the erosion pitting patterns on the crystal surfaces, the secondary mineral deposits, the oxidation mechanism and process, the influencing factors were described, compared and discussed. This study will help us understand the biogeochemical iron and sulfur cycles impressively. Furthermore, it is also an important clue to trace the origin and evolution of microbial metabolism.
     The main research contents of this study includes the study of microbial oxidation of pyrite in sediments, which refers to the ancient sedimentary rocks and the modern submarine hydrothermal sediments, and the study of microbial oxidation of pyrite experiments. The study of the ancient sedimentary rocks is focused on the petrology analyses of the samples, the characteristic pitting patterns on the pyrite crystals, the second mineral deposits and the mineralized microbial community. While, the study of the modern submarine hydrothermal sediments includes the analysis of mineral composition of sulfide minerals, the characteristic pitting patterns on the chalcopyrite and pyrite crystals, and the mineralized microbial communities on the pyrite surfaces. The study of microbial oxidation of pyrite experiments refers to the pyrite oxidation mechanism by A. ferrooxidans and A. thiooxidans, the characteristic pitting patterns on the pyrite crystals, the second mineral deposits, the changes of pH and Fe3+concentration.
     The results are summarized as follows:
     The euhedral pyrite in the sediments were formed during the burial process, and eroded by microorganisms in the earliest stage of diagenesis. And a variety of pit structures with characteristic shapes and sizes were formed during microbial oxidation of pyrite, which are generally similar to those obtained from the laboratory studies on the oxidative dissolution of pyrite by iron-oxidizing bacteria.
     The major mineral phases of the modern submarine hydrothermal sediments are pyrite and chalcopyrite. The sulfide minerals were extensively oxidized with characteristic dissolution pits on the surfaces, mainly polygons pits on chalcopyrite surfaces and rounded-elliptic pits on pyrite surfaces.
     Experiment study indicates that A. ferrooxidans eroded pyrite with the indirect contact mechanism. The concentration of Fe3+and H+were both increased significantly during the oxidation process. Pyrite were extensively oxidized with characteristic pits, which were rounded and geometric (mainly hexagon) in morphologies. The bacteria and the secondary mineral deposits were also observed in or around the pits. It is also indicated that A. thiooxidans can reinforce the bioleaching ability of A. ferrooxidans.
     Furthermore, bacillus-sized and-shaped microfossils communities were described, which are very likely to be fossilized sheaths produced by iron-oxidizing bacteria during pyrite oxidative process in the samples.
引文
1. Andrews F.G. The selective adsorption of Thiobacilli to the dislocation sites on pyrite surfaces[J]. Biotechnology and Bioengineering,1988,31:378-381.
    2. Aoki A. Acid bacterial leaching of pyrite single crystals, in:Amils, R., Ballester, A. (Eds.), Elsevier Biohydrometallurgy and the environment toward the mining of the 21st Century, Process Metallurgy,9 (part 1). Amsterdam, Netherlands,1999, pp.119-125.
    3. Archer C., Vance D. Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulfate reduction[J]. Geology,2006,34:153-156.
    4. Asta M.P., Cama J., Soler J.M., Arvidson R.S., Luttge A. Interferometric study of pyrite surface reactivity in acidic conditions[J]. American Mineralogists,2008,93:508-519.
    5. Barton L.L. Sulfate-reducing bacteria[M]. New York:Plenum Press,1995.
    6. Bennett J.C., Tributsch H. Bacterial leaching patterns on pyrite surfaces[J]. Journal of Bacteriology,1978,134:310-317.
    7. Berner R.A. Sedimentary pyrite formation[J]. American Journal of Science,1970,268: 1-23.
    8. Blight K., Ralph D.E., Thurgate S. Pyrite surfaces after bio-leaching:a mechanism for bio-oxidation[J]. Hydrometallurgy,2000,58:227-237.
    9. Brierley C.L. Bacteria succession in bioheap leaching[J]. Hydrometallurgy,2001,59: 249-255.
    10. Bruun A.M., Finster K., Gunnlaugsson H., Nornberg P., Friedrich M.W. A comprehensive investigation on iron cycling in a freshwater seep including microscopy, cultivation and molecular community analysis[J]. Geomicrobiol. J.,2010,27:15-34.
    11. Busscher H.J., Weerkamp A.H. Specific and Non-specific Interactions in Bacterial Adhesion to Solid Substrata[J]. FEMS Microbiology Review,1987,46:165-173.
    12. Butler L.B., Rickard D. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide[J]. Geochimica et Cosmochimica Acta,2000,64: 2665-2672.
    13. Caldeira C.L., Ciminelli V.S.T., Dias A., Osseo-Asare K. Pyrite oxidation in alkaline solutions:nature of the product layer [J]. International Journal of Mineral Processing, 2003,72:373-386.
    14. Canfield D.E., Kristensen E., Thamdrup B. Aquatic geomicrobiology[M]. Amsterdam: Elsevier,2003.
    15. Carlile M.J., Dudeney A.W.L. A microbial mat composed of iron bacteria[J]. Microbiology,2000,146:2092-2093.
    16. Condon, D., Zhu M.Y., Samuel B., Wang W., Yang A.H., Jin Y.J. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science,2005,308:95-98.
    17. Crundwell F.K. The Kinetics of the chemiosmotic proton circuit of the iron-oxidizing bacterium Thiobacillus ferrooxidans[J]. Bioelectrochemistry and Bioenergatics,1997,43: 115-122.
    18. Crundwell F.K. How do bacteria interact with minerals?[J]. Hydrometallurgy,2003,71: 75-81.
    19. Daoud J., Karamanev D. Formation of jarosite during Fe2+oxidation by Acidithiobacillus ferrooxidans[J]. Mineral.,2006,8(19):960-967.
    20. de Donato P., Mustin C., Berthelin J., Marion P. An infrared investigation of pellicular phases observed on the pyrite by Scanning Electron Microscopy, during its bacterial oxidation[J]. C.R. Acad. Sci. Paris.,1991, Series Ⅱ,241-248.
    21. Duncan D.W., Landesman J., Walden C.C. Role of Thiobacillus ferrooxidans in the oxidation of sulfide minerals[J]. Can. J. Microbiol.,1967,1:397-403.
    22. Eberhard C, Wirsen C.O., Jannasch H.W. Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents[J]. Geomicrobiology Journal,1995,13:145-164.
    23. Edwards K.J., Bach W., McCollom T.M. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor[J]. Trends in Microbiology,2005, 13:449-456.
    24. Edwards K.J., Goebel B.M., Rodgers T.M., Schrenk M.O., Gihring T.M., Cardona M.M., Mcguire M.M., Hamers R.J., Pace N.R., Banfield J.F. Geomicrobiology of Pyrite (FeS2) Dissolution:Case Study at Iron Mountain, California[J]. Geomicrobiology Journal,1999, 16:155-179.
    25. Edwards K.J., Hu B., Hamers R.J., Banfield J.F. A new look at microbial leaching patterns on sulfide minerals[J]. FEMS Microbiology Ecology,2001,34:197-206.
    26. Edward K.J., McCollom T.M., Konishi H., Buseck P. Seafloor bioalteration of sulfide minerals-results from in situ incubation studies[J]. Geochimica et Cosmochimica Acta, 2003,67:2843-2856.
    27. Edwards K.J., Rogers D.R., Wirsen C.O., McCollom T.M. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-proteobacteria from the deep sea[J]. Appl. Environ. Microbiol.,2003,69:2906-2913.
    28. Edwards K.J., Schrenk M.O., Hamers R., Banfield J.F. Microbial oxidation of yyrite: Experiments using microorganisms from an extreme acidic environment[J], American Mineralogist,1998,83:1444-1453.
    29. Emerson D., Fleming E.J., McBeth J.M. Iron-oxidizing bavteria:An environmental and genomic perspective[J]. Annu. Rev. Microbial.,2010,64:561-583.
    30. Emerson D., Moyer C.L. Isolation and characterization of novel iron oxidizing bacteria that grow at circumneutral pH[J]. Applied and Environment Microbiology,1997,63: 4784-4792.
    31. Emerson D., Moyer C.L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J]. Applied and Environment Microbiology,2002,68:3085-3093.
    32. Emerson D, Revsbech N.P. Investigation of an ironoxidizing microbial mat community located near Aarhus, Denmark:Field studies[J]. Applied and Environment Microbiology, 1994,60:4022-4031.
    33. Emerson D,Weiss J.V., Megonigal J.P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants[J]. Applied and Environment Microbiology,1999,65:2758-2761.
    34. Fernandez M.G., Mustin C., De Donato P., Barres O., Marion P., Berthelin J. Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans[J]. Biotechnol. Bioeng.,1995,46:13-21.
    35. Fowler T.A., Crundwel F.K. Leaching experiments of zinc sulfide by Thiobacillus ferrooxidans:Experiments with a controlled redox potential indicate no direct bacterial mechanism[J]. Appl. Environ. Microbiol.,1998,64,3570-3575.
    36. Fowler T.A., Holmes P.R., Crundwell F.K. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans[J]. Appl Environ Microbiol.,1999,65:2987-2993.
    37. Fowler T.A., Holmes P.R., Crundwell F.K. On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans[J]. Hydrometallurgy, 2001,59:257-270.
    38. Frankel R.B. Bazylinski D.A. Biologically induced mineralization by bacteria[J]. Reviews in Mineralogy & Geochemistry,2003,54:95-114.
    39. Fry B., Cox J., Gest H., et al. Discrimination between δ34S and 32S during bacterial metabolism of inorganic sulfur compounds[J]. J. Bacteriol.,1986,165:328-330.
    40. Gleisner M., Herbert Jr. R.B., Frogner Kockum P.C. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J]. Chemical Geology,2006, 225:16-29.
    41. Gomez J.M., Cantero D. Modelling of ferrous sulpHate oxidation by Thiobacillus ferrooxidans in discontinuous culture:influence of temperature, pH, and agitation rate[J]. Fermentation and Bioenginering,1998,86(1):79-83.
    42. Grishin S., Tuovinen O. Fast kinetics of Fe2+ oxidation in packed-bed reactors[J]. Appl. Environ. Microbiol.,1988,54(30):92-100.
    43. Groudev S. Mechanism of bacterial oxidation of pyrite[J], Microbiology,1979,16:75-87.
    44. Hanert H.H. Bacterial and chemical iron oxide deposition in a shallow bay on Palaea Kameni, Santorini, Greece:microscopy, electron probe microanalysis, and photometry of in situ experiments [J]. Geomicrobiol. J.,2002,19:317-342.
    45. Hannington M., Jamieson J., Monecke T., Petersen S., Beaulieu S. The abundance of seafloor massive sulfide deposits[J]. Geology,2011,35:1155-1158.
    46. Hiltunen P., Vuorinen A., Rehtijarvi P., Tuovinen O.H. Bacterial pyrite oxidation-release of iron and scanning electron microscopic observations[J]. Hydrometallurgy,1981,7: 147-157.
    47. Holmes P.R., Fowler T.A., Crundwell F.K. The Mechanism of Bacterial Action in the Leaching of Pyrite by Thiobacillus ferrooxidans. An Electrochemical Study[J]. Journal of The Electrochemical Society,1999,146:2906-2912.
    48. Jannasch H.W. The chemosynthetic support of life and microbial diversity at deep-sea hydrothermal vents[J]. Proceedings of the Royal Society of London Series B,1985,225: 277-297.
    49. Karl D.M. Ecology of free-living hydrothermal communities. In:Karl D.M. (Eds.), The Microbiology of Deep-sea Hydrothermal Vents. Boca Raton:CRC Press,1995, pp 35-124.
    50. Keller L., Murr L.E. Acid-bacterial and ferric sulfate leaching of pyrite single crystals[J]. Biotechnol. Bioeng.,1982,24:83-96.
    51. Kim B.H., Gadd G.M. Bacterial physiology and metabolism[M]. Cambridge:Cambridge University Press,2008.
    52. Klauber C. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution[J]. International Journal of Mineral Processing,2008,86:1-17.
    53. Konhauser, K.O. Introduction to geomicrobiology. Oxford:Blackwell,2007.
    54. Larsson L., Olsson G., Holst O., Karlsson H.T. Oxidation of pyrite by Acidianus brierleyi: Importance of close contact between the pyrite and the microorganisms [J]. Biotechnol. Lett.,1993,15:99-104.
    55. Lefticariu L, Pratt L.A., LaVerne J.A., Schimmelmann A. Anoxic pyrite oxidation by water radiolysis products-a potential source of biosustaining energy[J]. Earth and Planetary Science Letter,2010,292:57-67.
    56. Liu H., Gu G.H., Xu Y.B. Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy,2011,108:143-148.
    57. Liu J.S., Li B.M., Zhong D.Y., Xia L.X., Qiu G.Z. Preparation of jarosite by Acidithiobacillus ferrooxidans oxidation[J]. Journal of Central South University of Technology,2007,14(5):623-628
    58. Liu J.Y., Xiu X.X., Cai P. Study of formation of jarosite mediated by thiobacillus ferrooxidans in 9K medium[J]. Procedia Earth and Planetary Science,2009,1:706-712.
    59. Liu R., Wolfe A.L., Dzombak D.A., Horwitz C.P., Stewart B.W. Electrochemical study of hydrothermal and sedimentary pyrite dissolution[J]. Applied Geochemistry,2008,23, 2724-2734.
    60. Lu J.J., Lu X.C., Wang R.C., Li J., Zhu C.J., Gao J.F. Pyrite surface after Thiobacillus ferrooxidans leaching at 30°C[J]. Acta Geologica Sinica,2006,80,451-455.
    61. Madigan MT., Martinko J.M., Parker J. Brock biology of microorganisms[M].10th Edition. Place:Prentice Hall,2003.
    62. Meruane G, Vargas T. Bactreial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5-7.0[J]. Hydrometallurgy,2003,3(71):149-158.
    63. Miota J., Benzerara K., Morin G, Kappler A., Bernard S., Obst M., Ferard C., Skouri-Panet F., Guigner J.M., Posth N., Galvez M., Brown Jr. GE., Guyot F. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria[J], Geochimica et Cosmochimica Acta,2009,73:696-711.
    64. Murphy R., Strongin D.R. Surface reactivity of pyrite and related sulfides[J]. Surface Science Reports,2009,64:1-45.
    65. Mustin C., Berthelin, J., Marion P., de Donato P. Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 1992,58:1175-1182.
    66. Mustin C., Berthelin J., Marion P., de Donato P. Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans[J]. FEMS Microbiological Reviews,1993, 11:71-77.
    67. Newton R., Bottrell S. Stable isotopes of carbon and sulphur as indicators of environmental change:past and present[J]. Journal of the Geological Society,2007,164: 691-708.
    68. Ndlovu S., Monhemius A.J. The role of orientation of crystal lattice on the development of bacterial leaching patterns on pyrite single crystals [J]. The Journal of the South African Institute of Mining and Metallurgy Nov.,2004,104:573-578.
    69. Ndlovu S., Monhemius A.J. The influence of crystal orientation on the bacterial dissolution of pyrite[J]. Hydrometallurgy,2005,78:187-197.
    70. Nemati M., Harrison S.T.L., Hansford G.S., Webb C. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects[J]. Biochemical Engineering,1998,1:171-190.
    71. Nordstrom D.K., Southam G. Geomicrobiology of sulfide mineral oxidation[J]. Reviews in Mineralogy and Geochemistry,1997,35:361-390.
    72. Pisapia C., Chaussidon M., Mustin C., Humbert B. O and S isotopic composition of dissolved and attached oxidation products of pyrite by Acidithiobacillus ferrooxidans: comparison with abiotic oxidations[J]. Geochimica et Cosmochimica Acta,2007,71: 2474-2490.
    73. Pogliani C., Donati E. Immobilisation of Thiobacillus ferrooxidans:importance of jarosite precipitation[J]. Process Biochemistry,2000,35:997-1004.
    74. Postgate J.R. The Sulphate-Reducing Bacteria [M].2nd. Cambridge:Cambridge Univ. Press,1984.
    75. Posfai M., Dunin-Borkowski R.E. Sulfides in Biosystems[J]. Reviews in Mineralogy & Geochemistry,2006,61:679-714.
    76. Rickard D., Luther GW. Chemistry of iron sulfides[J]. Chemical Reviews,2007,107: 514-562.
    77. Rodriguez-Levia M., Tribusch H. Morphology of Bacterial Leaching Patterns of Thiobacillus ferrooxidans on Synthetic Pyrite[J]. Archives of Microbiology,1988,149: 401-405.
    78. Rojas-Chapana J.A., Giersig M., Tributsch H. The path of sulfur during the biooxidation of pyrite by Thiobacillus ferrooxidans[J]. Fuel.,1996,75:923-930.
    79. Rojas-Chapana J.A., Tributsch H. Interfacial activity and leaching patterns of Leptospirillus ferrooxidans on pyrite[J]. FEMS Microbiology Ecology,2004,47:19-29.
    80. Sand W., Gerke T., Hallmann R., Schippers A. Sulfur chemistry, biofilm, and the (in)direct attack mechanism-a critical evaluation of bacterial leaching[J]. Appl. Environ. Microbiol.,1995,43:961-966.
    81. Sasaki K., Tsunekawa M., Ohtsuka T., Konno H. Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(III) ions around pH 2[J]. Geochimica et Cosmochimica Acta,1995,59:3155-3158.
    82. Schippers A., Rohwerder T, Sand W. Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal [J]. Applied Microbiology and Biotechnology,1999,52:104-110.
    83. Shen Y., Buick R., Canfield D.E. Isotopic evidence for microbial sulphate reduction in the early Archaean era[J]. Nature,2001,410:77-81.
    84. Shen Y., Farquhar J., Masterson A., Kaufman A.J., Buick R. Evaluating the role of sulfate reduction in the early Archean using quadruple isotope systematics[J]. Earth and Planetary Science Letters,2009,279:383-391.
    85. Silverman M.P. Mechanism of bacterial pyrite oxidation[J]. J. Bacteriol.,1967,94: 1046-1051.
    86. Silverman M.P., Ehrlich, H.L. Microbial formation and degradation of minerals[J]. Adv. Appl. Microbiol.,1964,6:153-206.
    87. Spender P. Influence of bacterial culture selection on the operation of a plant treating refractory gold ore[J]. International Journal of Mineral Processing,2001,62:217-229.
    88. Torma A.E. The role of Thiobacillus ferrooxidans in hydrometallurgical processes[J]. Adv. Biochem. Eng.,1977,6:1-37.
    89. Ueno Y., Ono S., Rumble D., Maruyama S. Quadruple sulfur isotope analysis of ca.3.5 Ga Dresser Formation:new evidence for microbial sulfate reduction in the early Archean[J]. Geochim. Cosmochim. Acta,2008,72:5675-5691.
    90. Von Damm K.L. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In:Humphris S.E., Zierenberg R.A., Mullineaux L.S., Thomson R.E. (Eds.), Seafloor Hydrothermal Systems.Physical, Chemical, Biological and Geological Interactions. Washington DC:American Geophysical Union,1995, pp 222-247.
    91. Wacey D., Saunders M., Brasier M.D., Kilburn M.R. Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments[J]. Earth and Planetary Science Letters,2011, 301:393-402.
    92. Watling H.R. The bioleaching of sulphide minerals with emphasison copper sulphides-A review[J]. Hydrometallurgy,2006,84:81-108.
    93. Wignall P.B., Newton R., Brookfield M.E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,216:183-188.
    94. Wirsen C.O., Jannasch H.W., Molyneaux S.J. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites [J]. Journal of Geophysical Research,1993, 98:9693-9703.
    95. Xia J.L., Yang Y., He H., Zhao X.J., Liang C.L., Zheng L., Ma C.Y, Zhao Y.D., Nie Z.Y, Qiu GZ. Surface analysis of sulfur speciation on pyrite bioleached by extreme thermophile Acidianus manzaensis using Raman and XANES spectroscopy[J]. Hydrometallurgy,2010,100:129-135.
    96. Zhang X.L. Lecture notes of geobiology[M]. Beijing:Geological Publishing House, 2012.
    97.陈公信,金经纬,吴细松等.湖北省岩石地层[M].武汉:中国地质大学出版社,1996.
    98.湖北省地质局三峡地层研究组.峡东地区震旦纪至二叠纪地层古生物[M].北京:地质出版社,1978.
    99.胡凯光,谭凯旋,杨仕教,刘国福,梁建龙.微生物浸矿机理和影响因素探讨[J].湿法冶金,2004,3:113-120.
    100.蒋磊,周怀阳,彭晓彤.氧化亚铁硫杆菌对黄铁矿的氧化作用初探[J].矿物学报,2007,27(1):25-30.
    101.李国祥.陕南镇巴早寒武世似软舌螺化石一新种---Torellella bisulcata sp. nov.[J].古生物学报,2004,43(4):571-578.
    102.李宏煦.硫化铜矿的生物冶金[M].北京:冶金工业出版社,2007.
    103.柳建设.硫化矿生物提取及腐蚀电化学研究[D].长沙:中南大学;2002.
    104.刘伟.寒武纪鲕粒灰岩中的微生物印迹研究[D].西安:西北大学;2010.
    105.罗惠麟,蒋志文,唐良栋.中国下寒武统建阶层型剖面[M].昆明:云南科技出版社,1994.
    106.王淑芳.深海热液口硫化物及沉积物微生物多样性及其与环境相互关系研究[D].青岛:中国海洋大学;2008.
    107.项礼文,朱兆玲,李善姬,周志强.中国地层典-寒武系[M].北京:地质出版社,1999.
    108.杨婷婷.氧化亚铁硫杆菌与氧化硫硫杆菌协同浸出黄铁矿及在铀浸出中的应用[D].西安:西北大学.2011.
    109.姚静,徐文静,李红玉.氧化亚铁硫杆菌驯化菌株的铜离子运输特性[J].中国有色金属学报,2005,15:2009-2015.
    110.张俊明,袁克星.湖北宜昌王家坪下寒武统天河板组古杯礁丘及其成岩作用[J].地 质科学,1994,29:236-245.
    111.张雁生.细菌浸出黄铜矿过程中矿物表面化学变化的研究[D].长沙:中南大学;2011.
    112.赵鑫,李国祥.陕西镇巴早寒武世海绵骨针化石[J].微体古生物学报,2006,23(3):281-294.
    113.赵珊茸.结晶学及矿物学[M].北京:高等教育出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700