PEG-NOx体系催化氧化废电路板提铜、锡及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电子产业技术发展和电子产品更新换代速度的加快,产生了大量的电子废弃物。日益增长的电子废弃物给地球生态和人类生活环境带来巨大的威胁,如何对电子废弃物进行高效收集并合理、安全的处置已成为社会迫切关注的问题。电路板是各类电子产品最基本且不可或缺的重要组成部分,具有组成复杂、环境危害大、回收价值高等特点,因此对废电路板进行资源化、无害化和减量化处理具有十分重要的意义。
     本论文以废电路板的资源化回收为目的,将废电路板加热脱焊后,进行人工拆解和分选,将分选出来的不同组分分别用研磨机破碎,然后用ICP-AES、XRD、元素分析仪以及GC-MS进行综合分析,确定其资源特性和可能的环境危害性。测试结果表明废电路板中的组成比例大致为金属:有机物:其它非金属=4:4:2;金属元素中,除了电容和焊锡,铜在各部件中含量均最高;贵金属中,Au在芯片中的分布远远高于其它各部件;废电路板中主要存在的是单质的Cu、Sn、Pb等元素,以及无定形的A12O3、Sb2O3等;热解产物大多是苯酚以及一些含有苯环的有机物。
     在本课题组前期研究的基础上,以PEG(聚乙二醇)-NOx作为催化氧化剂,在全封闭装置中对废电路板的金属粉末进行催化氧化反应,对其中的基本金属进行浸出,实验了影响催化氧化效果的主要因素,探讨了相关反应机理。实验表明使用PEG-NOx作为催化氧化剂具有良好的催化氧化效果,在最佳条件下以Cu为标志性元素基本金属几乎完全被浸出;以NZ988作萃取剂,对Cu的萃取效率在99%以上,且选择性较好,除了Cu和Sn外,对其它元素几乎不萃取。
     为避免Sn对后续提Cu工艺的干扰,同时尽量完全的提取废电路板中的Sn,对膨胀石墨吸附Sn前后进行了多种表征,研究了使用膨胀石墨吸附Sn的实验条件、效果以及机理,并研究了使用膨胀石墨去除和富集废电路板反萃液中Sn的可行性。实验结果表明膨胀石墨对Sn具有很好的吸附效果,在最佳条件下对Sn的有效去除率可达到98%以上,同时几乎不吸附溶液中的Cu,受温度等环境因素较小,可安全高效地吸附去除废电路板中的Sn。
     为进一步提高催化氧化效率,便于试剂的回收和循环使用,研究了使用膨胀石墨以及膨胀石墨协同PEG作用,以提高NOx中氧的转移效率。实验结果表明PEG协同EG对NOx的氧转移效率要明显高于单独用PEG或是EG,说明在NOx氧转移时PEG和EG具有明显的协同作用。在温度0℃,流速0.5L/min,NOX初始浓度0.025mol,吸附剂EG质量0.015g混匀20mL PEG条件下,对NOx的吸附率可达90%以上。
     为了进一步促进NOx中的NO转化为N02,研究了使用氧化石墨烯(GO)负载C0304做为催化剂,在PMS作为NOx吸附剂的条件下对NOx进行催化氧化,通过XRD、FT-IR、RAMAN、SEM以及TEM等现代分析测试仪器对GO及GO负载C0304进行表征,实验了所制备的催化剂GO负载Co304对于NOx的催化氧化效果,并考察了相关因素对于催化氧化效果的影响。实验表明GO负载C0304做为催化氧化剂,比单独使用PMS做催化氧化剂的氧化效率有显著提高。
With the rapid development of information industry while electronic products update more quickly, a large number of electronic waste are produced. The growing electronic waste poses a great threat to the earth's ecological and human environment. It has become a crucial problem for the society how to effectively collect and reasonably safe disposal of electronic waste.The printed circuit board is a basic and indispensable part of all kinds of electronic products. It will be of great importance for resource, harmless and reduction of waste printed circuit boards due to their complex composition, environmental harmless, high recovery value.
     The aim of this thesis is to resource recycle of waste printed circuit boards. After heating and unsoldering the waste printed circuit boards, manual dismantling and sorting, the sorting out different components were crushing mill, detecting and comprehensive analysis by ICP-AES, XRD, elemental analyzer and GC-MS so to confirm the resources characteristics and possible environmental hazards. The results show that the components ratio of metals, organics and non-metals in waste printed circuit boards is4:4:2. The content of copper of all metals is the highest in various electric components except capacitance and solder. Gold distribution is much higher than that of other noble metals. The main elementary substances in waste printed circuit boards are Cu, Sn and Pb and so on. amorphous Al2O3and Sb2O3are high levels as well. Most pyrolysis products are phenol and some organic compounds containing benzene ring.
     At the previous work of this research group, metal powders were catalytic oxidation by PEG(Polyethylene glycol)-NOx in fully enclosed equipment, and the base metals were extracted. Some main factors on catalytic oxidation were optimized, and the reaction mechanisms were discussed. The results show that PEG-NOx as the catalytic oxidizer has good effect, copper as representative base metal elements was almost absolutely extracted.The extraction efficiency of copper was up to99%with NZ988as extractant, which presents good selective for only copper and stannum extracted but other elements not.
     The removal and preconcentration of Sn in stripping solution by expanded graphite (EG) was investigated to avoid interference of Sn to Cu, and absolutely extraction of Sn from waste printed circuit boards. The adsorptive characteristics of the produced EG were characterized and its experimental conditions of Sn adsorption, effects and mechanisms were studied as well. This study demonstrates that the expanded graphite is an effective and novel adsorbent for the removal of Sn as the removal ratio at optimized conditions reach to98%, but copper was hardly adsorbed. EG is not affected by environmental temperature, and removes Sn in waste board safely and efficiently.
     The EG and EG-PEG were used to improve the transfer efficiency of oxygen in NOX for improving catalytic oxidation efficiency and recycling of solvents. The experimental results show that the transfer efficiency of oxygen in NOX with EG-PEG is much higher than that of EG or PEG individually, which illustrators that PEG and EG are synergy on the transfer of oxygen in NOX. Adsorption rate of NOX with0.015g adsorbent EG and20mL PEG can reach to90%with0.025mol initial concentration of NOX at the temperature of0℃,0.5L/min flow velocity.
     To promote NOX transfer to NO, the catalytic oxidation efficiency of NOx with catalyst graphene oxide (GO) load Co3O4was prepared and investigated with PMS as adsorbent to catalytic oxidation NOX, where GO load Co3O4was characterized by morden analytical instruments such as XRD, FT-IR, RAMAN, SEM and TEM. The effect of some relative factors on catalytic oxidation efficiency was studied as well. It shows that the catalytic oxidation efficiency with GO load Co3O4as catalyst has improved significantly than using PMS as catalyst only.
引文
[1]Monica N. Danon-Schaffer, Andres Mahecha-Botero, John R. Grace, Michael Ikonomou. Transfer of PBDEs from e-waste to aqueous media[J]. Science of The Total Environment,2013,447(1):458-471.
    [2]Natalia Milovantseva, Jean-Daniel Saphores. Time bomb or hidden treasure? Characteristics of junk TVs and of the US households who store them[J].Waste Management.2013,33(3):519-529.
    [3]孙云丽,段晨龙,左蔚然等.电子废弃物的资源循环研究[J].中国资源综合利用,2007,25(3):35-38.
    [4]Xue Mianqiang, Li Jia, Xu Zhenming. Management strategies on the industrialization road of state-of-the-art technologies for e-waste recycling:the case study of electrostatic separation-a review[J].Waste Management & Research,2013, 31(2):130-140.
    [5]魏金秀,汪永辉,李登新.国内外电子废弃物现状及其资源化技术[J].东华大学学报,2005,31(3):134-137.
    [6]A.Bernardes, I.Bohlinger and D.Rodriguez,Recycling of printed circuit boards by melting with oxidizing/reducing top blowing process. In:B.Mishra, Editor,Proceedings of sessions and symposia sponsored by the extraction and processing division Orlando,FL,USA,9-13 February 1997,TMS(1997):363-375.
    [7]Theo Lehner. Integrated recycling of non-ferrous metals at Boliden Ltd.[C].IEEE International Symposium on Electronics the Environment, In:Ronnskar Smelter,1998:42-47.
    [8]朱经发,林辉东,王德汉等.电子废弃物现状评述与资源化初探[J].土壤与环境,2002,11(3):307-310.
    [9]Xiang Dong, Mou Peng, Wang Jinsong, et al. Printed circuit board recycling process and its environmental impact assessment[J]. Int J Adv Manuf Technol, 2007,34:1030-1036.
    [10]杨玉芬.废印刷电路板回收利用的现状与存在的问题[J].环境污染与防治,2004,26(3):193-195.
    [11]曹亦俊,赵跃民,温雪峰.废弃电子设备的资源化研究发展现状[J].环境污染与防治,2003,25(5):289-292.
    [12]Menad N, Bjorkman B, Allain E G. Combustion of Plastics contained in electric and electronic scrap[J].Resources, Conservation and Recycling,1998,24:65-85.
    [13]Guo Jiuyong, Guo Jie, Xu Zhenming. Recycling of non-metallic fractions from waste printed circuit boards:A review[J] Journal of Hazardous Materials,2009, 168:567-590.
    [14]徐敏.废电路板的资源化回收技术研究[D].同济大学2008年博士论文.
    [15]胡大觉,曾光明,袁兴中.从家用电器废物中回收贵金属[J].中国资源综合利用,2001,14(7):12-15.
    [16]柴晓兰,赵跃民,王春彦等.电子废弃物机械回收的研究现状与发展[J].污染防治技术,2003,16(3):47-49.
    [17]李晶萤,盛广能.电子废弃物中的金属回收技术研究进展[J].污染防治技术,2007,20(6):40-45.
    [18]黄春洁.废印刷电路板资源化分离过程研究[D].同济大学2007年硕士论文.
    [19]Yokoyamas Ijim. Recycling of printed wiring board waste[C].International Work Shop on Advanced Robotics, IEEE, New York,1993,55-58.
    [20]Feldmann K, Scheller H. Disassembly of electronic products [C].Proceedings of the 1994 IEEE international symposium on electronics and environment, IEEE, New York,1994,81-86.
    [21]牛冬杰,马俊伟,赵由才.电子废弃物的处理处置与资源化[M].北京:冶金工业出版社,2007.
    [22]Melchiorre M, Jakob R. Electronic Scrap Recycling Microelectronics Janournal[C],IEEE,1996,28(8-10):xxii-xxiv.
    [23]邹亮,白庆中,李金惠等.废弃电路板的低温粉碎实验研究[J].中国矿业大学学报,2006,35(2):220-224.
    [24]李金惠,于可利.一种低温真空热解废印刷电路板预处理方法[P].中国专利,CN1919482,2007-02-28.
    [25]宋丹萍、徐金球.电子废弃物的处理技术和管理现状[J].上海第二工业大学 学报,2008,25(2):0129-0136.
    [26]何亚群,段晨龙,王海峰等.电子废弃物资源化处理[M].北京:化学工业出版社,2006.
    [27]Zhang Shunli, Forsserg Eric. Mechanical recycling of electronics scrap-e current status and prospects[J].Waste Management&Research,1998,16(2):119-128.
    [28]丁涛,夏志东,毛倩瑾等.废电路板的气流分选研究[J].电子工艺技术,2006,(6):348-351.
    [29]李佳.废旧印刷电路板的破碎和高压静电分离研究[D].上海交通大学博士论文,2007.
    [30]Y. Masuda, R. Miyabayashi, H. Yamaguchi, Japan Kokai Tokyo Koho[P]JP 6311627[8811626](CI.C22B11/02),1988.
    [31]Sum, Elaine Y.L., The recovery of metals from electronic scrap [J].Journal of Metals,1991,(43):53-68.
    [32]J.E., Hoffmann. Recovering precious metals from electronic scrap [J].Journal of Metals,1992,(44):43-48.
    [33]胡天觉,曾光明,袁兴中.从家用电器废物中回收贵金属[J].中国资源综合利用,2001,7:12-15.
    [34]H. T.Virtanen, T. Virtanen, T. Vartiainen, J. Ruuskanen..Emissions of Polychlorinated dibenzo-P-dioxins and dibenzofurans in flue gas from co-combustion of mixed plastics with coal and bark[J]. Chemophere,1992,25(11):1599-1609.
    [35]毛艳艳.废电路板的热解试验研究[D].浙江大学硕士论文,2008.
    [36]Reddy R G. Recovery of Precious Metals by Pyrometallurgical Processing of Electronic Scrap[J]. Precious Metals,1987:135.
    [37]Masuda Y, Miyabayashi, Yamaguchi H. Japan Kahai Tokyo Koho[P].JP6311627 [8811627](CIC22B11/02),1988.
    [38]Hornung H, Donner S, Balabanovich A,et al. Polypropylene as a reductive agent for dehaloge-nation of brominated organic compounds [J] Journal of Cleaner Production,2005,13(5):525-530.
    [39]Cunliffe A M, Nicola J, Williams P T. Recycling of fibre-reinforced polymeric waste by pyrolysis:thermo-gravimetric and bench-scele investigations[J].J Anal Appl Pyrolysis,2003,70:315.
    [40]Yoshiki S, Yasuhiko K, Satoshi K, et al. Chemical recycling of plastics from waste printed cir-cuit board with recovery of halogen and metal [J].Transactions of the Materials Research Society of Japan,2004,29(5):1853-1856.
    [41]徐敏,李光明,贺文智等.废电路板热解回收研究进展[J].化工进展,2006,25(03):297-300.
    [42]Antrekowitsch, H., Potesser, M., Spruzina, W. & Prior, E (2006) Metallurgical recycling of electronic scrap. In:Howard, S.M., et al., EPD Congress 2006, pp. 889-908. The Minerals, Metals and Materials Society, TMS, Warrendale, PA, USA.
    [43]Hall W J, Williams P T. Separation and recovery of materials from scrap printed circuit boards[J].Resources, Conservation and Recycling,2007,51(3):691-709.
    [44]BlazsoM, Czegeny Z, Csoma C. Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolylsis[J].Journal of Analytical and Applied Pyrolysis,2002,64(2):249-261.
    [45]Hornung A, Balabanovich A I, Donner S, et al. Detoxification of brominated pyrolysis oils[J].Analytical and Applied Pyrolysis,2003,70(2):723-733.
    [46]Morisaki S. Simultaneous thermogravimetry-mass spectrometry and pyrolysis-gas chromatography of fluorocarbon polymers [J].Thermochirnica Acta, 1978,25(2):171-183.
    [47]Simon C M, Kaminsky W. Chemical recycling of polytetrafluoroethylene by pyrolysis [J].Polymer Degradation and Stability,1998,62(1):1-7.
    [48]Egbert Meissner, Agnieszka Wroblewska, Eugeniusz Milchert. Technological parameters of pyrolysis of waste polytetrafluoroethylene[J].Polymer Degradation and Stability,2004,83(1):163-172.
    [49]郭晓娟,张于峰,魏莉莉等.聚四氟乙烯型印刷电路板的热解实验[J].华中科技大学学报(自然科学版),2008,36(10):121-124.
    [50]郭晓娟.热解技术处理废电路板的实验研究[D].天津大学博士论文,2008.
    [51]孙路石.废电路板的热解机理及产物回收利用的试验研究[D].华中科技大学博士论文,2004.
    [52]Zhang Shunli, Eric Forssberg. Mechanical separation-oriented characterization of electronic scrap[J].Resources, conservation and Recycling,1997,21:247-269.
    [53]Gloe K,Muehl P and Konthe M.Recovery of precious metals from electronic scrap, in particular from waste products of the thick-layer technique[J]. Hydrometallurgy,1990,24(4):99-110.
    [54]Tenorio J A S, Menetti R P, Chaves A P. Production of non-ferrous metallic concentrates from electronic scrap[J].Metals & Materials Society,1997:505-509.
    [55]Kinoshita T, Akita S, Kobayashi N, et al. Metal recovery from non-mounted printed wiring boards via hydrometallurgical processing[J].Hydrometallurgy, 2003,69(1-3):73-79.
    [56]Chi Jung Oh, Sung Oh Lee. Selective leaching of valuable metals from waste printed circuit boards [J].Journal of the Air& Waste Management Association, 2003,53:897-902.
    [57]盛广能.废弃电脑印刷电路板中铜回收的实验研究[D].青岛科技大学硕士论文,2008.
    [58]王博,冯素征,朱萍等.印刷电路板浸出液中铜的提取研究[J].中国资源综合利用,2006,24(9):11-14.
    [59]张磊,陈亮,陈东辉.废弃电子印刷电路板中Cu和Pb的浸出实验[J].环保科技,2007,13(2):25-28.
    [60]T Oishi, K Koyama, et al. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions[J].Hydrometallurgy. 2007(89):82-88.
    [61]魏金秀.废电路板中金回收的试验研究[D].东华大学硕士论文,2005.
    [62]吴骏,陈亮,邱丽娟等.废电路板硫脲提金研究[J].黄金,2008,29(6):55-58.
    [63]张潇尹,陈亮,陈东辉.硫氰酸盐法浸出废印刷电路板中的金[J].贵金属,2008,29(2):11-14.
    [64]徐渠.碘化法从废电路板中提取金的研究[D].东华大学硕士论文,2009.
    [65]Young Jun park, Derek J. Fray. Recovery of high purity precious metals from printed circuit boards[J]. Journal of Hazardous Materials,2009,164:1152-1158.
    [66]高国龙,李登新,朱喆.微生物浸出电子废弃物的研究进展[A].全国铅污染监测与控制治理技术交流研讨会论文集[C],2006.
    [67]Bai Jianfeng,Wang Jingwei, Xu Jinqiu, et al. Microbiological recovering ofmetals from printed circuitboards byAcdithiobacillus ferroxidans[C/CD]//Institute of Electrical and Electronics Engineers(IEEE). Proceedings of IEEE International Symposium on Sustainable Systems and Technology (ISSST). Phoenix:IEEE,2009.
    [68]吴思芬.利用微生物代谢产物浸取废电路板中铜的研究[D].东华大学硕士论文,2008.
    [69]李登新,吴思芬,韩彬.一种微生物浸取废电路板中铜的方法[P].中国专利,CN101392327,2009-03-25.
    [70]周培国,郑正,彭晓成等.活性炭对细菌浸出电路板中金属铜的影响研究[J].环境工程学报,2010,4(6):1426-1430.
    [71]彭晓成,郑正,罗兴章等.氧化亚铁硫杆菌在废弃电路板粉末上的吸附及对Cu的浸出[J].河南科学,2007,25(5):842-845.
    [72]Gloe K, Muehl P and Konthe M. Recovery of precious metals from electronic scrap, in particular from waste products of the thick-layer technique[J].Hydrometallurgy,1990,24(4):99-110.
    [73]张光明,王欢,尹凤福等.废电路板超临界分离方法及系统[P].中国专利,CN1818100,2006-08-16.
    [74]潘君齐.基于超临界流体技术的印刷电路板再资源化工艺与方法研究[D].合肥工业大学博士论文,2006.
    [75]Gao Guolong, Li Dengxin, Zhou Yong, et al. Kinetics of high-sulphur and high-arsenic refractory gold concentrate ocidation by dilute nitric acid under mild conditions[J].Minerals Engineering.2009,22:111-115.
    [76]Li Qingcui, Li Dengxin, Qian Fangjun. Pre-oxidation of high-sulfur and high-arsenic refractory gold concentrate by ozone and ferric ions in acidic media[J]. Hydrometallurgy.2009,97:61-66.
    [77]刘广涛.聚乙二醇吸收氮氧化物原理及氧气间接氧化含金氰化尾渣技术研究[D].东华大学硕士论文,2011.
    [78]李登新,鄢祖喜,刘广涛等.一种用于NOX循环催化氧气氧化预处理难浸金矿的反应系统和方法[P].中国专利,CN101624648,2010-01-13
    [79]张静,肖筱瑜.膨胀石墨表面非极性吸附研究[J].矿产与地质.2003,17(4):571-573.
    [80]吴翠玲,翁文桂.膨胀石墨的多层次结构[J].华侨大学学报.2003,24(2):147-150.
    [81]Krawczyk P. Skowronski J M. Modification of expanded graphite resulting in enhancement of electrochemical activity in the process of phenol oxidation[J].J Appl Electtochem,2010,40(1):91-98.
    [82]Du Chao, Ming PW, Hou M, et al. Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells [J] Journal of Power Sources.2010,195(3):794-800.
    [83]刘开平,周敬恩.膨胀石墨化学氧化法制备技术研究进展[J].长安大学学报.2003,25(4):85-91.
    [84]林雪梅.可膨胀石墨的化学氧化法制备研究进展[J].炭素.2005,(4):44--49.
    [85]陈志刚,张勇,杨娟.膨胀石墨的制备、结构和应用[J].江苏大学学报.2005,26(3):248-253.
    [86]陈难先.插层化合物的研究与进展[J].物理.1992,21(4):216-222.
    [87]黎梅,李冀辉.浓硫酸在可膨胀石墨制备中的作用[J].河北师范大学学报.1999,23(2):238-240.
    [88]Li Jihui, Feng Lili, Jia Zhixin. Mechanical properties of monolithic compressed expanded graphite-based adsorbents related to the temperature of pyrolysis and activation,studied with ultrasound[J].Materials Characterization.2004,52(3):195-202.
    [89]Gattia, DM, Montone, A, Pasquini, L. Microstructure and morphology changes in MgH2/expanded natural graphite pellets upon hydrogen cycling [J]. International Journal of Hydrogen Energy,2013,38(4):1918-1924.
    [90]Yu Yanmin, Zhao Naiqin, Shi Chunsheng, et al. Electrochemical hydrogen storage of expanded graphite decorated with TiO2 nanoparticles[J].International Journal of Hydrogen Energy,2012,37(7):5762-5768.
    [91]Zhang Weidong, Wan Wang, Zhou Henghui, et al. In-situ synthesis of magnetite/expanded graphite composite material as high rate negative electrode for rechargeable lithium batteries[J] Journal of Power Sources,2013,223(1):119-124.
    [92]Zhao Yinghua, Li Dengxin. Adsorption characteristics of modified expanded graphite to wastewater containing lead[J].Chinese Journal of Environmental Engineering,2012,6(10):3613-3617.
    [93]Pan Xiuyan, Zhang Lili. Competitive Adsorption between Polyethylene Glycol and Acid Brilliant Red on Expanded Graphite [J].E-Journal of Chemistry, 2012,9(2):839-850.
    [94]陈志刚,张勇,杨娟等.膨胀石墨的制备、结构和应用[J].江苏大学学报(自然科学版),2005,3(26):248-252.
    [95]赵正平.可膨胀石墨及其制品的应用及发展趋势[J].中国非金属矿工业导刊,2003,1:7-9.
    [96]邱滔,陈志刚.膨胀石墨深度处理油田废水研究[J].江苏工业学院学报.2006.18(4):11-13.
    [97]王宏喜,王宏霞,薛丽.关于膨胀石墨吸油性能的研究[J].炭素技术.2004.23(5):21-23.
    [98]Michio Inagaki, Akihiro Kawahara. Recovery of heavy oil from contaminated sand by using Exfoliated graphite[J].2004(170):77-82.
    [99]连锦明,陈前火,甘晖等.膨胀石墨对甲醛废气吸附行为的研究[J].吉林化工学院学报.2005,22(1):1-3.
    [100]赵少飞,庞秀言,李瑞芳等.可膨胀石墨对动物油脂的催化酯交换反应研究[J].炭素,2007,4:19-22.
    [101]刁明慧,张明慧,李伟等.新型钌催化剂用于葡萄糖加氢反应[J].分子催化,2007,21(4):289-293.
    [1]牛冬杰,马俊伟,赵由才.电子废弃物的处理处置与资源化[M].北京:冶金工业出版社,2007.
    [2]Brett H. Robinson. E-waste:An assessment of global production and environmental impacts[J]. Science of the Total Environment,2009,408:183-191.
    [3]M.H.Wong, Wu SC, Deng WJ, et al. Export of toxic chemicals-A review of the case of uncontrolled electronic-waste recycling[J].Environmental Pollution,2007, 149:131-140.
    [4]Quan Cui, Li Aimin, Gao Ningbo. Research on pyrolysis of PCB waste with TG-FTIR and Py-GC/MS[J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY,2012,110(3):1463-1470.
    [5]柴晓兰,赵跃民,王春彦.电子废弃物机械回收的研究现状与发展[J].污染防治技术,2003,16(3):47-49.
    [6]刘洪亮.废弃电路板资源化分离过程研究[D].天津大学,2008.
    [7]姜宾延,吴彩斌.电子垃圾的危害及其机械处理技术现状[J].2005,3:23-26.
    [8]Quan Cui, Li AM, Gao NB, Dan Z. Characterization of products recycling from PCB waste pyrolysis[J] JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2010,89(1):102-106.
    [9]Park, HS, Lukashov, VP, Vashchenko, SP, et al. Study on the plasma treatment of waste oil containing PCB[J].THERMOPHYSICS AND AEROMECHANICS, 2009,16(4):611-620.
    [10]Jia Xingang. Study on the leaching and separation of base and precious metals in wasted PCB by chlorine dioxide[J].Applied Chemical Industry,2009,38(5):776-778.
    [11]刘昆仑,段晨龙,赵跃民等.废弃电路板物理法资源化研究现状[J].中国资源综合利用,2007,25(6):10-13.
    [12]王野平,李小祥.机械分离回收方法处理电子废弃物探讨[J].上海环境科学,2009,28(2):80-83.
    [13]Xu Qu, Chen Donghui, Chen Liang, et al. Iodine leaching process for recovery of gold from waste PCB[J].Chinese Journal of Environmental Engineering,2009, 3(5):911-914.
    [14]Li Fei, Zhao Zengli, Li Haibin, et al. Study on gasification characteristics of waste printed circuit boards(PCB)in molten salts[J].Acta Scientiae Circumstantiae, 2007,27(11):1851-1857.
    [15]Forssberg Eric, Jirang Cui. Mechanical recycling of waste electric and electronic equipment:a review [J].Journal of Hazardous Materials 2003, B99:243-263.
    [16]H.M.Veit, T.R.Diehl, A.P.Slami, et al. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap[J].Waste Management,2005,25:67-74.
    [1]钟非文.三相床反应器催化氧化电子废弃物[D].东华大学硕士论文,2006.
    [2]张武学.电子废弃物的预处理以及铜的电积制备[D].东华大学硕士论文,2007.
    [3]李登新,张武学,钟非文等.印刷电路板中提取金属的方法[P].中国专利,CN1858277,2006-11-08.
    [4]张小娟,李鑫钢,曹宏斌等.电子废弃物中铜的回收[C].第五届全国化工年会论文集,2008.691-709.
    [5]Cui Jirang, Zhang Lifeng. Metallurgical recovery of metals from electronic waste: Areview[J]. Journal of Hazardous Materials 158 (2008) 228-256.
    [6]Guobin Liang,Mo Yiwei, Zhou Quanfa. Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles[J]. Enzyme and Microbial Technology 47 (2010) 322-326.
    [7]Li Jingying, Sheng Guangneng.The Research of Copper Leaching from the Waste Computer Mainboards[J].2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008, p 4662-4666,2008.
    [8]Lin Jiajun, Liu Yuyan, Qi Meiwei, et al. Chemical Recycling Methods of Waste Printed Circuit Boards[J].Polymer Bulletin,2011,12:133-137.
    [9]Zhang Zhixiao, Zhao Xintian, Ma Jiade. An Approach to Recycling and Disposal Technology of Waste Printed Circuit Boards [J].Shanghai Environmental Sciences, 2010,29(1):30-34.
    [10]刘广涛.聚乙二醇吸收氮氧化物原理及氧气间接氧化含金氰化尾渣技术研 究[D].东华大学硕士论文,2011.
    [11]张舒,杨明,华亚妮,李登新.废弃电子元器件酸性浸出液中铜的萃取研究[J].环境科学与技术,2013,36(1):111-114.
    [12]Chen Xinqing, Koon Fung Lam, Shuk Fong Mak, et al. Precious metal recovery by selective adsorption using biosorbents[J].Journal of Hazardous Materials 2011,186:902-910.
    [13]雷吟春,刘云派,朱传华.工业用铜萃取剂研制的新进展[J].湖南有色金属,2008,24(2):41-45.
    [14]裴世红.湿法炼铜常用的铜萃取剂[J].当代化工,2009,38(1):78-82.
    [15]B.Ramachandra Reddy, Kyung Ho Park, D. Mohapatra. Process development for the separation and recovery of copper from sulphate leach liquors of synthetic Cu-Ni-Co-Fe matte using LIX 84 and LIX 973N[J]. Hydrometallurgy,2007, 87:51-57.
    [16]Fu Weng, Chen Qiyuan, Hu Huiping, et al. Solvent extraction of copper from ammoniacal chloride solutions by sterically hindered b-diketone extractants[J]. Separation and Purification Technology,2011,80:52-58.
    [17]侯新刚,哈敏,薛彩虹.用溶剂萃取法铜铁分离的研究[J].甘肃科技,2008,24(4):37-39.
    [18]Mehmet Kul, Uemit Cetinkaya. Recovery of copper by LIX 984N-C from electroplating rinse bath solution[J].Hydrometallurgy,2009,98:86-91.
    [1]康俊峰,李春航,朱孝东.废电路板电子元器件及焊锡的脱除装置和方法[P].中国专利,CN102371412A,2012-03-14.
    [2]康俊峰,李春航,朱孝东.废电路板电子元器件及焊锡的脱除装置[P].中国专利,CN202317353U,2012-07-11.
    [3]周益辉,邱克强.回收废弃印刷电路板焊锡的新技术[J].中南大学学报(自然科学版),2011,42(7):1183-1189.
    [4]周益辉,曾毅夫,龙桂花等.废弃电路板电子元件和焊锡的分离回收技术[J].资源再生,2011,(2):64-67.
    [5]Zhao M., Liu P.. Adsorption of methylene blue from aqueous solution by modified expanded graphite power[J].Desalination.2009,249:331-336.
    [6]A.D. Lucking, L. Pan, D.L. Narayanan, C.E.B. Clifford.Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage [J].J. Phys. Chem. B.2005,109:12,710-12,717.
    [7]A. Bhattacharya, A. Hazra, S. Chatterjee, et al. Basumallick, Expanded graphite as an electrode material for an alcohol fuel cell[J].J. Power Sources.2004,136:208-210.
    [8]C. Calas-Blanchard, T. Noguer, M. Comtat, et al. Potentialities of expanded natural graphite as a new transducer for NAD+-dependent dehydrogenase amperometric biosensors[J].Anal. Chim. Acta.2003,484:25-31.
    [9]Li W., Han C, Liu W., et al. Expanded graphite applied in the catalytic process as a catalyst support[J].Catal. Today.2007,125:278-281.
    [10]Shen W.C., Wen S.Z., Cao N.Z., et al. Expanded graphite-a new kind of biomedical material[J].Carbon.1999,37:356-358.
    [11]L.R. Radovic. Chemistry and Physics of Carbon[M].Taylor & Francis,Newyork, 2008.
    [12]O.S. Josyulu, J. Sobhnadari.The far-infrared spectra of some mixed cobalt zinc and magnesium zinc ferrites[J].Phys Stat Solidi (a).1981,65:479-483.
    [13]M. Eibshutz, G. Gorodetsky, S. Shtrikman, et al. Differential thermal analysis and mossbauer studies in rare-earth orthofer-rites[J].J Appl Phys,1964,35:1071.
    [14]S.Z. Mohammadi, M.A. Karimi, D. Afzali, et al.Removal of Pb(II) from aqueous solutions using activated carbon from Sea-buckthorn Stones by chemical activation[J].Desalination.2010,262:86-93.
    [15]P. Das Saha, S. Chowdhury, S. Datta, et al. Removal of Pb(II) from aqueous solutions by adsorption onto clayey soil of Indian origin:Equilibrium, kinetic and thermodynamic pro file [J]. Korean Journal of Chemical Engineering. 2012,29:1086-1093.
    [16]A. Sharma, K.G. Bhattacharyya. Adsorption of chromium(VI) on Azadirachta indica(Neem)leaf powder[J].Adsorption.2004,10:327-338.
    [17]Wu F.C., Tseng R.L., Juang R.S..Comparisons of porous and adsorption properties of carbons activated by steam and KOH[J].J. Colloid Interface Sci.2005, 283:49-56.
    [18]W.H. Cheung, Y.S. Szeto, G. McKay.Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour[J].Technol.2007,98:2897-2904.
    [19]Yang Ming, Zhao Yinghua, Sun Xiuzhi, et al. Adsorption of Sn (II) on expanded graphite:Kinetic and equilibrium isotherm studies[J].Desalination and water treatment. Accp.In Press. DOI:10.1080/19443994.2013.782830.
    [1]魏福祥,傅晓文,马晓珍.镉柱还原光度法测定海水中的硝酸盐氮[J].分析试验室,2011,30(7):10-13.
    [2]近藤精一,安部郁夫著,李国希译.吸附科学[M].第二版,北京:化学工业出版社,2005.
    [3]牛耀岚.废弃麻纺品制备活性炭及其应用[D].东华大学硕士论文.2009.
    [4]王剑波,杨明,朱敏聪等.PEG协同膨胀石墨去除氮氧化物的研究[J].环境科学与技术,2012,35(7):96-100.
    [1]Robert W, Emquist H. SCR tackles NOx and ammonia despite high NOx, dust and SOx loading[J].Chemistry Research,2001,108(2):95-99.
    [2]Kawamura K, Katayama T. The pilot plant experiment of electron beam irradiation process for removal of NOx and SOx from sinter plant exhaust gas in the iron and steel industry[C].3rd Int. Meet Radial Proe. Tokyo, Japan,1980.
    [3]何志桥,王家德,陈建孟.生物法处理NOx废气的研究进展[J].环境污染治理技术和设备,2002,3(9):59-62.
    [4]肖沃辉,吴义千,汪靖等.DBS吸附剂治理高浓度NOx的实践[J].有色金属(冶炼部分),2005,(2):5-7.
    [5]梁开玉,周应林,秦大超.硝酸尾气中氮氧化物净化技术研究[J].渝州大学学报,2002,19(3):27-31.
    [6]胡发社,罗淑湘,杨飞华等.新型无机抗菌剂载体—天然纳米坡缕石显微表面结构研究[J].中国非金属矿工业导刊,2001,(5):12-15.
    [7]洪菲,周立群,黄莹等.改进Hummers法化学合成石墨烯及其表征[J].化学与生物工程,2012,29(5):31-33.
    [8]Huang YF, Huang YH. Identification of produced powerful radicals involved in the mineralization of Bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II, III) two-stage oxidation process[J].Journal of Hazardous Materials,2009,162(2): 1211-1216.
    [9]Huang YF, Huang YH. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process [J] Journal of Hazardous Materials,2009,167(1):418-426.
    [10]Anipsitakis GP, Dionysiou DD. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J].Environmental Science & Technology,2003,37:4790-4797.
    [11]Fernandez J, Maruthamuthu P, Renken A, et al. Bleaching and photo-bleaching of Orange II within seconds by the oxide/cobalt reagent in Fenton-like processes [J]. Applied Catalysis B:Environmental,2004,49:207-215.
    [12]Liang C, Huang CF, Chen YJ. Potential for activated persulfate degradation of BTEX contamination[J].Water Research,2008,42(15):4091-4100.
    [13]Liang C, Lee IL, Hsu IY, et al. Persulfate oxidation of trichloroethylene with and without iron activation in porous media[J].Chemosphere,2008,70(3):426-435.
    [14]Wang HW, Hu ZA, Chang Y Q, et al. Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix[J].Materials Chemistry & Physics,2011,130(1):672-679.
    [15]Katagiri G, Koening JL. Raman spectrum of graphite edge planes [J].Carbon, 1988,26(4):565-571.
    [16]Wang C., Zhan L., Qiao WM, et al. Preparation of graphene nanosheets through detonation[J].New Carbon Materials,2011,26(8):21-25.
    [17]Dresselhaus MS, Jorio A, Hofmann M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J].Nano Letters,2010,10:751-758.
    [18]Zhang WX, Cui JC, Tao CA, et al. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach [J].Angewandte Chemie,2009,1219320:5864-5868.
    [19]Lu J, Yang JX, Wang J, et al. One-pot synthesis of fluorescent carbon nano-ribbons,nano-particles and graphene by the exfoliation of graphite in ionic liquids [J].ACS Nano Letters,2009,2367-2375.
    [20]刘广涛.PEG吸收氮氧化物原理及氧化间接氧化含金氰化尾渣技术研究[D].东华大学硕士论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700