金属氧化物/碳纳米管复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)基复合纳米材料不仅具有一般复合材料的共性,而且由于其独特的物理、化学性质,使得此类复合材料具有不同于其他材料的特殊性质。本文通过不同的方法制备了Fe3O4/CNTs、Cu2O/CNTs和NiO/CNTs纳米复合材料,重点研究了处理温度、表面活性剂、反应条件等因素对产物结构和形貌等的影响,并测试了这些纳米复合材料的磁性能和电化学性能。
     在160℃下用乙二醇作还原剂合成了Fe3O4/CNTs复合材料,随后对其进行煅烧处理。CNTs上的Fe3O4纳米颗粒由非晶转变成单晶,且颗粒尺寸及其分布范围也均随着煅烧温度的升高而增大。在室温下这些纳米复合材料表现出超顺磁性。
     在240℃下用二甘醇作为溶剂和还原剂,醋酸纳(NaAc)为表面活性剂制备出了Fe3O4/CNTs复合材料。随着NaAc量的增加,Fe3O4纳米颗粒在CNTs上的分布更加均匀,且晶粒有长大趋势,Fe3O4的负载量也在增加,将其作为锂离子电池负极材料表现出良好的循环性能。
     通过化学溶液法合成了Cu2O/CNTs复合材料,反应温度对复合材料影响较大。低于70℃时,产物为Cu2O和CNTs两相;高于70℃时,产生了单质Cu。在复合材料中,Cu2O以CNTs为基体自组装成网状结构,作为锂离子电池负极材料,其可逆容量为200 mAh g-1,在30次循环后仍保持了首次容量的80%。
     以二甘醇作为溶剂首先合成前驱体,经煅烧后制备出NiO/CNTs复合材料,研究了煅烧温度对复合材料的影响。沉积在CNTs上的NiO颗粒形貌均匀,尺寸在30 nm以下;升高煅烧温度,能改善其结晶性。将其用作电容器电极材料,煅烧温度在300℃时的产物具有双电层效应;煅烧温度为400℃和500℃时则产生法拉第准电容效应。
Carbon nanotubes(CNTs)-based nanocomposites usually have the general properties of component materials and they would typically present unique properties different from their counterpart because of the unique physical and chemical properties of CNTs. Fe3O4/CNTs, Cu2O/CNTs and NiO/CNTs nanocomposites have been successfully synthesized by different methods in this thesis. The influence on the structure and morphology of the composites were intensively researched under different annealing temperatures, amounts of surfactant and reaction conditions.
     The precursor of Fe3O4/CNTs nanocomposites was fabricated using ethylene glycol as reductant at 160℃. The precursor was subsequently annealed under different temperatures in an inert atmosphere. The phase of Fe3O4 transformed from amorphous phase into single crystalline after calcination. The average size of Fe3O4 nanoparticles increased with increasing annealing temperature. Meanwhile, the size distribution of nanoparticles became wide with the increasing temperature. Magnetic hysteresis loop measurements revealed that Fe3O4/CNTs nanocomposites displayed superparamagnet-ic behavior under room temperature.
     Fe3O4/CNTs nanocomposites were also synthesized using diethylene glycol as reductant and sodium acetate (NaAc) as surfactant at 240℃. With the increasing amount of NaAc, the loading of Fe3O4 nanoparticles on the CNTs surface increased and the size of nanoparticles had a trend to growing. Electrochemical properties of the products were measured and the results showed that the products presented good cycling performance.
     Cu2O/CNTs nanocomposites were fabricated by solution method at different temperatures. When the temperature was below 70℃, the product was a two-phase composite including Cu2O and CNTs. As it was higher than 70℃, the product would contain metallic Cu. These Cu2O nanoparticles were agglomerated and deposited on the external surface of CNTs. The electrochemical tests proved that the reversible capacity of the product is 200 mAh g-1 and it still remained 80% of first capacity after 30 cycles.
     The precursor of NiO/CNTs was first synthesized with diethylene glycol as solvent. Then, the NiO/CNTs nanocomposites were obtained by calcining the precursor under high temperatures. The size of the NiO nanoparticles coated on CNTs was smaller than 30 nm. The crystallinity NiO nanoparticles was imporved with increasing the annealing temperature. Electrochemical results showed that when the calcination temperature at 300℃the product had obvious effect of electric double layer and that the products showed the effects of Faraday as the calcination temperature were 400℃and 500℃.
引文
[1]Komamenis R R, Roy D M. Cation-exchange properties of hydrated cements. Materials Research Society Symposium Proceedings,1984,32:347-349.
    [2]J.P. Cheng, X.B. Zhang, F. Liu, J.P. Tu, Y. Ye, Y.J. Ji and C.P. Chen. Synthesis of Carbon Nanotubes Filled with Fe3C Nanowires by CVD with Titanate Modified Palyg orskite as Catalyst. Carbon,2003,41:1965-1970.
    [3]R. Saito, M. Fujita, G. Dresselhaus and M. S Dresselhaus. Electronic structure of chiral graphene tubules. Applied Physics Letters,1992,60(18):2204-2206.
    [4]Iijima S. Helieaimierot Ubules of graPhitieearbon. Nature,1991,354:5-5.
    [5]Monthioux M. and Kuznetsov V.L. Who should be given the credit for the discovery of carbon nanotubes. Carbon,2006,44:1621-1623.
    [6]Dresselhaus M.S., Dressseelhaus G. and Saito R. Physics of carbon nanotubes. Carbon,1995, 33:883-890.
    [7]Liu M. and Cowley J.M. Structures of carbon nanotubes studied by HRTEM and nanodiffraction. Ultramicroscopy,1994,53:333-342.
    [8]Iijima S and Ichihashi T. Single-shell carbon nanotubes of 1 nm diameter. Nature,1993,363: 603-605.
    [9]C. Liu, H.T. Cong, F. Li,P.H. Tan, H.M. Cheng, K. Lu and B.L. Zhou. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge. Carbon,1999,37: 1865.
    [10]Thess A, Lee R, Nikolaev P, Dai H, Petit P, Rober J, Xu C, Lee Y, Kim S, Rinzler A, Colbert D, Scuseria G, Tomanek D, Fischer J and Smalley R. Crystalline Ropes of Metallic Carbon nanotubes. Science,1996,273:483-487.
    [11]Ivanov V, Nagy JB, Lambin P, Lucas A, Zhang XB, Zhang XF, Bernaerts D, Tendeloo GV, Amelinckx S. and Landuyt JV. The study of carbon nanotubes produced by catalyticd method. Chemical Physics letters,1994,223:329-335.
    [12]Hsu WK, Trasobares S, Terrones H, Terrones M, Grobert N, Zhu YQ, Li WZ, Escudero R, Hare JP, Kroto HW and Walton DRM. Electrolytic formation of carbon sheathed mixed Sn-Pb nanowires. Chemistry of Materials,1999,11:1747-1751.
    [13]Vander Wal RL, Ticich TM and Curtis VE. Diffusion flame synthesis of single-walled carbon nanotubes. Chemical Physics Letters,2000,323:217-223.
    [14]Libera J, and Gogotsi Y. Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon, 2001,39:1307-1318.
    [15]Huang J.Y., Yasuda H. and Mori H. Highly curved carbon nanostructures produced by ball-milling. Chemical Physics Letters,1999,303:130-134.
    [16]卢怡,朱珍平,刘振宇.催化剂对爆炸法合成碳纳米管的影响.新型炭材料,2004,19:1-6.
    [17]Lee DC, Mikulec FV and Korgel BA. Carbon nanotube synthesis in supercritical toluene.the Journal of the American Chemical Society,2004,126:4951-4957.
    [18]T.Guo, P. Nikolaev, A.G. Andrew, D.Tomanek, D.T. Colbert and R.E. Smalley. Self-Assembly of Tubular Fullerenes. Journal of Physical Chemistry,1995,99:10694.
    [19]Ajayan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implications for filling. Nature,1993,362:522-525.
    [20]J.W. Minonire, B.l.Dunlap and C.T. White. Are fullerene tubules metallic. Physical Review letters,1992,68:631.
    [21]R.A. Jiahi, J. Bragin and L. Lou. Electronic structure of short and long carbon nanotubes form first principles. Physical Review B,1999,59:9862.
    [22]韦进全,张先锋,王昆林.碳纳米管宏观体[M].北京:清华大学出版社,2006.
    [23]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [24]车仁超,梁重云,张夏丽,曹惠,夏峰,张捷,文志伟.铁纳米线填充碳纳米管材料的制备与结构分析.电子显微学报,2010,29(3):256-267..
    [25]C.H. Liang, G.W. Meng, L.D. Zhang, N.F. Shen and X.Y. Zhang. Carbon nanotubes filled partially or completely with nickel. Journal of Crystal Growth,2000,218:136-139.
    [26]Qiang Xu, Lu Zhang, and Jing Zhu. Controlled Growth of Composite Nanowires Based on Coating Ni on Carbon Nanotubes by Electrochemical Deposition Method. Journal of Physical Chemistry B,2003,107:8294-8296.
    [27]Bin Xue, Ping Chen, Qi Hong, Jianyi Lin and Kuang Lee Tan. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotube. Journal of Material Chemistry,2001,11:2378-2381.
    [28]Jitianu A, Cacciaguerra T, Benoit R, et al. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon,2004,42:1147-1151.
    [29]An G M, Yu P and Xiao M J. Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology,2008,19:275709.
    [30]Liu J W, Li X J and Dai L M. Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Advanced Materials,2006,18:1740-1744.
    [31]王秀英.功能氧化物/碳纳米管复合材料的制备与性能研究[博士学位论文].吉林:吉林大学无机化学专业,2009.
    [32]P. M. Artyukhin, O. Stephan, C. Collied, et al. Aligned carbon nanotubes arrays formed by cutting a polymer resin-nanotube composite. Science.1994,265(5176):1212-1214.
    [33]Allaoui A, Bai S, Cheng HM, and Bai JB. Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology,2002,62(15):1993-1998.
    [34]Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, and Winey KI. Aligned single-wall carbon nanotubes in conposites by melt processing methods. Chemical Physics letters,2000,330:219-225.
    [35]Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruff R, and Castano VM. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functinalization. Chemistry of Material,2003,15:4470-4475.
    [36]H.T. Pu and F.J. Jiang. Towards high sedimentation stability:magnetorheological fluids based on CNT/Fe3O4 nanocomposites. Nanotechnology,2005,16:1486-1489.
    [37]K. Raj and R. Moskowitz. Commercial applications of ferrofluids. Journal of Magnetism and Magnetic Materials,1990,85:233-245.
    [38]B. Feng, R.Y. Hong, YJ. Wu, G.H. Liu, L.H. Zhong, Y. Zheng, J.M. Ding and D.G. Wei. Synthesis of monodisperse magnetite nanoparticles via chitosan-poly(acrylic acid) template and their application in MRI. Journal of Alloys and Compounds,2009,473:356-362.
    [39]Z. Liu, J. Wang, D.H. Xie and G. Chen. Polyaniline coated Fe3O4 nanoparticle carbon nanotube composite and its application in electrochemical biosensing. Small,2008,4: 462-466.
    [40]K.Y. Dong, S.L. Su and Y.Y. Jackie. Synthesis and applications of magnetic nanocomposite catalysts. Chemistry of Material,2006,18:2459-2461.
    [41]X.T. Wen, J.X. Yang, B. He and Z.W. Gu. Preparation of monodisperse magnetite nanoparticles under mild conditions. Current Applied Physics,2008,8:535-541.
    [42]G.Y. Li, Y.R. Jiang, K.L. Huang, P. Ding and J. Chen. Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. Journal of Alloys and Compounds,2008,466:451-456.
    [43]Y. Liu, W. Jiang, S. Li, Z.P. Cheng, D. Song, X.J. Zhang and F.S. Li. Attachment of magnetic nanoparticles on carbon nanotubes using oleate as an interlinker molecule, Materials Chemistry and Physics,2009,116:438-441.
    [44]Linqin Jiang and Lian Gao. Carbon Nanotubes-Magnetite Nanocomposites from Solvotherm al Processes:Formation, Characterization, and Enhanced Electrical Properties. Chemistry of Material,2003,15:2848-2853.
    [45]Song Qu, Joseph Wang, Jilie Kong, Pengyuan Yang a and Gang Chen. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta,2007,71: 1096-1102.
    [46]S.W. Ko, M.K. Hong, H.J. Choi and B.H. Ryu. Synthesis of carbon nanotubes and iron oxide nanoparticles in MW plasmatorch with Fe(CO)5 in gas feed.leee Transactions on Magnetics, 2009,45:2503-2506.
    [47]Ying Yu, Li-Li Ma, Wen-Ya Huang, Fei-Peng Du, Jimmy C. Yu Jia-Guo Yu, Jian-Bo Wang and Po-Keung Wong. Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process. Carbon,2004,43:651-673.
    [48]吴东辉,章忠秀,汪信.沉淀法制备氧化镍纳米晶.功能材料,2005,6(36):906-907.
    [49]J.Y. Lee, K. Liang, K.H. An and Y.H. Lee. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synthetic Metals,2005,150:153-157.
    [50]李悦,陈艾,梁逵,吴孟强,徐榕青.碳纳米管/氧化镍复合电极超大容量离子电容器.电子元件与材料,2003,22(6):3-5.
    [51]Y. H. Deng, C. H. Deng, D. Yang, et al. Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. Chemical Communications,2005:5548.
    [52]X.T. Wen, J.X. Yang, B. He and Z.W. Gu. Preparation of monodisperse magnetite nanoparticles under mild conditions. Current Applied Physics,2008,8:535-541.
    [53]C. Richard, F. Balavoine, P. Schultz, T.W. Ebbesen and C. Mioskowski. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science,2003,300:775-778.
    [54]J.P. Cheng, X.B. Zhang and Y.Ye. Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes. Journal of Solid State Chemistry,2006, 179:91-95.
    [55]M.N. Zhang, L. Su and L.Q. Mao. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon,2006,44:276-283.
    [56]L. Zhang, Q.Q. Ni, T. Natsuki and Y.Q. Fu. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties. Applied Surface Science,2009,255: 8676-8681.
    [57]B. Gao, C. Peng, G.Z. Chen and G.L. Puma. Photoelectro catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method. Applied Catalysis B,2008,85:17-23.
    [58]Poizot P, Laruelle S and Grugeon S. Nature,2000,407:496-498.
    [59]刘军刚,杜芳林.还原法制备八面体结构的氧化亚铜微晶及其催化性能.稀有金属材料与工程,2007,36:736-765.
    [60]S. Grugeon, S. Laruelle, R.H. Urbina, L. Dupont, P. Poizot and J.M. Tarascona. Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium. Journal of the Electrochemical Society,2001,148(4):A285-292.
    [61]高晓红,张登松,施利毅,方建慧,曹为民.碳纳米管/SnO2复合电极的制备及其电催化性能研究.化学学报,2007,65(7):589-594.
    [62]Wu H Q,Wei X W, Shao M W, et al. Synthesis of zinc oxide nanorods using carbon nanotubes as templates. Journal of Crystal Growth,2004,265(1-2):184-189.
    [63]焦志辉,张孝彬,程继鹏,陶新永,贺狄龙.碳纳米管/ZnS复合材料的制备及其性能表征.无机材料学报,2008,23(3):491-495.
    [64]Sun J, Iwasa M, Gao L, et al. Single-walled carbon nanotubes coated with titania nanoparticles Carbon. Carbon,2004,42 (4):895-899.
    [65]Liu K C and Anderson M A. Porous Nickel Oxide/Nickel Film for Electrochemical Capacitors. Journal of the Electrochemical Society,1996,143(1):124-130.
    [66]陈艾,王有钧,陶凤波.离子注入型超大容量离子电容器.电子学报,1992,20(11):88-92.
    [67]董恩沛,蔡公和.5VDC2.2 V双电层电容器.电子学报,1984,12(5):97-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700