CO催化偶联制草酸二甲酯反应机理、催化剂和动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了CO催化偶联合成草酸二甲酯(DMO)过程中的CO偶联反应机理、CO偶联反应本征动力学、蛋壳型Pd/α-Al2O3催化剂和亚硝酸甲酯(MN)再生反应过程。CO催化偶联制备DMO是合成气经DMO制乙二醇(EG)过程的第一步。该过程主要包括两个部分:一、CO与MN反应生成DMO与NO;二、NO与甲醇、O2反应实现MN的再生。NO和MN在两个反应过程之间循环。
     通过研究本论文主要有如下结论:
     第一、分别研究了反应温度、原料气配比CO/MN和空速等操作条件对CO偶联反应的影响。随着反应温度的提高CO偶联反应速率增加明显。当反应操作条件为CO/MN=2,空速为3000h-1时,反应温度由100℃增加到140℃MN的转化率由60%增加到95%。但过高的反应温度会导致MN热分解为甲醇、甲醛和NO。为抑制MN的分解反应,反应温度应该低于其分解温度135℃。
     当其他工艺条件一定的情况下,原料气配比CO/MN存在最优值,此时DMO的时空收率最大。CO/MN大于最优值将导致CO过度占据活性中心,使DMO生成反应速率下降。但CO/MN的最优值随工艺条件的改变而改变;特别是空速对其影响最大。最佳CO/MN值随空速的增加而减小。最优CO/MN的值一般在1-2之间,CO/MN低于1时大量MN在催化剂表面分解为甲醇和甲酸甲酯(MF)。
     空速对CO偶联反应有很大影响。在不同的空速条件下,CO偶联反应过程中发生的副反应、产物选择性和最佳CO/MN值也不同。当CO偶联反应在空速较低或受外扩散影响较大的情况下,除发生生成DMO和DMC的反应外,还会发生MN催化分解生成MF和甲醇的反应。此时副产物MF和甲醇的选择性均较高。而当反应处于高空速或受外扩散影响较小的情况时,反应产物只有DMO和副产物DMC而几乎没有MF和甲醇。从提高DMO选择性的角度看,适当提高空速利于增加DMO的时空收率。
     第二、论文探讨了CO偶联反应制DMO的反应机理。通过对原料气CO和MN进入FTIR原位反应池的顺序进行调变,进行了吸附和反应的非定态响应的研究。实验结果证明,在CO偶联反应中主要存在三个过渡态中间体。第一个过渡态中间体是MN在Pd上吸附形成的CH3O-Pd-NO;第二个过渡态中间体是CH3O-Pd-NO与桥式吸附态的CO反应生成的CH3OCO-Pd-NO;第三个过渡态中间体是两分子的CH3OCO-Pd-NO发生偶联生成的双MF钯络合中间体(Pd(CH3OCO)2);最后由Pd(CH3OCO)2得到DMO。主要副产物DMC的生成来自于CH3O-Pd-NO与CH3OCO-Pd-NO之间的反应。
     在进一步的研究中还发现:只有桥式吸附态的CO参与CO偶联反应;而线式吸附态的CO虽不参与反应但会占据催化剂表面活性中心。原料气中CO分压的上升将导致催化剂表面线式吸附CO增加;而大量线式吸附CO占据催化剂表面活性中心最终引起反应速率的下降。
     由此,本文提出的CO偶联反应制DMO的反应机理如下图所示:
     第三、论文研究表明,原料气中的H2和NO对CO偶联反应有较大负面影响。实验表明,原料气中H2或NO含量的上升均会导致催化剂的活性迅速下降,这是由于H2或NO在催化剂表面与MN和CO发生竞争吸附占据活性中心引起的。但这是一个可逆的过程。
     在不同的空速条件下H2对CO偶联反应的影响程度也不相同。当反应在空速较低或受外扩散影响较大的情况下,反应产物主要是DMO、DMC和甲醇。而当反应发生在空速较高或受外扩散影响较小的情况时,反应的主要产物是DMO、DMC和MF。其原因在于,空速的增加即意味着气体线速度的增加,从而改变了气体组分的气相传质系数。当空速较小时H2由气相主体向活性中心表面的扩散速率大于CO的扩散速率;此时催化剂表面H2主要与MN的吸附物种CH3O-Pd-NO反应生成甲醇。随空速的增加CO由气相主体向活性中心表面的扩散速率也逐渐增加,催化剂表面吸附态CO增加,CH3O-Pd-NO首先与吸附态CO反应生成CH3OCO-Pd-NO,随后与H2反应生成副产物MF。
     第四、通过论文研究还表明,载体孔结构、Pd分散度和活性组分在球形催化剂中的分布是影响蛋壳型Pd/α-Al2O3催化剂活性的主要因素。通过研究发现:1、相比较比表面积和孔容而言,载体孔结构是催化剂活性的主要因素。提高α-Al2O3载体中1~10nm的孔的比例,有利于催化剂活性的提高。而具备双峰孔结构分布的载体最适合于CO偶联反应体系。2、CO偶联反应是一个结构敏感型反应,CO偶联反应速率随Pd分散度的下降而上升。3、对蛋壳型Pd/α-Al2O3催化剂,减小“蛋壳”即活性层厚度利于催化剂活性提高。最优“蛋壳”厚度为50μm。4、通过比较上述三个因素对催化剂活性的影响,发现活性组分在蛋壳型催化剂内的分布,即所谓的“蛋壳”厚度,是影响催化剂活性的首要关键因素。
     第五、根据提出的CO偶联反应机理,论文还推导出了CO偶联反应本征动力学模型。动力学实验发现CO偶联反应的控制步骤为催化剂表面的表面反应,本征动力学方程如下:其中:
     第六、本文还研究了MN再生过程。该过程分为两个部分,首先NO与O2反应生成摩尔比为1:1的NO与NO2的混合物(即N203);其次N2O3与甲醇反应生成MN。研究发现N2O3与甲醇反应生成MN属于气相反应。动力学实验得到了N203与甲醇气体反应的反应动力学方程,由于N2O3可以认为是摩尔比为1:1的NO与N02的混合物,因此在动力学方程中用NO代替N2O3,提出的动力学方程如下。
The process of CO coupling reaction to form dimethyl oxalate (DMO) is the first step of the process of producting ethylene glycol (EG) by using syngas. The process of CO coupling reaction to form DMO is composed of two processes, the catalytic coupling reaction between CO and methyl nitrite (MN) to form DMO and NO, and the reaction between NO,O2, and methanol to regenerate MN. In this dissertation, it was invetstgated the mechanism of CO coupling reaction to form DMO, the intrinsic kinetics of the CO coupling reaction, the egg-shell Pd/α-Al2O3 catalysts applied in CO coupling reaction, and the process of MN regeneration.
     The main conclusions of this dissertation are as follows:
     1. The influence of operating conditions on CO coupling reaction was investigated. It was discovered that the reaction temperature had large influence on the reaction. When the reaction temperature was increased from 100℃to 140℃, the conversion of MN increased from 60% to 95% under the operating conditions of CO/MN=2,3000h-1.But the raising of reaction temperature also resulted in MN decomposition to form methanol and formaldehyde. So, the CO coupling reaction should be carried out below the decomposition temperatue of MN,135℃.
     There was an optimal value of CO/MN with the aim of the maximum value of DMO yield. The optimal value of CO/MN could vary with changing space velocity. Generally, the optimal value of CO/MN is between 1 and 2 generally. The MN catalytic decomposition to form methanol and methyl formate (MF) would be raised if the value of CO/MN was below 1; and if the value of CO/MN was above the optimal value, the rate of DMO formation would be slow, because excess CO could occupy active centers over catalysts.
     Space velocity has great influence on the side reaction, the selectivties of products, and the optimal value of CO/MN. When the CO coupling reaction occurred under the low space velocity, by-prodcuts of MF and methanol, which were resulted from MN catalytic decomposition, could be detected. But when the reaction occurred under the high space velocity, few MF and methanol can be detected. Moverover, it was discovered that with the increasing of space velocity, the optimal value of CO/MN could decrease to 1.
     2. The mechanism of CO coupling reaction to form DMO was investigated by using in situ FTIR. It was identified three intermediates, CH3O-Pd-NO, CH3OCO-Pd-NO, and Pd(COOCH3)2 during the reaction. And the third intermediate could generate DMO. Moverover, the by-product DMC is generated from the reaction between CH3O-Pd-NO and CH3OCO-Pd-NO.
     Futhermover, the role of adsorbed CO in the reaction was investigated in this dissertation. It was discovered that only bridge bonded CO rather than linearly bonded CO participated in the reaction. With the increasing of CO partial pressure, the ratio of linearly bonded CO to bridge bonded CO increased over catalysts. It means the more linearly bonded CO the more active centers were occupied, which resulted in the slow reaction rate. The detailed mechanism is decribed as follow figure.
     3. H2 and NO could resulte in inactivation of Pd/α-Al2O3 catalysts. However, the inactivation resulted from H2 and NO is reversible; the catalysts could be reactivated by outgasing with N2.
     Furethermore, H2 could give rise to different influence on CO coupling reaction under different space velocity. When the coupling reaction occurred under the low space velocity, the addition of H2 resulted in the increasing of the selectivity of methanol, and no MF was detected. However, when the CO coupling reaction occurred under the high space velocity, the main byproduct was MF, and no methanol was detected, which is very different from the one under low space velocity. The particular phenomenon can be explained as the difference of diffusion rates from gaseous buck to catalysts surface between H2 and CO. The reaction between CH3O-Pd-NO and H2 to form methanol occurs under low space velocity. With the increasing of space velocity, the diffusion rate of CO was increased, which resulted in the increasing of adsorbed CO over catalysts. With the inceasing of adsorbed CO, CH3O-Pd-NO reacted more easily with adsorbed CO to form CH3OOC-Pd-NO than with H2 to form methanol. The reaction between CH3OOC-Pd-NO and H2 resulted in the formation of MF.
     4. There are three factors, the pore structure, Pd dispersion over catalysts, and the Pd distribution in egg-shell Pd/α-Al2O3 catalysts, affecting catalytic performance of egg-shell Pd/α-Al2O3 catalysts. It was discovered:(1) The specific surface area and pore volume of the support are not as much important as the pore distribution for the activity of Pd/α-Al2O3, and the double pore structure of the support is necessary for preparing catalysts with high activity. Especially, increasing the proportion of the pore with diameter ranging from 1 nm to 10 nm is positive for high catalytic activity. (2) The CO coupling reaction is a so-called structure sensitive reaction. (3) The shell thickness of the egg-shell Pd/α-Al2O3 catalyst with the best catalytic activity was 50μm. (4) The shell thickness of egg-shell catalysts has the greatest influence on catalytic activity in the three factors above-mentioned.
     5. The reaction between CO and MN to form DMO was investigated in a continuous flow integral-type fixed-bed reactor with the aim of kinetic modeling studies. Based on the latest work on reaction mechanism, a new kinetic model was proposed. It was discovered that the rate-determining step is the surface reaction over catalysts surface. The kinetic expression is described as follows.
     6. In present paper, The MN regeneration was composed of two reactions, the NO oxidation to N2O3 and the reaction between N2O3 and methanol to form MN. It was found that the reaction between N2O3 and methanol occurred in gaseouse phase. And the reaction was investigated in a double-stirring reactor with the aim of kinetic modeling studies. A power law rate model was used to represent the formation of MN. The expression is described as follows. PNO is used to represent PN2O3, because the mixture of NO and NO2 (NO:NO2=1:1) is considered as N2O3.
引文
[1]安军信.清洁燃料二甲醚生产技术和发展前景[J].石油技术与应用.2001,9(6):389-392
    [2]张爱华.我国石油消费市场回顾及发展趋势预测[J].石油化工技术经济.2007,23(3):30-32
    [3]蔡启瑞,彭少逸等.碳一化学中的催化作用[M].北京:化学工业出版社,1995
    [4]陈贻盾,马锦波.CO气相催化合成草酸酯及草酸乙二醇的开发[J].石油与天然气化工.1998,27(2):67-71
    [5]魏文德主编.有机化工原料大全[M].北京:化学工业出版社,1999:99-111
    [6]Eugene M G, Andre 6V K. Carboxylates in Catalytic Hydrolysis of Alkylene Oxides [P]. US 6316571,2001-11-13.
    [7]Soo H, Ream B C, Robson J H. Monoalkylene Glycol Production Using Mixed Metal Framework Compositions [P]. US4976018,1990-10-30.
    [8]William F M. Highly Selectivitive Monoalkylene Glycol Catalysts [P].EP 0529726A, 1993-03-03.
    [9]Ishino M, Tamura M; Deguchi T; et al. Mechanistic studies on direct ethylene glycol synthesis from carbon monoxide and hydrogen.1. Homogeneous rhodium catalyst [J]. J. Catal.,1992,133(2),325-331.
    [10]Franco Rivetti, Ugo Romano. Alkoxy carbonyl complexes of palladium and their role in alcohol carbonylation [J]. Journal of Organometallic Chemistry,1978,154:323-326.
    [11]张旭之,王松汉,戚以政.乙烯衍生物工学[M].北京:化学工业出版社,1995:214.
    [12]Nishimura Kenji; Uchiumi Shinichiro; Fujii Kozo, et al, Oxalic acid diesters[P]. JP 77-106790,1977-9-7.
    [13]Tahara Susumu; Fujii Kozo, Nishihira Keigo; et al. Continuous preparation of ethylene glycol [P]. EP 46983 A1,1.982-3-10.
    [14]宋若钧等.一氧化碳气相氧化偶合制草酸酯的研究.Ⅰ.催化剂的评选[J].天然气化工.1986,3:25-30
    [15]Chilba T. Process for the preparation of oxalate by ethylene glycol [J]. J. Chem. Phys.. 1964,41:1352
    [16]Kirk Othmer. Encyclopedia of Cha-nical Technology[M].3rded.1980, Sixteenth Volume.619
    [17]陈庚申,严慧敏,薛彪.一氧化碳和亚硝酸乙酯合成草酸酯和草酸[J].天然气化工.1995,4(5):5-8
    [18]Fenton D M, Steinwand P J. Preparation of oxalates [P]. US3393136.967
    [19]Fenton D M, Steinwand P J. Noble metal catalysis Ⅳ. Preparation of dialkyl oxalates by oxidative carbonylation [J]. J. Org. Chem..1974,39(5):701-703
    [20]#12
    [21]#12
    [22]#12
    [23]宇部兴产.ツヱヴ制法[P].JP 98715.1979
    [24]#12
    [25]西南化工研究院.由CO、02和乙醇合成草酸二乙酯[J].天然气化工.1982,7(2):37-39
    [26]Ube Industries, Ltd. Process for the preparation of diesters of oxalic acid[P]. EP 0108359A1.1984
    [27]Uchiumi S, Ataka K, Matsuzaki T. Oxidative reactions by a palladium-alkyl nitrite system[J]. J. Org. Chem..1999,76(3):278-289
    [28]Xuan Zhen Jiang, Yue Hua Su, Bor Jih Lee, et al. A study on the synthesis of diethyl oxalate over Pd/α-Al2O3 catalysts [J]. Appli. Catal A:Gen..2001,211:47-51
    [29]Xu Genhui, Ma Xinbin, He Fei, et al. Characteristics of catalysts for carbon monoxide coupling reaction [J]. Ind. Eng. Chem. Res..1995,34(7):2379-2382
    [30]尹平.PC-1500计算机在气相催化氧化羰化法制草酸酯实验数据处理中的应用[J].天然气化工.1986,6:7-10
    [31]. 宋若钧.草酸酯合成中载体孔结构对钯催化剂活性和选择性的影响[J].天然气化工.1993,18(2):3-5
    [32]宋若钧等.一氧化碳气相氧化偶合制草酸酯的研究.Ⅲ.亚硝酸乙酯生成的热力学分析和最佳工艺条件[J].天然气化工.1987,5:1-5
    [33]宋若钧等.一氧化碳气相氧化偶合制草酸酯的研究.Ⅳ.液体和气体流出物的色谱分析[J].天然气化工.1988,2:44-49
    [34]尹平.一氧化碳偶联制DMO及DMC体系的热力学分析[J].天然气化工.1987,4:6-12
    [35]马锦波,陈贻盾,吴茂祥等.钯络合物催化CO和亚硝酸酯合成草酸酯及其机理[J].化学工程师.1999,3:9-10
    [36]陈贻盾.合成氨铜洗回收CO气相催化合成草酸二乙酯技术[J].小氮肥.1998,4:14-16
    [37]陈庚申,薛彪,严慧敏.在Pd(acac)2络合催化剂上CO偶联合成草酸二酯的研[J].天然气化工.1991,16(4):23-24
    [38]陈贻盾.气相催化合成草酸酯连续工艺[P].CN 1054765,1991
    [39]陈庚申,陈贻盾.一氧化碳催化偶联合成草酸[P].CN 85101616,1986
    [40]张炳楷,黄存平,王金木,等.草酸酯合成催化剂[P].CN 1148589,1997
    [41]姜玄珍,王正宝,陈列平等.草酸二乙酯的气相催化合成[J].精细化工.1989,6(1):37-39
    [42]卓广澜,姜玄珍.负载钯催化剂上亚硝酸乙酯的催化分解[J].催化学报.2003, 24(7):509-512
    [43]苏跃华,姜玄珍.用负载于中孔分子筛的钯催化剂合成碳酸二乙酯[J].应用化学.2002,19(10):994-997
    [44]尤青,许文松,骆有寿.一氧化碳气相催化偶合制草酸二乙酯动力学的研究[J].浙江大学学报.1991,25(5):512-522
    [45]Zhuo G.L., Jiang X.Zh.. Catalytic decomposition of methyl nitrate over supported palladium catalysts in vapor phase[J]. React. Kinet. Catal. Lett..2002,77(2):219-226
    [46]Jiang, X. Z.. Palladium supported catalysts in CO+RONO reactions [J]. Platinum Met. Rev..1990,34(4):178-180
    [47]王保伟,马新宾,许根慧.CO气相催化合成草酸二乙酯催化剂的强度研究[J].工业催化.2003,11(10):19-22
    [48]项铁丽,李振花,房金刚等.CO气相催化偶联制草酸二乙酯反应中催化剂的失活与再生研究[J].石油化工.2003,32(4):281-284
    [49]尹东学,李振花,项铁丽等.CO气相偶联合成草酸二乙酯Pd-Fe/α-Al2O3催化剂研究[J].天然气化工.2004,29(2):20-23
    [50]王保伟,马新宾,韩森等.CO气相偶联合成草酸二乙酯钯系催化剂研究[J].天然气化工.2000,25(5):29-32
    [51]王保伟,马新宾,韩森等.CO气相氧化偶联制草酸二乙酯催化剂研究[J].燃料化学学报.2000,28(3):262-267
    [52]高正虹等.一氧化碳偶联制草酸二乙酯用Pd-Fe/α-Al2O3催化剂的表面结构[J].催化学报.2004,25(3):206-209
    [53]李振花,何翠英,尹东学等.CO催化偶联制草酸二乙酯催化剂的宏观反应动力学[J].化工学报.2005,56(12):2315-2319
    [54]马新宾,许根慧,陈锦文等.CO气相催化偶联合成草酸二乙酯动力学[J].化工学报.1995,46(1):50-56
    [55]李振花,许根慧,陈洪钫.气相法CO催化偶联制取DMO的研究[J].化学工业与工程.1991,18(4):15-19
    [56]王保伟,马新宾,许根慧.CO气相合成草酸二乙酯催化剂性能评价[J].燃料化学学报.2004,32(3):346-350
    [57]李振花,何翠英,项铁丽等.双金属钯催化剂上CO气相偶联制草酸酯的研究[J].化学反应工程与工艺.2004,20(3):280-283
    [58]王保伟,许根慧,何菲等.CO催化合成草酸酯机理研究[J].第十届全国催化学暨会议论文.2000,563-564
    [59]马新宾,徐根慧等.CO和CH3ONO在A1203负载钯铜合金催化剂上合成DMO的原位红外光谱研究[J].高等学校化学学报.1997,18(5):777-781
    [60]何琲,高正虹,宋瑛等.CO偶联临氢反应Pd-Fe/Al2O3催化剂的XPS研究[J].催 化学报.2002,23(3):223-226
    [61]李振花,宋瑛,王保伟等.CO在负载型钯金属催化剂上吸附的原位红外光谱研究[J].天然气化工.2002,27(6):25-28
    [62]李振花,许根慧,王保伟等.H2对CO气相催化偶联制草酸二乙酯反应的失活机理[J].化工学报.2003,54(1):59-63
    [63]宋瑛,李振花,高正虹等.钯系催化剂上CO气相催化偶联合成草酸二乙酯的原位红外研究[J].催化学报.2000,21(6):538-541
    [64]李振花,宋瑛,马新宾等.临氢条件下CO偶联合成草酸二乙酯反应的原位红外研究[J].天津大学学报.2003,36(1):1-4
    [65]孟凡东,许根慧,王保伟等.CO合成草酸二乙酯偶联与再生反应匹配的研究[J].石油学报.2003,19(3):58-63
    [66]王保伟,马新宾,许根慧.CO合成草酸二乙酯设备材料的选择试验[J].化学工业与工程.2001,12(2):120-124
    [67]陈镇,刘家祺,李俊台.CO偶联制草酸二乙酯分离工艺的开发[J].化学工程.2001,29(3):49-51
    [68]刘洪皋,刘家祺,李俊台.UNIFAC模型在草酸二乙酯合成体系中的应用[J].高校化学工程学报.1998,12(2):113-117
    [69]王保伟,马新宾,许根慧.一氧化碳偶联制草酸酯反应工程研究[J].化学工业与工程.1998,15(3):10-14
    [70]孟凡东,姚妙新,许根慧,郭荣群.用共轭算子法分析CO偶联反应的灵敏度[J].应用科学学报.2003,1(3):279-283
    [71]吴芹,高正虹,何琲等.CO偶联反应中氧对Pd-Fe/α-Al2O3催化剂活性的影响[J].催化学报.2003,24(4):289-293
    [72]房金刚,李振花,许根慧等.Pd-Fe/α-Al2O3催化CO偶联制草酸二乙酯催化剂临氢失活研究[J].石油化工.2003,32(12):1021-1023
    [73]高正虹,吴芹,何菲等.钯系催化剂的氨中毒研究[J].催化学报.2002,23(1):95-98
    [74]孟凡东,徐根慧,杜葩等.氢气存在下一氧化碳偶联反应的化学和性能[J].燃料化学学报.2002,30(6):573-576
    [75]王保伟,马新宾,韩森等.CO气相合成草酸二乙酯的载体研究[J].天然气化工2005,30(1):6-10
    [76]霍志国,李振花,王保伟等.载体的性质对CO气相催化偶联反应的影响[J].化学反应工程与工艺.2002,18(1):31-35
    [77]房金刚,许根慧.草酸酯合成研究进展[J].化学推进剂与高分子材料.2004,2(2):18-21
    [78]Fandong Meng, Genhui Xu, Zhenhua Li, et al. Chemical reactions and kinetics of the carbon monoxide coupling in the presence of hydrogen[J]. J. Nat. Gas Chem..2002, 11:145-150
    [79]Fandong Meng, Genhui Xua, Rongqun Guo, et al. Kinetic study of carbon monoxide coupling reaction over supported palladium catalyst[J]. Chem. Eng.& Processing. 2004,43:785-790
    [80]Fandong Meng, Genhui Xua, Rongqun Guo. Kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate over Pd-Fe/α-Al2O3 catalyst [J]. J. Mol. Catal. A:Chem..2003,201:283-288
    [81]Jingang Fang, Baowei Wang, Li Zhenhua,et al. Study on the reaction of CO coupling to oxalate [J]. React. Kinet. Catal. Lett..2003,80(2):293-301
    [82]Fandong Meng, Genhui Xu, Baowei Wang,et al. Synthesis of Diethyl Oxalate by a Coupling-Regeneration Reaction of Carbon Monoxide. J. Nat. Gas Chem.2002,11: 57-62
    [83]Jingang Fang, Zhenghua Li, Genhui Xu, et al. Effect of temperature on the deactivation of a Pd-Fe/α-Al2O3 catalyst for CO coupling to diethyl oxalate [J]. J. Nat. Gas Chem.. 2003,12:243-246
    [84]Gao Zhenghong, Liu Zhongchen, He Fei, et al. Combined XPS and in situ DRIRS study of mechanism of Pd-Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate [J]. J. Mol. Catal. A:Chem..2005,235:143-149
    [85]Zhen-hua Li, Gen-hui Xu, Pa Du, et al. Deactivation kinetics of a CO coupling reaction after addition of H2 to the system [J]. React. Kinet. Catal. Lett..2003,78(1):201-209
    [86]Zhen-hua Li, Ying Song, Pa Du, et al. Effect of hydrogen on catalytic coupling reaction of carbon monoxide to diethyl oxalate [J]. React. Kinet. Catal. Lett..2001,73 (1):135-142
    [87]Zhenghong Gao, Qin Wu, Fei He, et al. Effect of oxygen on the activity of a Pd-Fe/α-Al2O3 catalyst for CO coupling to diethyl oxalate [J]. React. Kinet. Catal. Lett..2002,76 (2):303-310
    [88]许根慧,马新宾,李振花等.气相法CO偶联再生催化循环制草酸二乙酯[P].CN1149047.1996
    [89]赵秀阁,吕兴龙,赵红钢等.气相法CO与MN偶联合成DMO用Pd/α-Al2O3催化剂的研究[J].催化学报.2004,25(2):125-128
    [90]林茜,赵秀阁,肖文德等.α-Al2O3的性质对负载钯催化剂上CO催化偶联反应的影响[J].催化学报.2006,27(10):911-915
    [91]Xiu-Ge Zhao, Qian Lin, Wen-De Xiao. Characterization of Pd-CeO2/α-alumina catalyst for synthesis of dimethyl oxalate [J]. Appli. Catal. A:Gen..2005,284: 253-257
    [92]赵红钢,肖文德,朱毓群等.气相合成草酸酯的催化剂及其制备方法[P].CN1381310.2002.
    [93]Yang Ji, Gang Liu, Wei Li, Wende Xiao. The mechanism of CO coupling reaction to form dimethyl oxalate over Pd/α-Al2O3 [J], Journal of Molecular Catalysis A:Chemical 314(2009)63-70.
    [94]Q. Lin, Y. Ji, Z.D. Jiang, W.D. Xiao, Effects of Precursors on Preparation of Pd/α-alumina Catalyst for Synthesis of. Industrial & Engineering Chemistry Research [J], Ind. Eng. Chem. Res.,46 (24) (2007):7950-7954.
    [95]T.J. Zhao, D. Chen, Y.C. Dai, W.K. Yuan, A. Holmen, Synthesis of Dimethyl Oxalate from CO and CH3ONO on Carbon Nanofiber Supported Palladium Catalysts [J]. Ind. Eng. Chem. Res.2004,43,4595-4601.
    [96]汪威,计扬,肖文德.DMO制备过程中Pd/α-Al2O3载体对钯催化剂性能的影响[J].天然气化工,2009.01,34(1):21-24
    [97]刘秀芳,计扬,肖文德.蛋壳型Pd/α-Al2O3催化剂的制备及活性[J].催化学报,2009.03,30(3):213-217
    [98]林茜,张坚等.CO偶联制DMO的动力学研究[J].石油化工.2004(33),676-677
    [99]James R., Nelson, South Charleston, W, Va. Process and reaction vessel for production of alkyl nitrite [P], US 4908466,1990-03-13.
    [100]Nishira Keigo, Tanaka Shuji, Yoshida Shinichi. Process for producing alkyl nitrite[P], EP 0911316A2,1999-04-28.
    [101]H.兰斯塞特,P.韦格纳,Z.克里斯发卢西等.制备C1~C4烷基亚硝酸酯的方法[P].CN1 107462A,1995-08-30.
    [102]H.兰斯塞特,P.韦格纳,Z.克里斯发卢西等.制备C1~C4烷基亚硝酸酯的方法[P].CN1 108238A,1995-09-13.
    [103]西平圭吾,田中秀二,吉田信一.制备亚硝酸烷基酯的方法[P].CN1218032A,1999-06-02.
    [104]单文波,黄飚,鲁文质,吴良泉,一种制备C1~C4烷基亚硝酸酯的方[P].CN1 01096340A
    [1]吴烈钧.气相色谱检测方法[M].化学工业出版社.北京,2000
    [2]朱明华.仪器分析[M].北京:高等教育出版社第三版,2001
    [1]Ried R C, Prausnitz J M, Sherwood J K. The Properties of gas and liquid (4th edition)[M]. New York:McGraw-Hill Book Compary,1987
    [2]尹平.一氧化碳偶联制草酸二甲酯及碳酸二甲酯体系的热力学分析[J].天然气化工.1987,4:6-12.
    [1]Uchiumi S, Ataka K, Matsuzaki T. Oxidative reactions by a palladium-alkyl nitrite system[J]. J. Org. Chem..1999,76(3):278-289
    [2]G.L. Zhuo, X.Z. Jiang, An Attractive Synthetic Approach to Methyl Formate from Methanol via Methyl Nitrite[J]. React.Kinet.Catal.Lett.77 (2002):219-226.
    [3]卓广斓,姜玄珍,负载钯催化剂上亚硝酸乙酯的催化剂分解[J],催化化学.2003,34(7):509-512
    [4]G.L. Zhuo, X.Z. Jiang. Catalytic decomposition of methyl nitrite over supported palladium catalysts in vapor phase [J]. React.Kinet.Catal.Lett.77 (2002):219-226.
    [5]Yang Ji, Gang Liu, Wei Li, Wende Xiao. The mechanism of CO coupling reaction to form dimethyl oxalate over Pd/α-Al2O3[J]. Journal of Molecular Catalysis A:Chemical 314(2009)63-70.
    [1]L.R. Zehner. Oxalate esters from carbon monoxide and carboxylic ortho esters [P]. US 3992436 (1976).
    [2]S. Tahara, K. Fujii, K. Nishihira, M. Matsuda, K. Mizutare. Continuous preparation of ethylene glycol [P], US 4453026 (1983).
    [3]Uchiumi S, Ataka K, Matsuzaki T.. Oxidative reactions by a palladium-alkyl nitrite system[J]. J. Org. Chem..1999,76(3):278-289
    [4]X.G. Zhao, Q. Lian, W.D. Xiao. Characterization of Pd-CeO2/α-alumina catalyst for synthesis of dimethyl oxalate [J], Appl. Catal. A:Gen.284 (2005) 253-257.
    [5]Q. Lin, Y. Ji, Z.D. Jiang, W.D. Xiao. Effects of Precursors on Preparation of Pd/α-alumina Catalyst for Synthesis of. Industrial & Engineering Chemistry Research [J], Ind. Eng. Chem. Res.,46 (24) (2007):7950-7954.
    [6]Z.H. Gao, Z.C. Liu, F. He, G.H. Xu. Combined XPS and in situ DRIRS study of mechanism of Pd-Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate [J], J. Mol. Catal. A:Chemical 235 (2005) 143-149.
    [7]F.D. Meng, G.H. Xu, R.Q. Guo, H.F. Yan, M.Q. Chen. Kinetic study of carbon monoxide coupling reaction over supported palladium catalyst [J], Chem. Eng. Pro.43 (2004) 785-790.
    [8]F.D. Meng, G.H. Xu, R.Q. Guo. Kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate over Pd-Fe/α-Al2O3 catalyst [J], J. Mol. Catal. A: Chemical 201 (2003):283-288.
    [9]T.J. Zhao, D. Chen, Y.C. Dai, W.K. Yuan, A. Holmen. Synthesis of Dimethyl Oxalate from CO and CH3ONO on Carbon Nanofiber Supported Palladium Catalysts [J]. Ind. Eng. Chem. Res.2004,43,4595-4601.
    [10]F. Rivetti, U. Romano. Synthesis of oxalates by alcohol carbonylation [J], Chim. Ind. (Milan) 62 (1980):7-12.
    [11]J. Kollar. Ethylene glycol from syngas [J], CHEMTECH 14 (1984) 504-511.
    [12]L.F. Chen, P.J. Guo, M.H. Qiao, S.R. Yan, H.X. Li, W. Shen, H.L. Xu, K.N. Fan. Cu/SiO2 catalysts prepared by the ammonia-evaporation method:Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol [J], J. Catal.,257(2008):172-180.
    [13]W. J. Bartley. Process for the preparation of ethylene glycol [P], US 4677234 (1987).
    [14]F.J. Waller. Recent achievements, trends and prospects in homogeneous catalysis [J], J. Mol. Catal.31 (1985) 123-136.
    [15]B.W. Wang, X.B. Ma, F. He, G.H. Xu. Study on the Pd system catalyst for CO coupling reaction to diethyl oxalate in gaseous phase[J], Natural gas Chem. Ind.25 (2000) 29-32.
    [16]宋瑛,李振花,高正虹,刘崇微.钯系催化剂上CO气相催化偶联合成草酸二乙酯 的原位红外研究[J].催化学报,21(6)(2000)537-541.
    [17]陈庚申,严慧敏,薛彪.一氧化碳和亚硝酸酯合成草酸酯和草酸[J].天然气化工.1995,20(4):5-9.
    [18]马新宾,许根慧等.CO气相催化偶联合成草酸二乙酯动力学[J].化工学报.1995,46(1):50-56.
    [19]梁贤振,赵维君等.CO和CH3ONO在A1203负载钯铜合金催化剂上合成DMO的原位红外光谱研究[J].高等学校化学学报.1997,18(5):777-781.
    [20]张飞跃,沙昆源.一氧化碳催化合成DMO的研究[J].广西大学学报.1999,24(3):234-237.
    [21]姜玄珍,草酸二乙酯的气相催化合成[J].精细化工.1989,6(1):37-39.
    [22]S. Ladas, H. Poppa, M. Boudart. The adsorption and catalytic oxidation of carbon monoxide on evaporated palladium particles [J]. Surf. Sci.102 (1981):151-171.
    [23]H. Cordatos, T. Bunluesin, R.J. Gorte. Study of CO, NO, and H2 adsorption on model Pd/α-Al2O3 catalysts [J]. Surf. Sci.323 (1995) 219-227.
    [24]V. Matolin, E. Gillet. Carbon monoxide disproportionation over supported palladium particles:a TPD and static SIMS study [J]. Surf. Sci.238 (1990):75-82.
    [25]I. Stara, V. Matolin. The influence of particle size on CO adsorption on Pd/alumina model catalysts [J]. Surf. Sci.313 (1994):99-106.
    [26]L.L. Sheu, Z. Karpinski, W.M.H. Sachtler. Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts [J]. J. Phys. Chem.,93 (1989),4890-4894.
    [27]X.Z. Jiang, Y.H. Su, B.J. Lee, S.H. Chien. A study on the synthesis of diethyl oxalate over Pd/α-Al2O3 catalysts [J]. Appl. Catal. A:Gen.211 (2001):47-51.
    [28]L.J. Bellamy, The Infra-red Spectra of Complex Molecules [M]. Chapman and Hall, London.1975.
    [29]C.J. Pouchert. The Aldrich Library of FT-IR Spectra, ed.1, Vol 1 [M]. Milwaukee, Wisconsin. USA.1985.
    [30]G.L. Zhuo, X.Z. Jiang. Catalytic decomposition of methyl nitrite over supported palladium catalysts in vapor phase [J]. React.Kinet.Catal.Lett.77 (2002):219-226.
    [31]J.W. Peck, D.E. Beck, D.I. Mahon, B.K. Koel. Methyl nitrite adsorption as a novel route to the surface methoxy intermediate [J]. J. Phys. Chem. B.102 (1998): 3321-3323.
    [32]A.M. Wodtke, E. J. Hinsta, Y.T. Lee. The observation of methoxy in the collision free multiphoton dissociation of nitromethane [J]. J. Chem. Phys.84 (1986):1044-1046.
    [33]T.E. Hoost, K. Otto, K.A. Laframbosie, FTIR spectroscopy of nitric oxide adsorption on Pd/Al2O3:evidence of metal-support interaction [J]. J. Catal.155 (1995):303-311.
    [34]J. W. Peck, D.I. Mahon, D.E. Beck, B.E. Koel. TPD study of the adsorption and reaction of nitromethane and methyl nitrite on ordered Pt-Sn surface alloys [J]. Surf. Sci.410 (1998):170-188.
    [35]J.W. Peck, D.I. Mahon, D.E. Beck, B. Bausenauer, B.E. Koel. TPD, HREELS and UPS study of the adsorption and reaction of methyl nitrite (CH3ONO) on Pt(111) [J]. Surf. Sci.410 (1998):214-227.
    [36]L.A. Pressley, E.D. Pylant. Surface chemistry of methyl nitrite on Ag(111):thermal and non-thermal processes [J]. J.M. White, Surf. Sci.367 (1996) 1-19.
    [37]J. Wang, B.A. Bausenauer and B.E. Koel. Nitromethane and Methyl Nitrite Adsorption on Au(111) Surfaces [J]. Langmuir 14 (1998)3255-3263.
    [38]J.R.B. Gomes, F. Illas. The adsorption of methyl nitrite on the Au(111) surface [J]. Catal. Lett.71 (2001) 31-35.
    [39]徐慧珍,王利盛,过中儒,CO在Pd-Pt/Al2O3及其单金属催化剂上的吸附型式[J].11(3)(1990):180-187.
    [40]F. Rivetti, U. Romano. Alkoxy carbonyl complexes of palladium and their role in alcohol carbonylation [J]. J. Organomet. Chem.154 (1978):323-326.
    [1]陈锦文,马新宾,许根慧.一氧化碳气相催化偶联制草酸二乙酯的动力学研究[J].化学工程与工艺.1994,11(2):13-17.
    [2]Palazov A., kadinov G., Bonet C. H.. Infrared spectroscopic study of the interaction between carbon monoxide and hydrogen on supported palladium [J]. J. catal.,74 (1982):44-49.
    [3]Dus R.. Surface reactivity of hydrogen with oxygen on Pd and Pd hydride films [J]. J., Catal.,42 (1976):334-339.
    [4]Conrad H., Ertl G., Latta E. E.. Coadsorption of hydrogen and carbon monoxide on a Pd (110) surface [J]. J. catal.,35 (1974):363-368.
    [5]Nyberg C. and Westerlund L.. The adsorption of nitric oxide on an oxygen covered Pd (100) surface [J]. Surf. Sci.,256(1991):42-49.
    [6]Kiskinova M. P., Bliznakov G. M.. Adsorption and coadsorption of carbon monoxide and hydrogen on Pd(111) [J]. Surf. Sci.,123(1982):61-76.
    [7]Zhenhua Li, Ying Song, Pa Du, Xinbin Ma, Baowei Wang, Genhui Xu. Effect of hydrogen on catalytic coupling reaction of carbon monoxide to diethyl oxalate[J]. React. Kinet. Catal. Lett.,73(2001):135-142.
    [8]李振花,许根慧,王保伟,马新宾,杜葩.H2对CO气相催化偶联制草酸二乙酯反应的失活机理[J].化工学报,54(2003):59-63.
    [9]T.E. Hoost, K. Otto, K.A. Laframbosie. FTIR spectroscopy of nitric oxide adsoption on Pd/Al2O3:evidence of metal-support interaction[J]. J. Catal.155 (1995) 303-311.
    [1]Qian Lin, Yang Ji, Zhi-Dong Jiang, Wen-De Xiao. Effects of Precursors on Preparation of Pd/α-alumina Catalyst for CO Coupling to Dimethyl Oxalate [J]. Industrial & Engineering Chemistry Research,2007,46:7950~7954.
    [2]林茜,赵秀阁,毕伟,肖文德.α-Al2O3的性质对负载钯催化剂上CO催化偶联反应的影响[J].催化学报.2006,27(10):911~915.
    [3]Yang Ji, Gang Liu, Wei Li, Wende Xiao. The mechanism of CO coupling reaction to form dimethyl oxalate over Pd/α-Al2O3[J]. Journal of Molecular Catalysis A:Chemical 314(2009)63-70.
    [4]L.L. Sheu, Z. Karpinski, W.M.H. Sachtler. Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts [J]. J. Phys. Chem.,93 (1989):4890-4894.
    [5]孙素华,王纲,王永林,等.不同扩孔方法对氧化铝载体物化性质的影响[J].工业催化.2001,9(1):62-64.
    [6]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社.2002,255
    [7]霍志国,李振花,王保伟.载体的性质对CO气相催化偶联反应的影响[J].化学反应工程与工艺.2002,18(1):31-35
    [8]汪威,计扬,肖文德.DMO制备过程中Pd/α-Al2O3载体对钯催化剂性能的影响[J].天然气化工,2009.01,34(1):21-24.
    [9]L. D. Sharma, Manoj Kumar, A. K. Saxena, Mool Chand and J. K. Gupta. Influence of pore size distribution on Pt dispersion in Pt-Sn/Al2O3 reforming catalyst [J]. Journal of Molecular Catalysis A:Chemical,185(2002),135-141
    [10]Noronha F. B., Baldanza M. A. S., Schmal M. CO and NO adsorption on alumina-Pd-Mo catalysts:effect of the precursor salts [J]. J. Catal..1999,188:270-280
    [11]Richard C D., Xenophon E V.. Nonuniformly activated catalysts [J]. Catal. Rev. Sci. Eng.,1987,29:101-112
    [12]Brunelle J P. Preparation of Catalysts Ⅱ[M]. Amsterdam:Elsevier,1979.
    [13]刘秀芳,计扬,肖文德.蛋壳型Pd/α-Al2O3催化剂的制备及活性[J].催化学报,2009.03,30(3):213-217
    [1]陈锦文,马新宾,许根慧.一氧化碳气相催化偶联制草酸二乙酯的动力学研究[J].化学工程与工艺.1994,11(2):13-17.
    [2]尤青,许文松,骆有寿.氧化碳气相催化偶合制草酸二乙酯动力学的研究[J].浙江大学学报.1991,25(5):512-522.
    [3]马新宾,许根慧,陈锦文等.CO气相催化偶联合成草酸二乙酯动力学[J].化工学报.1995,46(1):50-56.
    [4]Uchiumi S, Ataka K, Matsuzaki T. Oxidative reactions by a palladium-alkyl nitrite system [J]. J. Org. Chem.,1999,76(3):278-289
    [5]Fandong Meng, Genhui Xu. Kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate over Pd-Fe/α-Al2O3 catalyst[J]. Journal of molecular catalysis A:Chemical.2003:283-288.
    [6]林茜,张坚等.CO偶联制DMO的动力学研究[J].石油化工.2004(33),676-677.
    [7]Yang Ji, Gang Liu, Wei Li, Wende Xiao. The methanism of CO coupling reaction to form dimethyl oxalate over Pd/α-Al2O3[J]. Journal of molecular catalysis A:Chemical, 2009,204:499-507.
    [8]张瑞生,王弘轼等.过程系统工程概论[M].北京:科学出版社,2001.
    [1]James R., Nelson, South Charleston, W, Va. Process and reaction vessel for production of alkyl nitrite [P], US 4908466,1990.03.13.
    [2]Nishira Keigo, Tanaka Shuji, Yoshida Shinichi. Process for producing alkyl nitrite[P], EP 0911316A2,1999.04.28.
    [3]H.兰斯塞特,P.韦格纳,Z.克里斯发卢西等.制备C1~C4烷基亚硝酸酯的方法[P].CN1 107462A,1995.08.30.
    [4]H.兰斯塞特,P.韦格纳,Z.克里斯发卢西等.制备C1~C4烷基亚硝酸酯的方法[P].CN1 108238A,1995.09.13.
    [5]西平圭吾,田中秀二,吉田信一.制备亚硝酸烷基酯的方法[P].CN1218032A,1999.06.02.
    [6]单文波,黄飚,鲁文质,吴良泉,一种制备C1~C4烷基亚硝酸酯的方[P].CN101096340A,2008.01.02
    [7]J. C. Tracy, F. Daniels, Kinetic study of the oxidation of nitric oxide with oxygen in the pressure range 1 to 20 mm [J], J. Am. Chem. Soc.,1955,77:2033-2036.
    [8]A. H. Brittain et al., Trans. Faraday Soc., Microwave spectrum structure, low frequency vibrations, dipole moment and quadrupole coupling constants of dinitrogen trioxide [J],1969,65:1963-1974.
    [9]I. R. Beattie, Dinitrogen trioxide [J], Progr. Inorg. Chem.,1963,5:1~26.
    [10]M. Bodenstein, Formation and decomposition of the higher oxides of nitrogen [J], Z. Phys. Chem.,1922,100:68-123.
    [11]W. T. Richards, J. A. Reid, The velocity of dissociation of nitrogen tetroxide by the method of sound waves [J], J. Am. Chem. Soc.,1932,54:3014-3015.
    [12]P. J. Hoftyzer, F. J.G. Kwanten in G. Nonhebel (ed.):Gas Purification Processes for Air Pollution Control [M], Butterworths, London,1972.
    [13]H.兰斯塞特,P.韦格纳,Z.克里斯发卢西,制备C 1~C4烷基亚硝酸酯的方法[P].CN1107462A,1995.08.30.
    [14]Sugise Ryoji, Li Hirofumi, Shuji Tanaka, Process for producing alkyl nitrite [P], EP1346976A1,2003.09.24
    [15]Heinz Landscheidt, Paul Wagner, Alexander Klausener, Process for the continuous preparation of alkyl nitrites [P], US005412147A,1995.05.02
    [16]Olan S. Fruchey, method for producing C1 to C5 alkyl nitrides [P], US4980496, 1990.11.25
    [17]P.V.Danckwerts, Gas-Liquid Reactions [M], McGraw-Hill,1970.
    [18]辛志玲.一氧化氮液相络合催化氧化吸收过程的研究[D].上海:华东理工大学博士学位论文,2006
    [19]恩田格三朗,改订がス吸收[M],化学工业出版社.1981
    [20]Yao S, David L, Kinetics of NO Absorption in Aqueous Iron Bis (2,3-dimercapto-1-propanesulfonate) Solutions Using a Stirred Reactor [J], Ind. Eng. Chem.Res,1996,35: 1668~1672
    [21]胡英,徐英年,Prausnitz.J.M.,气体溶解度的分子热力学(Ⅰ)气体在非极性溶剂的Henry常数[J],化工学报,1987(1):22-33
    [22]徐英年,胡英,刘国杰,气体溶解度的分子热力学(Ⅱ)气体在极性溶剂的Henry常数[J],化工学报,1987(2):137-144.
    [23]谭天恩,金一中.传质—反应过程[M].浙江大学出版社.1990.
    [24]李振花,闫永娟,吕静.气相法亚硝酸乙酯再生反应的研究[J].天然气化工,2008(33):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700