计算机辅助催化剂配方优选及在多组分甲烷氧化偶联催化剂设计中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步,人们对资源利用的要求越来越高,同时为可持续发展,对环境保护也越来越关注。催化剂在资源利用和环境保护方面因而日益发挥着巨大的作用,而能否设计出高活性、高选择性的催化剂配方,与催化剂配方设计方法的好坏有密切的关系,特别是对于日益重要的多组分催化剂体系而言。
     传统催化剂设计方法的缺点很难在较短时间设计出优秀的配方,且实验工作量大。而基于专家系统的计算机辅助催化剂设计方法需要建立催化知识库和推理机,从效率上难以满足催化剂设计的要求。针对这些催化剂设计方法的缺点,在前人开发的人工神经网络辅助催化剂设计方法的基础上,参照前人对人工神经网络结构(包括隐含层个数和隐含层节点个数)的研究,确定了用于催化剂配方建模的人工神经网络隐含节点数选择的基本原则;选用Sigmoid函数作为用于建模的人工神经网络各层的激活函数;通过对传统BP算法、矩方法改进的BP算法和Levenberg-Marquardt方法改进的BP算法等三种神经网络学习算法的比较,认为Levenberg-Marquardt方法的收敛速度较前两种算法有明显的优势,且对初始权值的依赖较前两种算法要小,因此确定在催化剂配方建模中采用基于Levenberg-Marquardt方法的BP算法人工神经网络的学习算法;为了提高神经网络模型的精确度,确定了多轮次逐步训练的策略,使催化剂模型朝正确的方向逼近;将SWIFT方法应用于网络模型局部最优点的求解,应用计算证明这种方法的寻优速度很快,适用于有多个局部最优的问题,并将此方法得到的催化剂配方作为下一轮进一步训练的样本;针对标准遗传算法收敛速度慢、局部寻优能力差的缺点,首次将SWIFT方法和遗传算法结合构成混合遗传算法(Hybrid GA),提高优化的速度以设计出最优的催化剂配方。基于上述各点,首次提出了一种基于人工神经网络和混合遗传算法的催化剂配方设计方法。该催化剂设计方法通用性较强,无须过多初始样本,建模效率较高,特别适合多组分催化剂配方的设计。
     同时为了进一步验证和完善所建立的计算机辅助催化剂配方设计方法,并考虑到甲烷氧化偶联作为天然气综合利用的重要途径之一,而关键的催化剂开发却难有突破,故选择多组分甲烷氧化偶联配方优选作为上述设计方法的首个应用对象。而通过考察前人甲烷氧化偶联催化剂研究的成果,认为组分较少的催化体系难以胜任甲烷氧化偶联反应,而由多种过渡金属相互协同、用相应元素助催化、并用碱金属离子修饰的多组分催化剂有可能获得良好的催化性能。因此选择Zr和Mn元素作为所开发催化剂的主要组分;同时为了抑制Zr和Mn元素的深度氧化特性,用S、P和W元素作为助催化剂,并用碱金属元素进行修饰以提高反应中C2烃的选择性。由此首次设计了一种用于甲烷氧化偶联反应的六组分催化剂。
     进而,为了给基于人工神经网络和混合遗传算法的催化剂配方设计方法提供
    
    I 有效的初始样友隼,针对该六组分催化剂,应用正交设计的方法设计了25个配
    1 方,并在于惰件气体稀释的条件下,分别进行了考评。从此25个催化剂中找到
    ICfu:O,一3:l,辰应渴度为 1069 K条件下,Cfu的转化率达到21.38%,C,选
    【择。旺达到82.56O(C,烃收率为17.65%},且在10 k内活性基本不变。通过对反应
     发现Mll和Zr元素的含量对Cth转化率影响较大。同时证明多组分催化剂有可
     能获得较好的甲烷氧化偶联催化性能。
     随后,将基于人工神经网络和混合遗传算法的催化剂配方设计方法应用于此
    a 六组分甲烷氧化偶联催化剂配方的优选。以催化剂六个组分的摩尔含量为输入
    袁 层,第一和第二隐含层的节点分别为24和9,并以催化性能(包括甲烷转化率和
    n
    MC。烃选择性购输出层构成了6—24—9—2型网络用于该催化剂配方建模。
    g 基于所建立的催化剂配方模型,通过六轮的训练-优化-再训练过程,不
    儿 仅使C。烃收率的实验结果与网络预测结果的误差控制怀p3%范围内(绝对数值卜
    pn
    沉 而且设计出了多种优秀的多组分甲烷氧化偶联催化剂配方,其中催化性能最为突
    ;出的两种催化剂在前述的反应条件下,CH4转化率分别达到3 6.91%和37.79%,
    ge。烃选择性分别达到v】soo,o和刀.soo,K。烃单程收率分别为刀.oso,o和刀.vss卜
    及
    忐 在没有用情性气体稀释的同等条件下。该结果已高于目前文献报道的最好结果。
    $此外,针对直接神经网络建模的一些缺点,并进一步提高建模的效率,探索
    兰 了将PLS方法与神经网络相结合卿NNPLS方法),并应用于建立多组分甲烷氧
    甲
    愧 化偶联催化剂的模型。与直接神经网络建模相比,NNPLS方法压缩分解了变量,
    $减少了计算量,同时使模型的推广能力得到提高,有效地改善了直接神经网络建
    8 模过程中催化剂模型泛化能力较差的缺点。与线性PLS相比,N’’a--LS方法的模
    归 型精度较高,有利于以后的催化剂雌。这方面的工作是对神经网络催化剂建模
    s 过程的延续和改进,有待进一步深入的研究。
    R 最后,基于人工神经网络的他化剂配方模型均是黑箱模型o mdel,对
    t+
    中 反应过程中催化剂表面的特
With exhaust of crude oil, it becomes a main topic to find another energy. Because of larger reserves, nature gas would be replace oil to become main chemical raw material in the next years.
    
    Undoubtedly, by using methane in natural gas as reactant, it will become a strategic topic to synthesize ethylene, which is the most important raw material in chemical industry at the present time. But it should be known that design of catalyst is key to develop the chemical process. By reviewing a great deal of catalysts developed by the former researchers, it shows that the catalytic system contained 2-3 chemical elements could not get better catalytic performance, and the catalyst, which contains some interactional transition metal elements, is assistant-catalyzed by corresponding elements arM is modified by alkali metal ions, could show better performance in oxidative coupling of methane.
    
    By reviewing the main components in catalysts of Syngas, it could be found that transition metal elements could activate methane molecule efficiently, so. Zr and Mn were chosen as main components of the developing catalyst. At the same time, S, P and W were chosen as assistant-catalyst components and the catalyst was modified by some alkali metal ions in order to suppress deep oxidation of C2. A multi-component catalyst is designed based on the above considerations.
    
    25 multi-element catalysts for oxidative coupling of methane were designed by orthography-design method. And 25 catalysts were tested on a fixed-bed micro-reactor without inert gases as thinner. A better catalyst was found in these catalysts. Experimental results showed that, the Cl]4 conversion would be 21.3 8% and C2 selectivity would be 82.56% (C2 yield be 17.65%) when GHSV was 33313 rnFg%f', Cl]4 02 was 3 1 and reaction temperature was 1069 K, the catalytic active kept constant in 10 hr. A maximum CH4 conversion could be found when temperature increased gradually on some catalysts, which reason could be increasing of the parallel side-reactions. The influence of different element on catalytic performance was researched primarily.
    
    In order to design a best catalyst, artificial neural network and genetic algoritlun are applied to design a multi-component catalyst for oxidative coupling of methane. Especially for multi-component catalyst, the relations of different components m catalyst could be complex and high nonlinear, and could not be expressed by a certain analytic function. Artificial neural network is a high-nonlinear system and have stronger map function. If the complex internal relations of catalyst components could
    
    
    
    be expressed by a certain neural network, the relations between catalyst components and catalytic reaction results (such as conversion of reactant and selectivity of product) would be established by the neural network which have a certain structure, such as the number of hidden layer(s) and the number of neurons. The relations expressed by neural network can be seen as a robust catalytic reaction model. Then SWIFT (Sequential Weight Increasing Factor Technique) method which could find local maximum, and a hybrid genetic algorithm which could get global maximum, would be applied to design some better catalysts. Since the number of catalysts in the training group is not larger enough to obtain the best generalization ability for the neural network at the beginning of design, it is unavoidable to adjust the weight matrix of the trained neural network. The results of first optimization should be added to the training group, and the neural network should be trained again by using the weight matrix obtained in first training as initial weight matrix. Based on the adjusted model, some other better catalysts would be designed by SWIFT method and hybrid genetic algorithm. Rest may be deduced by analogy until the predicted results of neural network approach the experimental results of the optimal catalyst.
    
    Back-propagation algorithm, which is a sort of neural network, is widely applied in many fields, and also used in this paper. Bu
引文
[1] 黄仲涛,林维明,庞先燊等,工业催化剂设计与开发[B],华南理工大学出版社,1992.
    [2] Trimm, D. L., Design of industrial catalysts [B]. Elsevier scientific publishing company, Amsterdam-Oxford-New York, 1980.
    [3] Anderson, J. R. and Boudart, M. (Editor), Catalysis-Science and Technology [B]. Berlin, New York: Spfinger-Vefiag, 1981.
    [4] 尾崎萃主编,催化剂手册——按元素分类[B],(元素别触媒便览,触媒工学讲座第10卷中译本),《催化剂手册》翻译小组译,化学工业出版社,1982.
    [5] 松本 英之,触媒设计[B],[触媒工学讲座第5卷],日本触媒学会编,1985.
    [6] Hegedus, L L., et al., Catalyst design: Progress and perspectives [B]. Academic Press, New York, 1987.
    [7] Anderson, J. R., Structure of metallic catalysts [B]. London, New York: Academic Press, 1975.
    [8] 吉田 鄉弘,固体物性触媒作用[B],[触媒工学讲座第2卷],日本触媒学会编,1985.
    [9] Robert, B., Carmo, J P. (Editor), Computer aided design of catalyst [B]. Academic Press, New York, 1994.
    [10] Banares-Alcantara, R., Westerberg, A. W., Ko, E. I., et al., DECADE-A hybrid expert system for catalyst selection Ⅰ Expert system consideration [J]. Comput. Chem. Eng. 1987, 11 (3): 265.
    [11] Banares-Alcantara, R., Ko, E. I., Westerberg, A. W., et al., ECADE-A hybrid expert system for catalyst selection Ⅱ Final architecture and results [J]. Comput. Chem. Eng. 1988, 12: 923.
    
    
    [12] 桑原靖,滨田秀昭,61th CATSJ Meeting Abstracts, 1988, 30(2): No. A14.
    [13] Hattori, T, Niwa, H., Satsuma, A. et al., Performance of promoted SnO_2 catalysts designed by an expert system approach for oxidative dehydrogenation ofethylbenzene [J]. Appl. Catal. 1989, 50: L11.
    [14] 服部忠,鬼头繁治,触媒,1989,31 (1):9.
    [15] 伊藤建彦.触媒,1989,31 (1):15.
    [16] 服部忠,鬼头繁治,石油,1992,15(10):11.
    [17] 宫本明,久保百司.石油,1992,15(10):16.
    [18] Kito, S., Hattori, T. and Murakami, Y., Expert system approach to computer-aided design catalysts [J]. Appl. Catal. 1989, 48: 107.
    [19] Miyamoto, A. and Inui, T., Application of computer graphics to catalyst design [J]. Catal. Today. 1991, 10: 201.
    [20] Speck, H., Holderich, W., Himmel, W., et al., Computer application in the chemical industry [J]. Papers of an European symposium, Erlangen, April 23~26. 1989, VCH, Wenheim, p. 43.
    [21] 郭绣薇,计算机辅助催化剂设计专家系统[J].化工进展,1993,(3):31.
    [22] Dumesic, J. A., Milligan, B. A., Greppi, L. A., et al., A kinetic modeling approach to the design of catalysts: formulation of catalyst design advisory pro, am [J]. Ind. Eng. Chem. Res. 1987, 26: 1399.
    [23] Hu, X. D., The investigation of alcohol synthesis catalysts dissertation [D], Delaware: Delaware University, 1989.
    [24] Hu, X. D., Foley, H. C. and Stiles, A. B., Design of alcohol synthesis catalysts assisted by a knowledge-based expert system [J]. Ind. Eng. Chem. Res. 1991, 30: 1419.
    [25] 孙予罕,李永旺,秦张峰,陈诵英等,负载型催化剂溶液浸渍准备专家系统的初步研究[J].化学反应工程与工艺.1991,7(4):367.
    [26] Sun, Y. H. and Li, Y. W., Expert system approach to the preparation of supported catalyst [J]. Chem. Eng. Sci. 1992, 47: 2799.
    [27] Korting, E. and Baems, M., Computer aided innovation of new materials Ⅱ (Doyama, M., Kihara, J., et al., Edited), Elsevier Science Pubishers. Amsterdam, 1993.
    [28] 纪红兵,林维明,通用辅助催化剂设计专家系统(GACD)的建立[J].计算机与应用化学.1998,15 (3):148.
    
    
    [29] 黄遵楠,廖代伟,张鸿斌等,催化剂分子设计专家系统ESMDC及其在甲烷氧化偶联催化剂设计中的应用[J].计算机与应用化学.1996,13(3):166.
    [30] 廖代伟,黄遵楠,林银钟等,甲烷氧化偶联金属氧化物催化剂组分分子设计程序[J].厦门大学学报(自然科学版).1996,35(1):133.
    [31] 侯昭胤,戴擎镰,吴肖群,陈甘棠,人工神经网络技术在催化剂设计中的应用,Ⅰ.理论述评[J].石油化工.1997,26(10):697.
    [32] Hou, Z. Y., Dai, Q. L., Wu, X. Q., Chen, G. T., Artificial neural network of catalyst for propane ammoxidation [J]. Appl. Catal. 1997, 161:183.
    [33] 韩力群,催化剂配方的神经网络建模与遗传算法优化[J].化工学报.1999,50(4):500.
    [34] Kito, S., Hattori, T. and Murakami, Y., Estimations of the acid strength of mixed oxides by neural network [J]. Ind. Eng. Chem. Res. 1992, 31: 979.
    [35] Ito, T., Hamada, H., Kintaichi, Y. et al., Database for catalysts design [J]. Catal. Today. 1991, 10: 223.
    [36] 纪红兵,林维明,王乐夫,分形在多相催化中的应用[J].化学通报.1997,(11):21.
    [37] Pfeifer, P. and Avnir, D., Chemistry in noninteger dimensions between two and three: Ⅰ. Fractal theory of heterogenous surfaces [J]. J Chem. Phys. 1983, 79(7): 3558.
    [38] Pfeifer, P. and Avnir, D., Chemistry in noninteger dimensions between two and three: Ⅱ. Fractal surfaces of adsorbents [J]. J Chem. Phys. 1983, 79(7): 3566.
    [39] 马正飞,金叶铃,刘艳梅等,分形BET吸附模型[J].高校化学工程学报.1994,8(3):288.
    [40] 郭国霖,陈月华,唐有祺等,表面分散过程的分形研究[J].物理化学学报,1991,7(2):202.
    [41] 郭国霖,黄向东,唐有祺等,载体表面上固相分子扩散的计算机模拟[J].北京大学学报(自然科学版),1992,28(5):566.
    [42] 段世铎,林强,王积分等,分数维数对V系催化剂表面的纹理及催化性质的表征[J].高校化学工程学报.1992,13(10):1299.
    [43] Avnir, D. and Farin, D., Molecular fractal surfaces [J]. Nature, 1984, 308: 261.
    [44] Farin, D. and Avnir, D., The reaction dimension in catalysis on dispersed metals [J]. J Am. Chem. Soc. 1988, 110: 2039.
    [45] Campbell, C. J., Worldwide look at veserves and production [J]. Oil Gas J, 1997, 95(25): 42.
    [46] Pena, M. A, et al., New catalytic routs syngas and hydrogen products [J]. Appl.
    
    Catal. A, 1996. 144:7.
    [47] Herman, R. G., et al.. Development of active oxide catalysts for the direct oxidation of methane to formaldehyde [J]. Catal. Today, 1997, 37: 1.
    [48] Solymosi, R. et al., Selective oxidation of methane to benzene over molybdenum catalysts [J]. Prepr.-Am. Chem. Soc., Div. Pet. Chem., 1996, 41(1) : 147.
    [49] Choudhary, V. R., et al.. Direct aromatization of natural gas over H-gallosilicate(MFI) and Ga/H-ZSM-5 zeolites [J]. Appl. Catal. A, 1997, 162: 239.
    [50] Bacaynska, T., et al., Catalysts for HCN synthesis by Andrussov's method, modified by aluminium oxide [J]. Catal. Lett., 1997, 44: 217.
    [51] Bharadwaj, S. S., et al., HCN synthesis by ammoxidation of methane and ethane on platinum monoliths [J]. Ind. Eng. Chem. Res.,1996,35:1524.
    [52] 欧洲共同体报告, EUR13061.
    [53] Keller, G. E., Bhasin M. M., Synthesis of ethylene via oxidative coupling of methane [J]. J Catal., 1982, 73(1) : 9.
    [54] Curry-Hyde. H. E., Howe. R. F (Editor). Stud. Surf. Sci. Catal. (Natural Gas Coversion Ⅱ) [B], 1994, 81, Elsevier Science B.V.
    [55] Lee, T. C. and Oyama, S. T., Oxidative coupling of methane to higher hydrocarbons [J]. Cata Rev-Sci Eng., 1988, 30: 249.
    [56] Lunsford, J. H., et al., Lithium /magnesium oxide catalyst and method of making [P]. US P5041405.
    [57] Amenomiya. Y., Briss, V. I., Goledzinowski, M. et al., Conversion of methane by oxidative coupling [J]. Cata Rev-Sci Eng., 1990, 32: 163.
    [58] Peng, X. D., Richards, D. A. and Stair, P. C., Surface composition and reactivity of lithium-doped magnesium oxide catalyst for oxidative coupling [J]. J Catal., 1990. 121:99.
    [59] Nishiyama, T. Watanabe, T., and Aika, K., Oxidative coupling of methane over CaO catalysts promoted with alkali and alkaline earth oxide [J]. Catal. Today, 1990,6:391.
    [60] Roguleva V. G., Kondratendo, E. V., Maksimov, N. G. et al., The influence of the reaction medium of oxidative methane coupling on the nature of bulk defects of the lithium/calcium oxide system [J]. Catal. Today, 1992,13: 219.
    [61] Iwamateu, E.. and Aika, K., Kinetic analysis of the oxidative coupling of methane over Na+-doped MgO [J]. J Catal., 1989, 117: 416.
    [62] Tong, Y., Rosynek, M. P. and Lunsford, J. H., The role of sodium carbonate and
    
    oxides supported on lanthanide oxides in the oxidative dimerization of methane [J] J Catal., 1990, 126:291.
    [63] Peng, X. D. and Stair, P. C., The active phase in sodium-doped calcium oxide catalysts for oxidative coupling of methane [J]. J Catal., 1991, 128: 264.
    [64] Lehmann, L. and Baerns, M. A., Mechanistic aspects of the oxidative coupling of methane over a sodium hydroxide/calcium oxide catalyst [J]. Catal. Today, 1992, 13: 265.
    [65] Jin, Y. S., et al,, PACIFICHEM'89, 1989, 65
    [66] Hangreaves, J. S. J., Hutchings, G. T., Toyner, R. W. et al., The relationship between morphology and performance in the oxidative coupling of methane [J]. J Catal., 1992, 135: 576.
    [67] Carreiro, J. A. S. P. and Baerns, M., Oxidative coupling of methane Ⅰ alkaline earth compound catalysts [J]. J Catal., 1989, 117: 258
    [68] Carreiro, J. A. S. P. and Baems, M., Oxidative coupling of methane Ⅱ composite catalysts of basic materials [J]. J Catal,, 1989, 117: 396
    [69] Aika, K., Fujimoto, N., Kobayashi, M. et al., Oxidative coupling of methane over various metal oxides supported on strontium carbonate catalysts [J]. J Catal., 1991, 127: 1.
    [70] Chan, T. K. and Smith, K. J., Oxidative coupling of methane over cobalt-magnesium and manganese-magnesium mixed oxide catalysts [J]. Appl. Catal. A, 1990, 60: 13.
    [71] 颜其洁,甲烷氧化偶联制C_2烃催化剂及催化反应机理研究进展[J].工业催化,1993 (3):3.
    [72] 鲁灵江,谢卫国,邱发礼等,甲烷氧化偶联MgO催化剂体系研究[J].天然气化工,1996,21(1):15.
    [73] Lunsford, J. H., Hinson, P. G., Rosynek, M. P. et al., The effect of chloride ions on a Li~+-MgO catalysts for the oxidative coupling of methane [J]. J Catal., 1994, 147(1): 301.
    [74] 刘福胜,戴伟.张恩茂等,氧对甲烷在Li/Mgo催化剂上氧化偶合反应的影响[J].石油化工,1991,20(3):149.
    [75] Yamamura, M., Okado, H., Tsuzuki, N., Chaki, K. et al., Natural calcium compounds as catalysts for oxidative coupling of methane [J]. Stud. Surf. Sci. Catal. 1994, 81: 253.
    [76] Yamamura, M., Okado, H., Tsuzuki, N., Chaki, K. et al., oxidative coupling of methane over sodium-doped CaO catalysts prepared by the sol-gel method [J].
    
    Catal. Today. 1995,24:299.
    [77] Swaan H. M., Li, Y., Seshan, K. et al., The oxidative coupling of methane and the oxidative dehydrogenation of ethane over a niobium promoted lithium doped magnesium oxide catalyst [J]. Catal. Today, 1993, 16(3-4) : 537.
    [78] Hoogendam G. C., Seshan, K., Van Ommen, J. G. et al., oxidative coupling of methane over doped Li/MgO catalysts [J]. Catal. Today, 1994, 21(2-3) : 333.
    [79] 徐桂芬,王学林,谢松茂 等,稀土氧化物Sm2O3在Li/MgO催化剂在甲烷 氧化偶联反应中的促进作用[J],天然气化工, 1994,19(6) : 25.
    [80] Wang, J. and Lunsford, J. H., Evidence for the thermal generation of superoxide ions on La2O3 [J]. J Phys.Chem., 1986, 90: 3890.
    [81] Campbell, K. D., Zhang, H. and Lunsford, J. H.,. Methane activation by the lanthanide oxides [J]. J Phys.Chem., 1986, 92: 750.
    [82] Lin, C. H., Campell, K. D., Wang, J. and Lunsford, J. H., Oxidative dimerization of methane over lanthanum oxide [J]. J Phys.Chem., 1986, 90: 534.
    [83] Tong. Y., Rosynek, M. P. and Lunsford, J. H., Secondary reactions of methyl radicals with lanthanide oxides: their role in the selective oxidation of methane [J] J Phys.Chem., 1989, 93: 2896.
    [84] 李哲,金永濑,颜其洁,氧化镧催化剂上甲烷氧化偶联--不同制备方法 的比较[J],燃料化学学报, 1996,24(3) : 3.
    [85] Yamashita, H., Machido, Y. and Tomita, A., Oxidative coupling of methane with peroxide ions over barium-lanthanum-oxygen mixed oxide [J]. Appl. Catal., 1991,79:203.
    [86] Choudhary, V. R., Chaudhari, S. T., Rajput, A. M. et al., Oxidative coupling of methane to C2-hydrocarbons over lanthanum-promoted magnesium oxide catalyst [J]. J Chem. Soc. Chem. Commun., 1989(9) : 555.
    [87] Choudhary, V. R., Chaudhari, S, T., Rajput, A. M. et al., Oscillations in oxidative coupling of methane to C2-hydrocarbons over an La2O3-BaO-MgO catalyst [J]. J Chem. Soc. Chem. Commun., 1989(10) : 605.
    [88] Choudhary, V. R., Uphade, B. S. and Mulla, S. A. R., Oxidative coupling of methane over Sr-promoted La2O3 catalysts supported on low area surface porous catalyst carrier[J]. Ind. Eng. Chem. Res. 1997, 36: 3594.
    [89] Choudhary, V. R., Mulla, S. A. R. and Rane, V. H., Oxidative coupling of methane and oxidative dehydrogenation of ethane over strontium promoted rare earth oxide catalysts [J]. J Chem. Technol. Biotech. 1998.
    
    
    [90] Choudhary, V. R., Mulla, S. A. R. and Uphade, B. S., Oxidative coupling of methane over SrO deposited different commercial supports precoated La_2O_3[J]. Ind. Eng. Chem. Res. 1997, 37(6): 2142.
    [91] Filkova, D., Wolf, D., Gayko, G., et al., Experimental study on the influence of alkaline earth promoters on neoaymium oxide performance in the oxidative coupling of methane[J]. Appl. Catal. A. 1997, 159: 33.
    [92] Long, R. Q., wan, H. L., Oxidative coupling of methane over SrF_2/Y_2O_3 catalyst[J]. Appl. Catal. A. 1997, 159: 45.
    [93] 余振强,沈师孔,李树本等,La_2O_3/BaCO_3催化剂对于甲烷氧化偶联反应的催化作用[J].分子催化.1989,3(3):181.
    [94] 朴红,宿美平,毕颖丽等,La-Ba-Sn(Sm,Ce)体系催化剂上的甲烷氧化偶联反应[J].高等学校化学学报.1998,19 (2):261.
    [95] Au, C. T., He, H., Lai, S. Y., et al., The oxidative coupling of methane over BaCO_3/LaOCl catalysts [J]. Appl. Catal. A. 1997, 159: 133.
    [96] Holgado, M. J. and Rives, V., hydrogenolysis of light hydrocarbons on rhodium/titania: strong metal-support interactions and analysis of kinetic data [J]. Appl. Catal. 1988, 41: L1.
    [97] Matsuura, I., Utsumi, Y., Doi, T. et al., Oxidative coupling of methane over lithium-doped ultrafine crystalline magnesium oxide [J]. Appl. Catal. 1989, 47: 299.
    [98] Unger, R. K., Zhang, X., Lambert, R. M. et al., High selectivity catalysts for the oxidative coupling of methane: complex oxides with the rock salt structure [J]. Appl. Catal. A. 1988, 42: L1.
    [99] Lane, G. S., Miro, E. and Wolf, E. E., Methane oxidative coupling Ⅱ a study of lithium-titania-catalyzed reactions of methane [J]. J Catal. 1989, 119:161.
    [100] 马军,金永漱,颜其洁,锂-锰复氧化物催化剂上甲烷氧化偶联反应的研究[J].南京大学学报(自然科学版),1991,27:499.
    [101] Imai, H. and Tagawa, T., Oxidative coupling of methane over lanthanum aluminum trioxide [J]. J Chem. Soc. Chem. Commun. 1986(1): 52.
    [102] Machida, K. and Enyo, M., Oxidative dimerization of methane over cerium mixed oxides.and its relation with their ion-conducting characteristics [J]. J Chem. Soc. Chem. Commun. 1987, 1639.
    [103] Kharas, K. C. C. and Lunsford, J. H., Catalytic oxidation of methane over Ⅱ-Ⅳ perovskites. The role of oxygen valence fluctuation in product selectivity [J]. Washington D. C., USA: Preprints-Division of petroleum chemistry, American chemical society, 35 (2): 200.
    
    
    [104] Wu, T., Leng, Y., Yang, H. et al., The effect of lanthanide as counter ions on the oxidation activity of molybovanadophsphoric acid [J]. J Mol. Catal. 1989, 57: 193.
    [105] Vermeriren, W. J. M., Lenotte, I. D. M. L., Martens, J. A. et al., Perovskite-type complex oxides as catalysts for the oxidative coupling of methane [J]. Surf. Sci. Catal. 1991, 61(Nat. Gas Convers.): 33.
    [106] Liu, H. Y., et al., Preprints.of China-Japan Bilateral Symposium on Effective Utilization of Carbon Resources, 1991: 126.
    [107] 于春英等,第五届全国催化会议论文集,1990:B42.
    [108] Campbell, K. D., Layered and double pervoskites as methane coupling catalysts [J]. Catal. Today. 1992, 13: 245.
    [109] Campbell, K. D., Double pervoskite catalysts for oxidative coupling [P]. US P4982041.
    [110] Campbell, K. D., Low-temperature catalysts for oxidative coupling processes [P]. Eur. Pat. Appl. EP 418975.
    [111] Campbell, K. D., Pervoskite catalysts for oxidative coupling lower alkane to heavier hydrocarbons [P]. Eur. Pat. Appl. EP 418973.
    [112] Campbell, K. D., Double pervoskite catalysts for oxidative coupling of lower alkanes [P]. US P4988660.
    [113] Yan, Q. J., et al., Preprints.of China-Japan Bilateral Symposium on Effective Utilization of Carbon Resources, 1991: 211.
    [114] Petit, C., Rehspringer, J. L. Kaddouri, A. et al., Oxidative coupling of methane by pyrochlore oxide A_2B_2O_7 (A=rare earth, B=Ti, Zr, Sn): reaction between C_2 selectivity and boron-oxygen bond energy [J]. Catal. Today, 1992, 13: 409.
    [115] Gaffney, A. M., Methane conversion [P]. U. S. US 4499323.
    [116] Gaffney, A. M., Methane conversion [P]. U. S. US 4499324.
    [117] Baronetti, G. T., Scelza, O. A. and Castro, A. A., Structure of unpromoted and alkali-metal promoted MgO_x-based catalysts for oxidative coupling of methane [J]. Appl. Catal. 1990, 61 (2): 311.
    [118] 方学平,李树本,林景治等,甲烷氧化偶联W-Mn催化剂的制备及表征[J].分子催化,1992,6(4):255.
    [119] 方学平,李树本,林景治等,甲烷在W-Mn体系催化剂上氧化偶联制乙烯[J].分子催化,1992,6(6):427.
    [120] 王恒秀,甲烷氧化偶联制C_2烃催化剂的研究与开发[D].博士学位论文,浙江大学化学工程系,浙江大学,1998.
    
    
    [121] Yoon, K. J. and Tung, H. L., Oxidative coupling of methane over sodium-chloride-promoted zirconia supported on sodium-preimpregnated silica [J]. Appl. Catal. A. 1997, 159: 59.
    [122] Yoon, K. J. and Seo, S. W., The catalyst for oxidative coupling of methane prepared from zirconyl chloride and sodium pyrophosphate [J]. Appl. Catal. A. 1997, 161: L5.
    [123] Zhao, Z., Yuan, S. Yu, Z., et al., Studies of multi-component complex oxide catalysts for the oxidative coupling of methane: V. catalysts LiLa_(1-x)Ti_xO_(2+λ) (x=0.0~1.0) [J]. J Nat. Gas Chem. 1994, 3(2): 163.
    [124] Hoogendam, G. L., Sesham, K., Van Ommen, J G., et al., Oxidative coupling of methane over doped Li/MgO catalysts [J]. Catal. Today. 1994, 21(2~3): 333.
    [125] Li, X., Tomishlge, K., Fujimoto, K., Oxidative coupling of methane by adsorbed oxygen species on SrTi_(1-x)Mg_xO_(3-λ) catalysts [J]. Prepr. -Am. Chem. Soc., Div. Pet. Chem. 1996, 41(1): 138.
    [126] Mleczko, L., Gayko, G., Niemi, V M., et al., Reaction engineering studies in a polytropic fixed-bed reactor over a highly active and selective catalyst for oxidative coupling of methane [J]. Chem. Eng. Technol. 1997, 20(1): 29.
    [127] 黄凯,陈丰秋,吕德伟,多组分甲烷氧化偶联催化剂实验研究[J].天然气化工,天然气化工,2001,26(5):1.
    [128] 谢光全,甲烷氧化偶联制乙烯进展[J].天然气化工,1999,25 (4):34.
    [129] 黄凯,陈丰秋,吕德伟,计算机辅助甲烷氧化偶联催化剂设计研究[J].浙江大学学报工学版,待发表.
    [130] Huang, K., Chen, F., L(?), D., Artificial neural network aided-design of a multi-component catalyst for methane oxidative coupling [J]. Appl. Catal. A. 2001, 219: 61.
    [131] Ousuka, K. and Jinno, K., Kinetic studies on partial oxidations of methane over samarium oxides [J]. Inorg. Chim Acta. 1986, 121: 237.
    [132] Butch, R. and Tsang, S. C., Investigation of the partial oxidation of hydrocarbons on methane coupling catalysts [J]. Appl. Catal. 1990, 65: 259.
    [133] Driscoll, D. J. and Lunsford, J. H., Gas-phase radical formation during the reactions of methane, ethane, ethylene, and propylene over selected oxide catalysts [J]. J Phys. Chem. 1985, 89: 4415.
    [134] Osada, Y., Koike, S., Fukushima, T et al., Oxidative coupling of methane over Y_2O_3-CaO catalysts [J]. Appl. Catal. 1990, 59: 59.
    
    
    [135] Dubois, J. L., Bisiaux, M. and Cameron, C. J., surface studies of lanthanum oxide(La2O3) based OCM catalysts by XPS: does surface peroxycarbonate play an important role in catalyst selectivity? [J]. Stud. Surf. Sci. Catal., 1991, 61 (Nat. Gas Conversion): 107.
    [136] Korf, S. J., Roos, J. A., Derksen, J. W. H. C. et al., Oxidative coupling of methane over Ba/CaO catalysts [J]. Appl. Catal. 1990, 59: 291.
    [137] 杨廷录,丁彦,丁雪加 等,甲烷氧化偶联催化剂ThO2-La2O3/BaCO3上 活性氧物种研究[J],分子催化 1994, 8(5) : 331.
    [138] Qin. D., Ovenston, A., Villar, A., et al., Transient study of CH4 coupling over the won-stoichiometric catalyst Li0. 9Ni0. 5Co0. 5O2-x. [J]. Prepr.-Am. Chem. Soc., Div. Pet. Chem. 1996, 41(1) : 131.
    [139] 李哲,Ba-La2O3催化剂的表面碱性、活性物种对甲烷氧化偶联的影响 [J],燃料化学学报. 1998, 26(1) : 65.
    [140] Dubois, J. L. and Cameron, C. J., Common features of oxidative coupling of methane cofeed catalysts [J]. Appl. Catal. 1990, 67: 49.
    [141] Choudhary V. R. and Rane,V. H., Acidity/basicity of rare-earth oxides and their catalytic acidity in oxidative coupling of methane to C2 hydrocarbons [J]. J Catal. 1991,130:411.
    [142] Kong, J. I., Tung, T. S., Choi, J. G., et al., Catalytic Activity of LiSbTe2 for oxidative coupling of methane [J]. Appl. Catal: A. 2000, 204: 241.
    [143] Hong, J. H., Yoon, K. J., Oxidative coupling of methane over calcium chloride-promoted calcium chlorophosphate [J]. Appl. Catal: A. 2001, 205: 253.
    [144] Lin, Y., Liu, X., Xue, J., et al., Effect of pressure on oxidative coupling of methane over MgO/BaCO3 catalyst-studies of its deactivation at elevated pressure [J]. Appl. Catal: A. 1998, 168: 139.
    [145] Murata, K., Hayakawa, T., Hamakawa, S., et al., Lithium-doped sulfated-2arconia catalysts for oxidative coupling :of methane to give ethylene and ethane [J]. Catal. Today. 1998, 45: 41 .
    [146] Ozakan, U. S., Kumthekar, M. W., Karakas, G., Characterization and temperature-programmed studies over Pd/TiO2 catalysts for NO reduction with methane [J]. Catal. Today. 1998, 40: 3.
    [147] Au, C.T., Chen, K. D., Ng, C. F. et al., The modification of Gd2O3 with BaO for the oxidative coupling of methane [J]. Appl. Catal: A. 1998, 170: 81.
    [148] Yu, L., Li, W., Ducarme, V., et al., Inhibition of gas-phase oxidation of ethylene in the oxidative conversion of methane and ethane over CaO,
    
    La_2O_3/CaO and SrO-La_2O_3/CaO catalysts [J]. Appl. Catal: A. 1998, 175: 173.
    [149] Choudhary, V. R., Mulla, S. A. R., Uphade, B. S., Oxidative coupling of methane over alkaline earth oxides deposited on commercial supported precoated with rare earth oxides[J]. Fuel. 1999, 78: 427.
    [150] 王恒秀,赵德华,吕德伟,陈丰秋,含硫甲烷氧化偶联制较高级烃催化剂及制备方法[P].ZL 98 106863.4
    [151] 徐桂芬,王学林,石军雄等,多段固定床反应器中甲烷氧化偶联反应放热效应的研究[J].天然气化工.1994,19(3):4.
    [152] 吕绍洁,邱发礼.薄层固定床反应器中甲烷氧化偶联反应效应的研究.[J].天然气化工.1996,19 (3):4.
    [153] 邱发礼,吕绍洁,唐松柏等.甲烷氧化偶联制乙烯在薄层固定床中的放大实验[J].天然气化工.1996,21(3):5.
    [154] 邱发礼,吕绍洁,唐松柏等.甲烷氧化偶联制乙烯放大实验中催化剂稳定性的研究[J].天然气化工.1996,22(2):33.
    [155] Bader, R. A., Axelrod, M G., Reactor for methane conversion to higher-boiling hydrocarbons [P]. US 4855111.
    [156] Dautzenberg, F. M., Schlatter, J. C., Fox, J. M., et al., Catalyst and reactor requirements for the oxidative coupling of methane [J]. Catal. Today. 1992, 13: 503.
    [157] Do, K T., Edwards, H. and Tyler, R. J., Performance analysis of bubbling fluidized-bed reactors for the catalytic oxidative coupling of methane[J]. Stud. Sur. Sci. Catal. 1994, 81, 193.
    [158] Mleczko, L., Rothaemel, M., Andof, R. et al., Fluidized-bed reactors performance for the catalytic oxidative coupling of methane to C_(2+) hydrocarbons [J]. Fluidization Ⅶ, Potter, O. E., and Nicklin, D. J. Eds. AIChE, New York. 1992: 487.
    [159] Mleczko, L., Pannek, U., Rothaemel, M., et al., Oxidative coupling of methane over a La_2O_3/CaO catalyst. Optimization of reaction conditions in a bubbling fluidized-bed reactor [J]. Can. J Chem. Eng. 1996, 74: 279.
    [160] Mleczko, L., Pannek, U., Gayko, G., et al., Comparative studies of oxidative coupling of methane in a polytropic fixed-bed reactor and a shallow fluidized bed [J]. AIChE Symp. Ser., 1996 313: 10.
    [161] Pannek, U. and Mleczko, L., Compprehensive model of oxidative coupling of methane in a fluidized-bed reactor [J]. Chem, Eng. Sci. 1996, 51: 3575.
    [162] Pannek, U, and Mleczko, L., Effect of scale-up on the performance of a fiuidized-bed reactor for oxidative coupling of methane [J]. Chem. Eng. Sci., 1997, 52: 2429.
    
    
    [163] Pugsley, T. S. and Berruti, F., The circulating fluidized bed catalytic reactor: reactor model validation and simulation of the oxidative coupling of methane [J]. Chem. Eng. Sci. 1996, 51: 2751.
    [164] Santos, A., Santamaria, J. and Menendez, M., Oxidative coupling of methane in a vibrofluidized bed at low fluidizing velocities [J]. Ind. Eng. Chem. Res. 1995, 34: 1581.
    [165] Mleczko, L. and Marschall K. J., Performance of an internally circulating fluidized-bed reactor for the catalytic oxidative coupling of methane [J]. Can. J Chem. Eng. 1997, 75: 610.
    [166] 王晓来,张嘉宁,杨得信等,W-Mn/SiO_2甲烷氧化偶联催化剂流化床的放大实验[J].石油化工,1997,26(6):361.
    [167] Garnier, O., Shu. J. and Grandjean, B. P. A., Membrane-assisted two-step process for methane conversion into hydrogen and higher hydrocarbons [J]. Ind. Eng. Chem. Res. 1997, 36: 553.
    [168] Nozaki, T., Hashimoto, S., Omata, K., et al., Oxidative coupling of methane with membrane reactors containing lead oxide [J]. Ind. Eng. Chem. Res. 1993, 32: 1174.
    [169] Lafarga, D., Santamaria, J. and Menendez, M., Methane oxidative coupling using porous ceramic membrane reactors —1. reactors development [J]. Chem. Eng. Sci. 1994, 49(12): 2005.
    [170] Elshof, J. E., Bouwmeester, H. J. M. and Verweij, H., Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor [J]. Appl. Catal. A. 1995, 130: 195.
    [171] Coronas, J., Menendez, M. and Santamaria, J., Development of ceramic reactors with a non-uniform permeation pattern. Applieation to methane oxidative coupling [J]. Chem. Eng. Sci. 1994, 49(24A): 4749.
    [172] Langguth, J., Dittmeyer, R., Holfmann, H., et al., Studies on oxidative coupling of methane using high-temperature proton-conducting membranes [J]. Appl. Catal. A. 1997, 158: 287.
    [173] 国秀梅,陈洪钫.氧泵型催化膜反应器中甲烷氧化偶联反应(Ⅰ)氧泵型催化膜的制备及其反应性能[J].化工学报.1995,46(3):304.
    [174] 国秀梅,陈洪钫.氧泵型催化膜反应器中甲烷氧化偶联反应(Ⅱ)动力学研究[J].化工学报.1995,46(3):310.
    
    
    [175] Guo, X M., Hidajat, K. and Ching, C. B., Oxidative coupling of methane in a solid membrane reactor [J]. Ind. Eng. Chem. Res. 1997, 36: 3576.
    [176] Zeng, Y. and Lin, Y. S., Catalytic properties of yttria doped bismuth oxide ceramics for oxidative coupling of methane [J]. Appl. Catal. A. 1997, 159: 101.
    [177] 王保伟,许根慧,刘昌俊,陈洪钫.电促进甲烷氧化偶联合成碳二烃研究[J],化工进展,2001,4:14.
    [178] Seimanides, S. and Stoukides, M., Catalytic oxidation of methane on polycrystalline palladium supported on stabilized zirconia [J]. J Electrochem. Soc. 1986, 133: 1535.
    [179] White J. H., Needlham, E. A., Cook, R. L. et al., Heterogeneous methane oxidative dimerization using pervoskite catalysts [J]. Solid State Ionics. 1992, 53~56: 149.
    [180] Otsuka, K, Jinno, K. and Morikawa, A., Active and selective catalysts for the synthesis of C_2H_4 and C_2H_6 via oxidative coupling of methane [J]. J Catal. 1986, 100: 358.
    [181] Mazanec, T. J., Cable, T. L. and Frye, T. G., Electrocatalytic cells for chemical reaction [J]. Solid State Ionics. 1992, 53~56:111.
    [182] Steele, B. C., Kelly, I., Middleton, H. et al., Oxidation of methane in solid state electrochemical reactors [J]. Solid State Ionics. 1988, 28~30:1547.
    [183] Kuchynka, D. J., Cook, R. L. and Sammells, A. F., Electrochemical natural gas conversion to more valuable species [J]. J Electrochem. Soc. 1991, 138: 1284.
    [184] Otsuka, K., Yokyama, S. and Morikawa, A., Catalytic activity and selectivity control for oxidative coupling of methane by oxygen pumping through yttria-stabilized zirconia [J]. Chem. Lett. 1985(3): 319.
    [185] 刘青,杨廷录,沈师孔,甲烷氧化偶联反应与分离—体化研究[J].石油与天然气化工,1996,25(1):1.
    [186] Green, M L H., Tsang, S C., et al., High yield synthesis of propanol from methane and air [J]. Catal. Lett. 1992, 13(4): 341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700