结构调节对以金属大环为结构特征的配合物性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机配位化合物由于其结构的多样性和可调控性以及在催化、磁性、气体分离与吸附、非线性光学等诸多材料领域有着优异的潜在应用前景,已经成为近二十年来无机化学领域发展最为迅速的前沿方向之一。该研究方向当前的主要任务是设计合适的构筑单元并采用相关的晶体工程策略来构筑具有预期结构和特殊性质的晶体材料,并在此基础上深入研究影响晶体材料性能的影响因素,探索晶体结构与性能之间的关系。本论文致力于通过调控溶剂体系及选用不同辅助试剂等手段,以一个刚性不对称三氮唑衍生物5'-(pyridin-2-yl)-2H,4'H-3,3'-bi(1,2,4-triazole)(H2pbt)为有机配体,并选择特定的过渡金属离子来构筑具有结构新颖和优良性能的框架配合物。本论文得到十二个以金属大环为结构特征的功能优异的配位聚合物,并系统地研究了溶剂体系、客体分子及抗衡离子等对这些配位聚合物的磁性及催化性能的影响。
     本论文主要分为以下四个部分:
     1)通过调节溶剂体系和反应条件,H2pbt与CuSO4·5H2O自组装形成了三个以十二核铜金属大环为结构特征的三维孔洞化合物。磁性测试结果表明由双三氮唑桥连的双核铜离子之间一般存在较强的反铁磁耦合作用,并且这种耦合作用随着三氮唑桥连的双核铜体系的对称性的提高而增强。这三个配合物的在苯乙炔(1-ethynylbenzene)和2-恶唑烷酮(oxazolidin-2-one)氧化偶联反应体系中的催化效果表明配合物的催化性能不仅与配合物的空腔大小有关系,也与配合物的稳定性有很大关系。
     2)水热条件下,H2pbt与FeSO4·7H2O在辅助剂硫氰酸钾的作用下自组装形成三个铁的配合物。其中配合物3-1通过失去一个游离的溶剂分子而转变成配合物3-2。57Fe穆斯堡尔谱和XPS证明在转变过程中有7%的中心金属离子有高自旋态转变为了低自旋态,伴随着这个溶剂水分子的脱附,晶体颜色由3-1的金黄色变为3-2的暗红色,同时配合物3-1和3-2的磁性和催化性能也有很大不同。另外,我们还测试并讨论了配合物3-3和3-4的磁性。
     3)水热条件下,H2pbt和CoCl2·6H2O及Mn(OAC)2·4H2O为得到三个以八核锰金属大环为结构特征的配位化合物。磁性测试结果表明由双三氮唑桥连的双核钴或双核锰之间也存在反铁磁耦合作用。
     4)同样以H2pbt和CuSO4·5H2O为原料,在5-氨基-间苯二甲酸的辅助作用下得到两个同构的Cu(I)/Cu(II)混价三维笼状化合物。抗衡离子的不同导致两个配合物在所考察的两个催化反应体系中有着不同的催化活性。
Coordination polymers or metal organic frameworks (MOFs) have been one ofthe most interesting research field in the last two decades, mainly due, on one hand,to the fact that their aesthetically pleasing structures and, on the other hand, to theirpromising potential applications in heterogeneous catalysis, magnetism, gas storageand photochemistry. The main challenge in this field is to design novel building unitand explore advanced crystalline metal-organic materials with more superiorproperties, and theen to determine the influence on the properties of MOFs andunderstand relationship between structure and properties. In this paper, with the aimof preparing novel metal-organic materials with intriguing structures and goodproperties, we select5'-(pyridin-2-yl)-2H,4'H-3,3'-bi(1,2,4-triazole)(H2pbt), anasymmetric triazolate derivative, as a ligand, and obtain12newmetallamacrocycle-based or cages-based metal-organic frameworks with specialproperties under the specific transition metal ions and auxiliary reagents.
     This work includes the following four parts:
     1) Combine with H2pbt and CuSO4·5H2O, three dodecamericmetallamacrocycle-based3D frameworks have been synthesized. The magneticmeasurement results reveal that there are strong antiferromagnetic couplingsbetween the dual-copper ions bridged by doubly N1,N2-triazoles, and the higer thesymmetry of the bridged dinuclear, the stronger the antiferromagnetic couplingbetween the dinuclear. The catalytic property measurement results of these MOFs inthe oxidative coupling reaction show that the catalytic activity of the MOFs is notonly associated with the cavity size of MOFs, but have a great relationship with thestability of the MOFs.
     2) Three Fe-based MOFs have been synthesized by the reactions of H2pbt withFeSO4·7H2O in the presence of KSCN under solvothermal conditions. Interestingly,crystals of3-1allows to stand at160°C for one day undergoing an irreversible lostof one free water molecules to yield {[Fe2(pbt)2(H2O)2]·H2O}n(3-2) accompaniedby a color change from yellow to deep red. Moreover, the dehydration triggers the noticeable changes in catalytic and magnetic properties. These property changes areattributed to the high spin to low spin transition of7.1%center Fe(II), which isdemonstrated by57Fe M ssbauer spectra, XPS, and UV/Vis absorption spectra.
     3) Reaction of H2pbt with CoCl2·6H2O or Mn(OAC)2·4H2O generates threeoctanuclear metallamacrocycle-based3D MOFs. The magnetic measurement resultsreveal that there are weak antiferromagnetic couplings between the dual-cobalt ordual-manganese ions bridged by double N1,N2-triazoles.
     4) Under hydrothermal conditions, the ligand H2pbt with CuSO4·5H2O in thepresence of kCl and5-amino-isophthalic acid give rise to two Cu(I)/Cu(II)-based3D metal-organic frameworks. The catalytic property measurement results show thatalthough with identical frame structures these two Cu(I)/Cu(II)-based MOFs exhibitdifferent catalytic activity because the different counterions in the cages.
引文
[1]. Ball P. Bright Earth: Art and the Invention of Color, Farrar, Straus and Giroux, New York,2001.
    [2].(a) Buser H., Schwarzenbach D., Petter W., Ludi A. Inorg. Chem.,1977,16,2704-2708;(b)Herren F., Fischer P., Ludi A. Inorg. Chem.1908,19,956-959.
    [3].(a) Zhdanov H., Acad C. R. Sci. URSS,1941,31,350-358;(b) Shugam F., Zhdanov H. ActaPhysiochim. URSS,1945,20,247-252.
    [4].(a) Powell H.M., Rayner J.H. Nature,1949,163,566-569;(b) Rayner J.H., Powell H.M. J.Chem. Soc.,1958,319-322.
    [5].(a) Iwamoto T., Nakano T., Miyoshi T., Miyamoto T., Sasaki Y. Inorg. Chim. Acta,1968,2,313-318;(b) Miyoshi T., Iwamoto T., Sasaki Y. Inorg. Nucl. Chem. Lett.,1970,6,21-28.
    [6].(a) Vranka R.G., Amma E.L. Inorg. Chem.,1966,5,1020-1023;(b) Santoro A., Mighell A.D.,Reimann C.W. Acta Crystallogr. Sect. B,1970,26,979.
    [7]. Kinoshita Y., Higuchi T., Saito Y. Bull. Chem. Soc. Jpn,1959,32,1221-1225.
    [8].(a) Kitazawa, T.; Nishikiori, S.; Kuroda, R.; Iwamoto, T. Two novel metal-complex hoststructures consisting of cyanocadmate coordination polyhedral. Clay-like and Zeolite-likestructures. Chem. Lett.1988,459-561.(b) Kitazawa T., Nishikiori S., Kuroda R. Iwamoto T.Novel clathrate compound of cadmium cyanide host with an adamantine-like cavity.Cadmium cyanide-carbon tetra-chloride. Chem. Lett.1988,1729-1731.
    [9]. Hoskins B.F., Robson R. Infinite polymeric frameworks consisting of three dimensionallylinked rod-like segments. J. Am. Chem. Soc.1989,111,5962.
    [10].(a) Wells A.F. Three-dimensional Nets and Polyhedra, Wiley-Interscience, New York,1977;(b) Wells A. F. Further Studies of Three-dimensional Nets, ACA Monograph No.8, AmericanCrystallographic Association, Knoxville, TN,1979;(c) Wells A.F. Structural InorganicChemistry,15th edn, Oxford University Press, Oxford,1984.
    [11] Stamatatos T. C., Vlahopoulou G., Raptopoulou C. P., Psycharis V., Escuer A., Christou G.,Perlepe s S. P. Single-Strand Molecular Wheels and Coordination Polymers in Copper(II)Benzoate Chemistry by the Employment of α-Benzoin Oxime and Azides: Synthesis,Structures, and Magnetic Characterization. Eur. J. Inorg. Chem.2012,19,3121-3131.
    [12]Frey M., Harris S. G., Holmes J. M., Nation D. A., Parsons S., Tasker P. A., Winpenny R. E. P.Elucidating the Mode of Action of a Corrosion Inhibitor for Iron. Chem. Eur. J.2000,6,1407-1415.
    [13] Cadiou C., Murrie M., Paulsen C., Villar V., WernsdorferW. R. E., Winpenny P. Studies of anickel-based single molecule magnet: resonant quantum tunnelling in an S=12molecule.Chem. Commun.,2001,2666–2667
    [14] Moon D., Song J., Lah M. S.2D Layered metal–organic frameworks built using ahexanuclear metallamacrocycle and an octanuclear metallamacrocycle as supramolecularbuilding blocks. CrystEngComm,2009,11,770–776.
    [15] Prakash M. J., Lah M. S. Metal–organic macrocycles, metal–organic polyhedral andmetal–organic frameworks. Chem. Commun.,2009,3326–3341
    [16] Li H., Han Y.-F., Lin Y.-J., Guo Z.-W., Jin G.-X. Stepwise Construction of DiscreteHeterometallic Coordination Cages Based on Self-Sorting Strategy. J. Am. Chem.Soc.,2014,136,2982–2985
    [17](a) Bilbeisi R. A., Zarra S., Feltham H. L. C., Jameson G. N. L., Clegg J. K., Brooker S.,Nitschke J. R. Guest Binding Subtly Influences Spin Crossover in an FeII4L4Capsule. Chem.Eur. J.2013,19,8058-8062.(b) Smulders M. M. J., Jimnez A., Nitschke J. R. IntegrativeSelf-Sorting Synthesis of a Fe8Pt6L24Cubic Cage. Angew. Chem. Int. Ed.2012,51,6681-6685.
    [18] Bunzen J., Iwasa J., Bonakdarzadeh P., Numata E., Rissanen K., Sato S., Fujita M.Self-Assembly of M24L48Polyhedra Based on Empirical Prediction. Angew. Chem. Int. Ed.2012,51,3161-3163.
    [19](a)Dhakshinamoorthy A., Alvaro M., Garcia H. Commercial metal-organic frameworks asheterogeneous catalystsw. Chem. Commun.,2012,48,11275–11288.(b)Dhakshinamoorthy A.,Alvaro M., Garcia H. Metal-Organic Frameworks as Heterogeneous Catalysts for theRegioselective Ring Opening of Epoxides. Chem. Eur. J.2010,16,85308530-8536.
    [20] Wang J., Wang C., Lin W. Metal Organic Frameworks for Light Harvesting andPhotocatalysis. ACS Catal.2012,2,26302640.
    [21] Hou Y., R. Sun W., Zhou X., Wang J., Li D. A copper(I)/copper(II)-salen coordinationpolymer as a bimetallic catalyst for three-component strecker reactions and degradation oforganic dyes. Chem. Commun.,2014,50,2295-2297.
    [22] Wu C., Hu A., Zhang L., Lin W. A Homochiral Porous Metal-Organic Framework for HighlyEnantioselective Heterogeneous Asymmetric Catalysis. J. AM. CHEM. SOC.2005,127,8940-8941.
    [23] Mo K., Yang Y., Cui Y. A Homochiral Metal Organic Framework as an EffectiveAsymmetric Catalyst for Cyanohydrin Synthesis. J. Am. Chem. Soc.2014,136,17461749.
    [24] R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature,1993,365,141.
    [25] Eleni E. M., Christos L., Wolfgang W., Vassilios N., George C., Anastasios J. T. InducingSingle-Molecule Magnetism in a Family of Loop-of-Loops Aggregates: HeterometallicMn40Na4Clusters and the Homometallic Mn44Analogue. J. Am. Chem. Soc.2010,132,16146–16155.
    [26] Mereacre V. M., Ako A. M., Clerac R., Wernsdorfer W., Filoti G., Bartolome J., Anson C. E.,Powell A. K. A Bell-Shaped Mn11Gd2Single-Molecule Magnet, J. Am. Chem. Soc.2007,129,9248-9249.
    [27] Caneschi A., Gatteschi D., Lalioti N., Sangregorio C., Sessoli R., Venturi G., Vindigni A.,Rettori A., Pini M. G., Novak M. A., Angew. Chem. Int. Ed.2001,40,1760-1778.
    [28] Zhang W.-X., Shiga T., Miyasaka H., Yamashita M., New Approach for DesigningSingle-Chain Magnets: Organization of Chains via Hydrogen Bonding between Nucleobases,J. Am. Chem. Soc.,2012,134(16),6908–6911.
    [29] Toma L. M., C. Ruiz-Perez, Pasan J., Wernsdorfer W., Lloret F., Julve M. MolecularEngineering To Control the Magnetic Interaction between Single-Chain Magnets Assembledin a Two-Dimensional Network. J. Am. Chem. Soc.2012,134,1526515268.
    [30] Hayashi H., A. C téP., Furukawa H., O'Keeffe M., Yaghi O. M., A Zeolite ImidazolateFrameworks Nature Mater.,2007,6,501-506.
    [31].Banerjee R, Phan A., Wang B., Knobler C., Furukawa H., O’Keeffe M., Yaghi O. M.High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2Capture. Science,2008,319,939-943.
    [32](a) Karagiaridi O., Lalonde M. B., Bury W., Sarjeant A. A., Farha O. K., Hupp J. T. OpeningZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology withUnsubstituted Linkers. J. Am. Chem. Soc.,2012,134,18790–18796.(b) Sadakiyo M., KasaiH., Kato K., akataM. Yamauchi T, M. Design and Synthesis of Hydroxide Ion–ConductiveMetal–Organic Frameworks Based on Salt Inclusion. J. Am. Chem. Soc.,2014,136,1702–1705.(c) Esken D., Turner S., Wiktor C., Kalidindi S. B., Tendeloo G. V., Fischer R. A.GaN@ZIF-8: Selective Formation of Gallium Nitride Quantum Dots inside a ZincMethylimidazolate Framework. J. Am. Chem. Soc.,2011,133,16370–16373.
    [33] Li H., Eddaoudi M., O'Keeffe M., Yaghi O. M. Design and synthesis of an exceptionallystable and highly porous metal-organic framework. Nature,1999,402,276-279.
    [34] Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O Keeffe M., Yaghi1O. M. SystematicDesign of Pore Size and Functionality in Isoreticular MOFs and Their Application in MethaneStorage. Science,2002,295,469-472.
    [35] Llewellyn P. L., Bourrelly S., Serre C., Vimont A., Daturi M., Hamon L., De Weireld G.,Chang J.-S., Hong D.-Y., Hwang Y. K., Jhung S. H., Férey G. High Uptakes of CO2and CH4in Mesoporous MetalsOrganic Frameworks MIL-100and MIL-101. Langmuir,2008,24,7245-7250.
    [36](a) Jiang H., Feng D., Wang K., Gu Z., Wei Z., Chen Y., Zhou H.-C. An Exceptionally Stable,Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence. J. Am.Chem. Soc.,2013,135,13934–13938.(b)Gao Q., Xie Y., Li J., Yuan D., Yakovenko A. A.,Sun J., Zhou H.-C. Tuning the Formations of Metal_Organic Frameworks by Modification ofRatio of Reactant, Acidity of Reaction System, and Use of a Secondary Ligand. Cryst. GrowthDes.2012,12,281–288
    [37] Halder G. J., C. Kepert J., Moubaraki B., Murray K. S., Cashion J. D. Guest-Dependent SpinCrossover in a Nanoporous Molecular Framework Material. Science,2002,298,1762-1765.
    [38] Liu Q., Ma J., Dong Y. Adsorption and Separation of Reactive Aromatic Isomers andGeneration and Stabilization of Their Radicals within Cadmium(II)-Triazole Metal-OrganicConfined Space in a Single-Crystal-to-Single-Crystal Fashion. J. AM. CHEM. SOC.2010,132,7005–7017.
    [39] Bao X., Shepherd H. J., Salmon L., Tong M. The Effect of an Active Guest on the SpinCrossover Phenomenon. Angew. Chem. Int. Ed.2013,52,1198-1202.
    [40] Craig G.A., ostaJ. S. C, Teat S. J., Roubeau O., A. K., Aromí G. Multimetastability in aSpin-Crossover Compound Leading to Different High-Spin-to-Low-Spin RelaxationDynamics. Inorg. Chem.,2013,52,7203–7209.
    [41] Garcia Y., Robert F., Naik A. D., Zhou G., Tinant B., Piraux L. Spin Transition Charted in aFluorophore-Tagged Thermochromic Dinuclear Iron(II) Complex. J. Am. Chem.Soc.2011,133,15850–15853.
    [42](a) Huang S.-L., Li X.-X., Shi X.-J. et al. Structure extending and cation exchanged of Cd(II)compounds inducing fluorescence signal mutation. J. Mater. Chem.2010,20,56955699.(b)Dinca M., Long J.R. High-Enthalpy Hydrogen Adsorption in Cation-Exchanged of theMicroporous Metal-Organic Framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2J. AM. CHEM.SOC.2007,129,11172-11176.
    [43] Zhang Z., Wojtas L., Zaworotko M. J. Stepwise Transformation of the Molecular BuildingBlocks in a Porphyrin-Encapsulating Metal Organic Material. J. Am. Chem. Soc.,2013,135,5982–5985.
    [44] Das S., Kim H., Kim K. Metathesis in Single Crystal: Complete and Reversible Exchange ofMetal Ions Constituting the Frameworks of Metal-Organic Frameworks. J. Am. Chem.Soc.,2009,131,3814–3815.
    [45] Li T., M. Kozlowski T., Blakely M. N., Rosi N. L. Stepwise Ligand Exchange for thePreparation of a Family of Mesoporous MOFs. J. Am. Chem. Soc.,2013,135,11688–11691.
    [38] Mallick A., Garai B., Banerjee R. Hydrolytic Conversion of a Metal–Organic Polyhedroninto a Metal-Organic Framework. Angew. Chem. Int. Ed.2013,52,13755–13759.
    [46] Farha,O. K., Shultz A. M., Nguyen S. T., Hupp J. T. Active-Site-Accessible, PorphyrinicMetal_Organic Framework Materials. J. Am. Chem. Soc.2011,133,5652–5655.
    [47] Lykourinou V., Chen Y., Wang X., Ming L., Ma S. Immobilization of MP-11into aMesoporous Metal_Organic Framework, MP-11@mesoMOF: A New Platform forEnzymatic Catalysis. J. Am. Chem. Soc.,2011,133,10382–10385.
    [48] Jiang H., Liu B., Akita T., Haruta M. Xu Q. Au@ZIF-8: CO Oxidation over GoldNanoparticles Deposited to Metal-Organic Framework. J. AM. CHEM. SOC.2009,131,11302–11303.
    [49] Dong M., Zhao M., Zou C., Wu C. A Luminescent Dye@MOF Platform: EmissionFingerprint Relationships of Volatile Organic Molecules. Angew. Chem. Int. Ed.2013,52,11256-11261.
    [1](a) Solomon E. I., Sundaram U. M., Machonkin T. E. Multicopper Oxidases and Oxygenases.Chem. ReV.1996,96,2563;(b) Kaim W., Rall J., Copper—A “Modern” Bioelement. Angew.Chem. Int. Ed.1996,35,43;(c) Lam K. F., Kassab H., Pera-Titus M., Yeung K. L., Albela B.,Bonneviot L. MCM-41“LUS”: Alumina Tubular Membranes for Metal Separation inAqueous Solution. J. Phys. Chem.2011,115,176–187.
    [2](a) Kahn O., Competing spin interactions and degenerate frustration for discrete molecularspecies. Chem. Phys. Lett.1997,265,109;(b) Cauchy T., Ruiz E. and Alvarez S.,Magnetostructural Correlations in Polynuclear Complexes: The Fe4Butterflies. J. Am. Chem.Soc.2006,128,15722–15727;(c) Coronado E., Dunbar K.R., Preface for the Forum onMolecular Magnetism: The Role of Inorganic Chemistry. Inorg. Chem.2009,48,3293–3295.
    [3](a) Wu M., Wei W., Gao Q., Yuan D., Huang Y., Jiang F. and Hong M., Hydrogen-BondedHelical Array, Sodium-Ion-Mediated Head-to-Tail Chain, and Regular Ionic Bilayer:Structural Diversities of p-Sulfonatothiacalix[4]arene Tetranuclear Cluster Units. Cryst.Growth Des.2009,9,1584–1589;(b) Sun D. F., Cao R., Sun Y. Q., Bi W. H., Yuan D. Q., ShiQ. and Li X., Syntheses and structures of two novel copper complexes constructed fromunusual planar tetracopper(II) SBUs. Chem. Commun.2003,1528–1529.
    [4](a) Nellutla S., Tol J., Dalal N. S., Bi L. H., Kortz U., Keita B., Nadjo L., Khitrov G. A. andMarshall A. G., Magnetism, Electron Paramagnetic Resonance, Electrochemistry, and MassSpectrometry of the Pentacopper(II)-Substituted Tungstosilicate[Cu15(OH)4(H2O)2(A-α-SiW9O33)2]0-, A Model Five-Spin Frustrated Cluster. Inorg. Chem.2005,44,9795;(b) Han Z. B., Zhang G. X., Zeng M. H., Yuan D. Q., Fang Q. R., Li J. R.,Ribas J. and Zhou H. C., Unprecedented Marriage of a Cationic Pentanuclear Cluster and a2DPolymeric Anionic Layer Based on a Flexible Tripodal Ligand and a CuIIIon. Inorg. Chem.2010,49,769–771.
    [5](a) Ruiz E., Cano J., Alvarez S., Caneschi A. and Gatteschi D., Theoretical Study of theMagnetic Behavior of Hexanuclear Cu(II) and Ni(II) Polysiloxanolato Complexes. J. Am.Chem. Soc.2003,125,6791–6794;(b) Mohamed A. A., Ricci S., Burini A., Galassi R.,Santini C., Chiarella G. M., Melgarejo D. Y. and Fackler J. P., Halide and NitriteRecognizing Hexanuclear Metallacycle Copper(II) Pyrazolates. Inorg. Chem.,2011,50,1014–1020.
    [6](a) Ferrer S., Aznar E., Lloret F., Casti eiras A., Liu-González M. and Borrás Joaquín,One-Dimensional Metal Organic Framework with Unprecedented Heptanuclear Copper Units.Inorg. Chem.2007,46,372–374;(b) Zhai Q. G., Lu C. Z., Wu X. Y. and Batten S. R.,Coligand Modulated Six-, Eight-, and Ten-Connected Zn/Cd-1,2,4-Triazolate FrameworksBased on Mono-, Bi-, Tri-, Penta-, and Heptanuclear Cluster Units. Crystal Growth&Design2007,7,2332–2342;(c) Majumder S., Sarkar S., Sasmal S., Sa udo E. C. and Mohanta S.,Heterobridged Dinuclear, Tetranuclear, Dinuclear-Based1-D, and Heptanuclear-Based1-DComplexes of Copper(II) Derived from a Dinucleating Ligand: Syntheses, Structures,Magnetochemistry, Spectroscopy, and Catecholase Activity. Inorg. Chem.2011,50,7540–7554.
    [7](a) Lu J. Y. and Babb A. M., The First Triple-Layer2-D Coordination Polymer:
    [Cu3(bpen)(IN)6(H2O)2]. Inorg. Chem.2001,40,3261-3262;(b) Lu J. Y. and Babb A. M., Anunprecedented interpenetrating structure with two covalently bonded open-frameworks ofdifferent dimensionality. Chem. Commun.2001,821-822;(c) Lu J. Y. and Schauss V., Crystalengineering of a three-dimensional coordination polymer based on both covalent and O–H…Ohydrogen bonding interactions of bifunctional ligands. CrystEngComm.2001,26,111-113.
    [8] Mezei G., Zaleski C. M. and Pecoraro V. L., Structural and Functional Evolution ofMetallacrowns. Chem. Rev.2007,107,4933-5003.
    [9](a) Zhao J. A., Mi L. W., Hu J. Y, Hou H. W. and Fan Y. T., Cation Exchange Induced TunableProperties of a Nanoporous Octanuclear Cu(II) Wheel with Double-Helical Structure. J. Am.Chem. Soc.2008,130,15222–15223;(b) Jeazet H. B. T., Gloe K., Doert T., Kataeva O. N.,Jager A., Geipel G., Bernhard G., Buchnerd B. and Gloe K., Self-assembly of neutralhexanuclear circular copper(II) meso-helicates: topological control by sulfate ions. Chem.Commun.2010,46,2373–2375.
    [10](a) Tashiro S., Tominaga M., Kawano M., Therrien B., Ozki T. and Fujita M.,Sequence-Selective Recognition of Peptides within the Single Binding Pocket of aSelf-Assembled Coordination Cage. J. Am. Chem. Soc.2005,127,4546–4547;(b) LehaireM.-L., Scopelliti R., Piotrowski H. and Severin K., Selective Recognition of Fluoride AnionUsing a Li+–Metallacrown Complex Angew. Chem. Int. Ed.2002,41,1419–1422.
    [11](a) Rowsell J. L. C. and Yaghi O. M., Strategies for Hydrogen Storage in Metal–OrganicFrameworks. Angew. Chem. Int. Ed.2005,44,4670–4679;(b) Dinca M. and Long J. R.,Hydrogen Storage in Microporous Metal–Organic Frameworks with Exposed Metal Sites.Angew. Chem., Int. Ed.2008,47,6766–6779;(c) Wong-Foy A. G., Matzger A. J. and Yaghi O.M., Exceptional H2Saturation Uptake in Microporous Metal Organic Frameworks. J. Am.Chem. Soc.2006,128,3494–3495;(d) Ma S., Sun D., Simmons J. M., Collier C. D., Yuan D.and Zhou H. C., Metal-Organic Framework from an Anthracene Derivative ContainingNanoscopic Cages Exhibiting High Methane Uptake. J. Am. Chem. Soc.2008,130,1012–1016.
    [12](a) Dias H. V. R., Diyabalanage H. V. K. and Gamage C. S. P., Neutral Cu4N12and Ag4N12metallacycles with a para-cyclophane framework assembled from copper(I) and silver(I)pyrazolates and pyridazine. Chem. Commun.2005,1619–1621;(b) Li H. X., Wu H. Z., ZhangW. H., Ren Z. G., Zhang Y. and Lang J. P., Unique formation of two high-nuclearitymetallamacrocycles from a mononuclear complex [Zn(dmpzdtc)2](dmpzdtc=3,5-dimethylpyrazole-1-dithiocarboxylate) via CS2elimination. Chem. Commun.2007,5052–5054.
    [13](a) Xuan W. M., Zhu C. F., Liu Y. and Cui Y., Mesoporous metal–organic frameworkmaterials. Chem. Soc. Rev.2012,41,1677-1695;(b) Finn C., Schnittger S., Yellowlees L. J.and Love J. B., Molecular approaches to the electrochemical reduction of carbon dioxide.Chem. Commun.2012,48,1392-1399;(c) Beves J. E., Blight B. A., Campbell C. J., Leigh D.A. and McBurney R. T., Strategies and Tactics for the Metal-Directed Synthesis of Rotaxanes,Knots, Catenanes, and Higher Order Links. Angew. Chem. Int. Ed.2011,50,9260–9327.
    [14](a) Dias H. V. R., Diyabalanage H. V. K. and Gamage C. S. P., Neutral Cu4N12and Ag4N12metallacycles with a para-cyclophane framework assembled from copper(I) and silver(I)pyrazolates and pyridazine. Chem. Commun.2005,1619–1621;(b) H. X. Li, H. Z. Wu, W. H.Zhang, Z. G. Ren, Y. Zhang and J. P. Lang, Chem. Commun.2007,5052–5054.
    [15] Spek L., PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, TheNetherlands,2001.
    [16] Li C. P. and Du M., Role of solvents in coordination supramolecular systems. Chem.Commun.2011,47,5958–5972.
    [17](a) Ajb D., Bencini A. and Mani F., Anisotropic exchange in dinuclear complexes withpolyatomic bridges.2.Crystal and molecular structure and EPR spectra oftetraphenylphosphonium bis(.mu.-pyrazolato)bis[dihydrobis(1-pyrazolyl)borato](.mu.-chloro)dicuprate(II). Magneto-structural correlations in bis(.mu.-pyrazolato)-bridged copper(II)complexes. Inorg. Chem.1988,27,2437-2444;(b) Teichgr ber J., Leibeling G., Dechert S.and Meyer F., Thioether Functionalized Pyrazolate Ligands and their Dicopper(II)Complexes–Structures and Magnetic Properties. Z. Anorg. Allg. Chem.2005,631,2613-2618.
    [18] Tetsuya H., Xuan Y. and Shannon S. S., Copper-Catalyzed Aerobic Oxidative Amidation ofTerminal Alkynes: Efficient Synthesis of Ynamides. J. Am. Chem. Soc.2008,130,833-835.
    [19] Jouvin K., Couty F., and Evano G., Copper-Catalyzed Alkynylation of Amides withPotassium Alkynyltrifluoroborates: A Room-Temperature, Base-Free Synthesis of Ynamides.Org. Lett.2010,14,3272-3275.
    [1](a) Bradshaw, D.; Garai, A.; Huo, J. Synthesis of Metal-Organic Frameworks (MOFs): Routesto Various MOF Topologies, Morphologies, and Composites. Chem. Rev.,2012,112,933-969;(b) Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem.Rev.,2012,112,869-932;(c) He, Y.; Zhou, W.; Krishna, R.; Chen, B. A microporousmetal–organic framework with both open metal and Lewis basic pyridyl sites for highlyselective C2H2/CH4and C2H2/CO2gas separation at room temperature. J. Mater. A.2013,1,77-81;
    [2](a) Liu, D.; Lang, J.; Abrahams, B. F. Highly Efficient Separation of a Solid Mixture ofNaphthalene and Anthracene by a Reusable Porous Metal–Organic Framework through aSingle-Crystal-to-Single-Crystal Transformation. J. Am. Chem. Soc.,2011,133,11042-11045;(b) Lu, Z.; Zhang, R.; Li, Y.; Guo, Z.; Zheng, H. Solvatochromic Behavior of a NanotubularMetal Organic Framework for Sensing Small Molecules. J. Am. Chem. Soc.,2011,133,4172-4174;(c) Xu, Z.; Wang, Q.; Li, H.; Meng, W.; Han, Y.; Hou, H.; Fan, Y.Self-assembly of unprecedented [8+12] Cu-metallamacrocycle-based3D metal–organicframeworks. Chem. Commun.2012,48,5736-5738;(d) Liu D.; Ren Z.-G.; Li H.-X.; LangJ.-P.; Li N.-Y.; Abrahams B. F. Single-Crystal-to-Single-Crystal Transformations of TwoThree-Dimensional Coordination Polymers through Regioselective [2+2] PhotodimerizationReactions. Angew. Chem. Int. Ed.,2010,49,4767-4770.
    [3](a) Duriska, M. B.; Neville, S. M.; Batten, S. B. Variable length ligands: a new class ofbridging ligands for supramolecular chemistry and crystal engineering. Chem. Commun.,2009,5579-5581;(b) Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Metal–Organic Frameworks andSelf-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting theDesign, Synthesis, and Functionality of Metal–Organic Materials. Chem. Rev.,2013,113,734-777.
    [4](a) Dinca, M.; Long, J. R. High-Enthalpy Hydrogen Adsorption in Cation-Exchanged Variantsof the Microporous Metal Organic Framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. J. Am.Chem. Soc.,2007,129,11172-11176;(b) Zhao, J.; Mi, L.; Hu, J.; Hou, H.; Fan, Y. CationExchange Induced Tunable Properties of a Nanoporous Octanuclear Cu(II) Wheel withDouble-Helical Structure. J. Am. Chem. Soc.2008,130,15222-15223;(c) Zhang, Z.; Zhang,L.; Wojtas, L.; Nugent, P.; Eddaoudi, M.; Zaworotko, M J. Templated Synthesis, PostsyntheticMetal Exchange, and Properties of a Porphyrin-Encapsulating Metal–Organic Material. J. Am.Chem.Soc.,2012,134,924-927.
    [5](a) Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara,F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J.F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science,2012,336,1018-1023;(b) Gadzikwa, T.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T.; Nguyen, S.T. A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalentpost-synthesis elaboration. Chem. Commun.,2009,3720-3722.
    [6](a) Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y. Mesoporous metal–organic framework materials. Chem.Soc. Rev.,2012,41,1677-1695;(b) Das, M. C.; Xiang, S.; Zhang, Z.; Chen, B. FunctionalMixed Metal–Organic Frameworks with Metalloligands. Angew. Chem. Int. Ed.,2011,50,10510-10520.
    [7](a) Wang, X. Y.; Wang, L.; Wang, Z. M.; Gao, S. Solvent-Tuned Azido-Bridged Co2+Layers:Square, Honeycomb, and Kagomé. J. Am. Chem. Soc.2006,128,674-675;(b) Halder G.J.; Kepert C. J.; Moubaraki B.; Murray K. S.; Cashion J. D. Guest-Dependent Spin Crossoverin a Nanoporous Molecular Framework Material. Science,2002,298,1762-1765.
    [8](a) Li, B.; Wei, R. J.; Tao, J.; Huang, R.-B.; Zheng, L. S.; Zheng, Z. Solvent-InducedTransformation of Single Crystals of a Spin-Crossover (SCO) Compound to Single Crystalswith Two Distinct SCO Centers. J. Am. Chem. Soc.2010,132,1558-1566;(b) Lu, Z. Z.;Zhang, R.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. Solvatochromic Behavior of a NanotubularMetal Organic Framework for Sensing Small Molecules. J. Am. Chem. Soc.,2011,133,4172-4174;(c) Li C.-P.; Du M. Role of solvents in coordination supramolecularsystems. Chem. Commun.2011,47,5958-5972.
    [9](a) Zhang, J. P.; Zhang, Y. B. Lin, J. B.; Chen, X.-M. Metal Azolate Frameworks: FromCrystal Engineering to Functional Materials. Chem. Rev.,2012,112,1001-1033;(b) Aromía,G.;Barriosa, L. A.; Roubeaub, O.; Gameza, P. Triazoles and tetrazoles: Prime ligands to generateremarkable coordination materials. Coor. Chem. Reviews,2011,255,485-546.
    [10] Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Commercial metal–organic frameworks asheterogeneous catalysts. Chem. Commun.,2012,48,11275-11288.
    [11](a) Ohmori, O.; Kawano, M.; Fujita, M. Crystal-to-Crystal Guest Exchange of Large OrganicMolecules within a3D Coordination Network. J. Am. Chem. Soc.,2004,126,16292-16293;(b)Lv, G.-C.; Wang, P.; Liu, Q.; Fan, J.; Chen, K.; Sun, W.-Y. Unprecedented crystal dynamics:reversible cascades of single-crystal-to-single-crystal transformations. Chem. Commun.,2012,48,10249-10251.
    [12](a) Niu, S.; Hall, M. B. Theoretical Studies on Reactions of Transition-Metal Complexes.Chem. Rev.,2000,100,353-406;(b) Platero-Prats, A. E.; Snejko, N.; Iglesias, M.; Monge, A.;Gutirrez-Puebla, E. Insight into Lewis Acid Catalysis with Alkaline-Earth MOFs: The Role ofPolyhedral Symmetry Distortions. Chem. Eur. J.,2013,19,15572-15582.
    [13](a) Decurtins, S.; Gtlich, P.; Hasselbach, K. M.; Hauser, A.; Spiering, H. Light-inducedexcited-spin-state trapping in iron(II) spin-crossover systems. Optical spectroscopic andmagnetic susceptibility study. Inorg. Chem.,1985,24,2174-2178;(b) Lever, A. B. P.Inorganic Electronic Spectroscopy, Vol.33,2nd ed., Elsevier, Amsterdam,1984.
    [1].(a) Zhang, J.-P. Zhang Y.-B., Lin J.-B., Chen X.-M. Metal Azolate Frameworks: From CrystalEngineering to Functional Materials. Chem. Rev.2012,112,1001-1033;(b) Ferrer S., AznarE., Lloret F., Casti eiras A., Liu-González M., Borrás J. One-Dimensional Metal OrganicFramework with Unprecedented Heptanuclear Copper Units. Inorg. Chem.2007,46,372-374;(c) Wang C. Y., Wilseck Z. M., LaDuca R. L.,1D+1D→1D Polyrotaxane,2D+2D→3DInterpenetrated, and3D Self-Penetrated Divalent Metal TerephthalateBis(pyridylformyl)piperazine Coordination Polymers, Inorg. Chem.2011,50,8997–9003;(d)Xu Z.-Q., Wang Q., Li H.-J., Meng W., Hou H.-W., Fan Y.-T, Self-assembly of unprecedented[8+12] Cu-metallamacrocycle-based3D metal–organic frameworks. Chem. Commun.,2012,48,5736.
    [2]. a) Gatteschi D., Sessoli R. Quantum Tunneling of Magnetization and Related Phenomena inMolecular. Angew. Chem. Int. Ed.2003,42,268-297; b) Du M., Jiang X.-J., Zhao X.-J.Controllable Assembly of Metal-Directed Coordination Polymers under Diverse Conditions:A Case Study of the MII H3tma/Bpt Mixed-Ligand System. Inorg. Chem.2006,45,3998-4006; c) Liu D. Lang J.-P., Abrahams B. F. Highly Efficient Separation of a SolidMixture of Naphthalene and Anthracene by a Reusable Porous Metal–Organic Frameworkthrough a Single-Crystal-to-Single-Crystal Transformation. J. Am. Chem. Soc.,2011,133,11042-11045; d) Bagai R., Christou G. The Drosophila of single-molecule magnetism:[Mn12O12(O2CR)16(H2O)4]. Chem. Soc. Rev.2009,38,1011-1026.
    [3]. a) Cornia A., Jansen A. G. M., Affronte M., Abbati G. L., Gatteschi D. Tuning of MagneticAnisotropy in Hexairon(III) Rings by Host–Guest Interactions: An Investigation byHigh-Field Torque Magnetometry (pages2264–2266). Angew. Chem. Int. Ed.1999,38,2264-2266; b) Cornia A., Jansen A. G. M., Affronte M. Phys. Rev. B.1999,60,12177; c) ShiP.-F., Zheng Y.-Z., Zhao X.-Q., Xiong G., Zhao B., Wan F.-F., P. Cheng, Chem. Eur. J.2012,18,15086-15091.
    [4]. a) Meier F., Loss D., Phys. Rev. B. Thermodynamics and spin-tunneling dynamics in ferricwheels with excess spin, Phys. Rev. B.2001,64,224411-224416; b) Meier F., Loss D., Phys.Rev. Lett. Cyanide-Bridged Iron(III)–Cobalt(II) Double Zigzag Ferromagnetic Chains: TwoNew Molecular Magnetic Nanowires,2001,86,5373-5378; c) Waldmann O., Stamatatos T. C.,Christou G., Güdel H. U., Sheikin I., Mutka H., Phys. Rev. Lett.2009,102,157202.
    [5].(a) Lu Z.-Z., Zhang R., Li Y.-Z., Guo Z.-J., Zheng H.-G., Solvatochromic Behavior of aNanotubular Metal Organic Framework for Sensing Small Molecules, J. Am. Chem. Soc.2011,133,4172-4174;(b) Wei W., Wang G., Zhang Y., Jiang F., Wu M., Hong M., A VersatileTripodal Host with Cylindrical Conformation: Solvatomorphism, Inclusion Behavior, andSeparation of Guests, Chem. Eur. J.2011,17,2189-2198;(c) Liao P.-Q., Zhou D.-D., ZhuA.-X., Jiang L., Lin R.-B., Zhang J.-P., Chen X.-M., Strong and Dynamic CO2Sorption in aFlexible Porous Framework Possessing Guest Chelating Claws, J. Am. Chem. Soc.2012,134,17380–17383.
    [6].(a) Yang C., Wang X., Omary M. A., Fluorous Metal Organic Frameworks for High-DensityGas Adsorption, J. Am. Chem. Soc.2007,129,15454–15455;(b) Bu X.-H., Tong M.-L.,Chang H.-C., Kitagawa S., Batten S. R., A Neutral3D Copper Coordination Polymer Showing1D Open Channels and the First Interpenetrating NbO-Type Network, Angew. Chem., Int. Ed.2004,43,192-195;(c) Yang Q.-Y., Li K., Luo J., Pana M., Su C.-Y., A simple topologicalidentification method for highly (3,12)-connected3D MOFs showing anion exchange andluminescent properties, Chem. Commun.2011,47,4234-4236.
    [7].(a) Zheng B., Bai J., Duan J., Wojtas L., Zaworotko M. J., Enhanced CO2Binding Affinity ofa High-Uptake rht-Type Metal Organic Framework Decorated with Acylamide Groups, J. Am.Chem. Soc.2011,133,748-751;(b) Xu Z.-Q., Wang Q., Li H.-J., Meng W., Hou H.-W., FanY.-T, Self-assembly of unprecedented [8+12] Cu-metallamacrocycle-based3Dmetal–organic frameworks, Chem. Commun.2012,48,5736-5738.
    [8].(a) Hernández-Gil J., Ferrer S., Casti eiras A., Lloret F. A Unique Discrete TetranuclearCu′–Cu(N-N)2Cu–Cu′Copper(II) Complex, Built from a μ3-1,2,4-Triazolato-μ-carboxylatoLigand, as an Effective DNA Cleavage Agent. Inorg. Chem.,2012,51,9809-9819; b)(b)YangJ., Li B., Ma J.-F., Liu Y.-Y., Zhang J.-P., An unusual ten-connected self-penetratingmetal–organic framework based on tetranuclear cobalt clusters, Chem. Commun.2010,46,8383-8385;(c) Liu H., Tian J.-L., Kou Y.-Y., Zhang J.-Y., Feng L., Liao D.-Z., ChengP., Ribas J., Yan S.-P. Synthesis, structures and magnetic properties of polynuclearmixed-valence MnIIMnIII complexescontaining3-(2-phenol)-5-(pyridin-2-yl)-1,2,4-triazole ligand, Dalton Trans.200910511-10517.
    [9].(a) Chen Q., Zeng M.-H., Zhou Y.-L., Zou H.-H., Kurmoo M. Hydrogen-Bonded DicubaneCoII7Single-Molecule-Magnet Coordinated by in Situ Solvothermally Generated1,2-Bis(8-hydroxyquinolin-2-yl)ethane-1,2-diol Arranged in a Trefoil. Chem. Mater.2010,22,2114; b) Ferrando J., Cangussu D., Eslava M., Journaux Y., Lescou zec R., Julve M., Lloret F.,Pasán J., Pardo E. Rational Enantioselective Design of Chiral Heterobimetallic Single-ChainMagnets: Synthesis, Crystal Structures and Magnetic Properties of Oxamato-BridgedMIICuII Chains (M=Mn, Co), Chem. Eur. J.2011,17,12482–12494,
    [10].(a) Qin L., Hu J.-S., Zhang M.-D., Guo Z.-J., Zheng H.-G., Structure–property relationshipof homochiral and achiral supramolecular isomers obtained by one-pot synthesis. Chem.Commun.,2012,48,10757-10759;(b) Liu T.-F., Fu D., Gao S., Zhang Y.-Z., Sun H.-L., Su G.,Liu Y.-J., An Azide-Bridged Homospin Single-Chain Magnet:[Co(2,2‘-bithiazoline)(N3)2]n,J. Am. Chem. Soc.2003,125,13976-1978.
    [11].(a) Jin J.-C., Zhang Y.-N., Wang Y.-Y., Liu J.-Q., Dong Z., Shi Q.-Z., Syntheses and CrystalStructures of a Series of Coordination Polymers Constructed From C2-Symmetric Ligand1,3-Adamantanedicarboxylic Acid, Chem. Asian J.2010,5,1611-1615;(b) Qin L., Li Y., GuoZ., Zheng H., Structural Diversity and Properties of Six2D or3D Metal–Organic FrameworksBased on Thiophene-Containing Ligand, Crystal Growth&Design2012,12,5783–5791.(c)Yang C.-I., Chuang P.-H., Lee G.-H., Peng S.-M., Lu K.-L. Spin-Canting Magnetization in anUnusual Co4Cluster-Based Layer Compound from a2,3-Dihydroxyquinoxaline Ligand.Inorg. Chem.2012,51,757-759; d) J. Titis, R. Boc a, Inorg. Chem.,2011,50,11838.
    [12].(a) Chen Q., Zeng M.-H., Zhou Y.-L., Zou H.-H., Kurmoo M., Hydrogen-Bonded DicubaneCoII7Single-Molecule-Magnet Coordinated by in Situ Solvothermally Generated1,2-Bis(8-hydroxyquinolin-2-yl)ethane-1,2-diol Arranged in a Trefoil, Chem. Mater.2010,22,2114-2117;(b) Noble A., Olgu′n J., Clerac R., Brooker S. Doubly Pyrazolate-BridgedDinuclear Complexes of a Highly Constrained Bis-terdentate Ligand: Observation of a [HighSpin-Low Spin] State for [FeII2(PMAP)2][SbF6]2·2.25(C3H8O)(PMAP=3,5-bis{[N-(2-pyridylmethyl)amino]-methyl}-1H-pyrazolate). Inorg. Chem.,2010,49,4560.
    [13](a) Borras-Almenar J. J., Coronado E., Curely J., Georges R., Exchange Alternation andSingle-ion Anisotropy in The Antiferromagnetic Heisenberg Chain S=1. Magnetic andThermal Properties of the Compound Ni2(EDTA).cntdot.6H2O, Inorg. Chem.1995,34,2699–2704;(b) Winter S. M., Datta S., Hill S., Oakley R. T., Magnetic Anisotropy in a HeavyAtom Radical Ferromagnet, J. Am. Chem. Soc.2011,133,8126–8129.
    [14] Yang C.-I., Chuang P.-H., Lee G.-H., Peng S.-M., Lu K.-L., Spin-Canting Magnetization inan Unusual Co4Cluster-Based Layer Compound from a2,3-Dihydroxyquinoxaline Ligand,Inorg. Chem.2012,51,757-759.
    [15] Ferrando-Soria J., Pardo E., Ruiz-García R., Cano J., Lloret F., Julve M., Journaux Y., PasánJ., Ruiz-Pérez C., Synthesis, Crystal Structures and Magnetic Properties of MIICuII Chains(M=Mn and Co) with Sterically Hindered Alkyl-Substituted Phenyloxamate Bridging Ligands,Chem. Eur. J.2011,17,2176–2188.
    [16](a) Ouellette W., Prosvirin A. V., Valeich J., Dunbar K. R., Zubieta J., HydrothermalSynthesis, Structural Chemistry, and Magnetic Properties of Materials of theMII/Triazolate/Anion Family, Where MII=Mn, Fe, and Ni, Inorg. Chem.46(2007)9067-9082;(b) Noble A., Clerac R., Brooker S., Doubly Pyrazolate-Bridged DinuclearComplexes of a Highly Constrained Bis-terdentate Ligand: Observation of a [High Spin-LowSpin] State for [FeII2(PMAP)2][SbF6]2·2.25(C3H8O)(PMAP=3,5-bis{[N-(2-pyridylmethyl)amino]-methyl}-1H-pyrazolate), Inorg. Chem.2010,49,4560-4569.
    [1](a) Alonso D. M., Wettstein S. G., Dumesic J. A., Bimetallic catalysts for upgrading ofbiomass to fuels and chemicals. Chem. Soc. Rev.,2012,41,8075-8098;(b) Delferro M.,Marks T. J., Multinuclear Olefin Polymerization Catalysts. Chem. Rev.,2011,111,2450-2485.(c) Zhang X.-M., Zhao Y.-F., Zhang W.-X., Chen X.-M. ATetrazolate-and Cyano-BridgedHomometallic Mixed-Valence Copper(I,II) Molecular Ferrimagnet. Adv. Mater.2007,19,2843–2846.(d) Huang X.-C., Zhang J.-P., Lin Y.-Y., Yu X.-L. Chen X.-M. Twomixed-valence copper(I,II) imidazolate coordination polymers: metal-valence tuning approachfor new topological structures. Chem. Commun.,2004,1100–1102.
    [2](a) Hou Y.-L., Sun W.-Y., Zhou X.-P., Wang J.-H. Li D. A copper(I)/copper(II)-salencoordination polymer as a bimetallic catalyst for three-component strecker reactions anddegradation of organic dyes. Chem. Commun.,2014,50,2295-2297.(b) Zheng L.-M., YinP., Xin X.-Q. Novel Coordination Polymer Containing a Mixed Valence Copper(I,II)Phosphonate Unit: CuI2CuII(hedpH2)2(4,4‘-bpy)2·2H2O (hedp=1-Hydroxyethylidenediphosphonate). Inorg. Chem.,2002,41,4084–4086.(c) Climent M. J.,Corma A., Iborra S., Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals andFine Chemicals. Chem. Rev.,2011,111,1072-1133.
    [3](a) M. Meldal, Torn e C. W. Cu-Catalyzed Azide-Alkyne Cycloaddition. Chem. Rev.2008,108,2952–3015.(b) Yang E.-C., Liu Z.-Y., Shi X.-J., Liang Q.-Q., Zhao X.-J. Two3DTriazolate-Tricarboxylate-Bridged CuII/I Frameworks by One-Pot Hydrothermal SynthesisExhibiting Spin-Canted Antiferromagnetism and Strong Antiferromagnetic Couplings. Inorg.Chem.2010,49,7969–7975.
    [4](a) Cook T. R., Zheng Y.-R., Stang P. J., Metal–Organic Frameworks and Self-AssembledSupramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis,and Functionality of Metal–Organic Materials. Chem. Rev.,2013,113,734-777;(b) Lee J.Y., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. T., Hupp J. T., Metal–organicframework materials as catalysts. Chem. Soc. Rev.,2009,38,1450-1459.
    [5] Kalita A., Kumar P. B. Reaction of a copper(II)–nitrosyl complex with hydrogen peroxide:putative formation of a copper(I)–peroxynitrite intermediate. Chem. Commun.,2012,48,4636-4638.(a) Hu S., Zhang Z.-M., Meng Z.-S., Lin Z.-J. Tong M.-L. Anion-dependentconstruction of copper(I/II)-1,2,4,5-tetra(4-pyridyl)benzene frameworks. CrystEngComm,2010,12,4378-4385.
    [6](a) Tong M.-L., Li L.-J., Mochizuki K, Chang H.-C., Chen X.-M., Li Y., Kitagawa S. Anovel three-dimensional coordination polymer constructed with mixed-valence dimericcopper(I,II) units. Chem. Commun.,2003,428-429.(b) You Z.-L., Xian D.-M., Zhang M.Twolantern-like1D polymeric Schiff base copper(I/II) complexes derived from copper(II) saltscontaining rarely seen [CuI(NCS)4] bridges. CrystEngComm,2012,14,7133-7136.
    [7](a) Ni W.-X., Li M., Zhan S.-Z., Hou J.-Z., Li D. In Situ Immobilization of Metalloligands: ASynthetic Route to Homometallic Mixed-Valence Coordination Polymers. Inorg.Chem.,2009,48,1433–1441.(b) Eckenhoff W. T., Pintauer T. Atom Transfer RadicalAddition in the Presence of Catalytic Amounts of Copper(I/II) Complexes withTris(2-pyridylmethyl)amine. Inorg. Chem.,2007,46,5844–5846.
    [8](a) Kuang G., Guha P. M., Brotherton W. S., Simmons J. T., Stankee L. A., Nguyen B. T.,Clark R. J., Zhu L. Experimental Investigation on the Mechanism of Chelation-Assisted,Copper(II) Acetate-Accelerated Azide–Alkyne Cycloaddition. J. Am. Chem. Soc.,2011,133,13984–14001.(b) Deng H., Qiu Y., Daiguebonne C., Kerbellec N., Guillou O., Zeller M.,Batten S. R. Synthesis of New Copper Cyanide complexes via the Transformation ofOrganonitrile to Inorganic Cyanide. Inorg. Chem.,2008,47,5866–5872.
    [9](a) Kirillov A. M., Filipowicz M., Silva C. G., K ak J., Smoleński P., Pombeiro A. J. L.Unprecedented Mixed-Valence Cu(I)/Cu(II) Complex Derivedfrom N-Methyl-1,3,5-triaza-7-phosphaadamantane: Synthesis, Structural Features, andMagnetic Properties. Organometallics,2012,31,7921–7925.(b) Smoleński P., K ak J.,Nesterov D. S., Kirillov A. M. Unique Mixed-Valence Cu(I)/Cu(II) Coordination Polymerwith New Topology of Bitubular1D Chains Driven by1,3,5-Triaza-7-phosphaadamantane(PTA). Crystal Growth&Design,2012,12,5852–5857.
    [10](a) Flanagan S., Dong J., Haller K., Wang S., Scheidt W. R., Scott R. A., Webb T. R.,Stanbury D. M., Wilson L. J. Macrocyclic [CuI/II(bite)]+/2+(bite=biphenyldiiminodithioether): An Example of Fully-Gated Electron Transfer and Its Biological Relevance1. J.Am. Chem. Soc.,1997,119,8857–8868.(b) Ohtsu H., Shimazaki Y., Odani A., Yamauchi O.,Mori W., Itoh S., Fukuzumi S. Synthesis and Characterization of Imidazolate-BridgedDinuclear Complexes as Active Site Models of Cu,Zn-SOD. J. Am. Chem. Soc.,2000,122,5733–5741.(c) Kamaraj K., Kim E., Galliker B., Zakharov L. N., Rheingold A. L.,Zuberbühler A. D., Karlin K. D. Copper(I) and Copper(II) Complexes PossessingCross-Linked Imidazole-Phenol Ligands: Structures and Dioxygen Reactivity. J. Am. Chem.Soc.,2003,125,6028–6029.
    [11](a) Zhao Y., Seredych M., Zhong Q., Bandosz T. J. Superior Performance of Copper BasedMOF and Aminated Graphite Oxide Composites as CO2Adsorbents at Room Temperature.ACS Appl. Mater. Interfaces,2013,5,4951–4959.(b) Hang T., Fu D.-W., Ye Q., Ye H.-Y.,Xiong R.-G., Huang S. D. Tanklike Metal Organic Framework Filled with Perchloric Acidand Its Dielectric Ferroelectric Properties. Crystal Growth&Design,2009,9,2054–2056.(c) Rube M., Wiersum A. D., Llewellyn P. L., Grajciar L., Bludsky O., Nachtigall P.Adsorption of Propane and Propylene on CuBTC Metal–Organic Framework: CombinedTheoretical and Experimental Investigation. J. Phys. Chem. C,2013,117,11159–11167.
    [12](a) Feng D., Jiang H.-L., Chen Y.-P., Gu Z.-Y., Wei Z., Zhou H.-C. Metal–OrganicFrameworks Based on Previously Unknown Zr8/Hf8Cubic Clusters. Inorg. Chem.,2013,52,12661–12667.(b) Gupta K. M., Chen Y., Jiang J. Ionic Liquid Membranes Supported byHydrophobic and Hydrophilic Metal–Organic Frameworks for CO2Capture. J. Phys. Chem.C,2013,117,5792–5799.(c) Nalaparaju A., Zhao X. S., Jiang J. W. Molecular Understandingfor the Adsorption of Water and Alcohols in Hydrophilic and Hydrophobic ZeoliticMetal Organic Frameworks, J. Phys. Chem. C,2010,114,11542–11550.
    [13](a) Yun R., Lu Z., Pan Y., You X., Bai J. Formation of a Metal–Organic Framework withHigh Surface Area and Gas Uptake by Breaking Edges Off Truncated Cuboctahedral Cages.Angew. Chem., Int. Ed.2013,52,11282–11285.(b) Gao W.-Y., Chen Y., Niu Y., Williams K.,Cash L., Perez P. J., Wojtas L., Cai J., Chen Y., Ma S. Crystal Engineering of an nboTopology Metal–Organic Framework for Chemical Fixation of CO2under AmbientConditions. Angew. Chem., Int. Ed.2014,53,2615–2619,
    [14](a) Choi S. B., Furukawa H., Nam H. J., Jung D.-Y., Jhon Y. H., Walton A., Book D.,O'Keeffe M., Yaghi O. M., Kim J. Reversible Interpenetration in a Metal–Organic FrameworkTriggered by Ligand Removal and Addition. Angew. Chem., Int. Ed.2012,51,8791–8795.(b)Neuba A., Haase R., Meyer-Klaucke W., Fl rke U., Henkel G. A Halide-Induced Copper(I)Disulfide/Copper(II) Thiolate Interconversion. Angew. Chem., Int. Ed.2012,51,1714–1718,
    [15](a) Worrell B. T., Ellery S. P., Fokin V. V., Copper(I)-Catalyzed Cycloaddition ofBismuth(III) Acetylides with Organic Azides: Synthesis of Stable Triazole Anion Equivalents.Angew. Chem., Int. Ed.2013,52,13037–13041.(b) Li B., Zhang Y., Ma D., Li L., Li G., ShiZ., Feng S., A strategy toward constructing a bifunctionalized MOF catalyst: post-syntheticmodification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem.Commun.,2012,48,6151;(c) Park J., Li J.-R., Chen Y.-P., Yu J., Yakovenko A., Wang Z. U,Sun L.-B., Zhou H.-C., A versatile metal–organic framework for carbon dioxide capture andcooperative catalysis. Chem. Commun.,2012,48,9995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700