石脑油模拟移动床高效分离与优化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于分子管理的理念,在石脑油固定床吸附分离工艺的基础上研究开发了石脑油模拟移动床(SMB)吸附分离工艺。通过模拟移动床吸附分离工艺,上海石化(SPC)直馏石脑油在分子水平上被分离为富含正构烷烃分子的脱溶剂脱附油和富含非正构烷烃分子的脱溶剂吸余油,实现了石脑油作为原料的乙烯裂解过程和催化重整过程目的产物收率的双目标优化,提高了石脑油的利用效率,并推进了石脑油资源分子管理工艺技术的提高和发展。
     本文首先构建了一种测定正构烷烃在5A分子筛上液相吸附真实吸附量的方法,并设计了应用于实际带压工况下的双阀门液相真实吸附量测定装置。与文献中通常采用的浓度差法测得的结果比较,本方法测得的液相吸附真实吸附量更为准确,为液相模拟移动床工艺提供了基础数据。
     随后,本文考察了正构烷烃在5A分子筛上的静态吸/脱附过程,结果表明,正戊烷为模拟移动床工艺较为合适的液相脱附剂。由不同碳数差的正构烷烃在5A分子筛上的双组分吸附相图表明,当正构烷烃碳数接近时,短链正构烷烃由于其较小的空间体积较易满足进入孔道的空间要求,因此短链正构烷烃可以优先进入分子筛孔道内并占据吸附位。而当不同正构烷烃碳数相差较大时,长链正构烷烃优先占据吸附位。
     进而,本文以不同非正构烷烃组分作为溶剂,考察了石脑油中不同非正构烷烃组分对正构烷烃在5A分子筛上液相吸附动力学特性的影响,并由动力学模型和阿仑尼乌斯模型对实验数据进行拟合得到相应的液相表观吸附扩散系数与表观吸附活化能。由结果可知,各溶剂对正构烷烃在5A分子筛上的液相吸附扩散速率的影响大小顺序为:芳香烃>环烷烃>异构烷烃。本文还设计了应用于实际带压工况下的双阀门液相吸附动力学实验装置,获得了对带压工况下烃类液相吸附动力学特性的认知,充实了应用基础理论的成果。
     在此基础上,本文研究了上海石化(SPC)石脑油模拟移动床高效分离优化的工艺条件,结果表明:操作温度170℃,石脑油进料流速5ml/min,正戊烷脱附剂进料流速20ml/min,脱附油出口流速10ml/min,循环流速15ml/min,切换时间900s为优化条件。脱附剂回收过程中,脱附油塔(D-D塔)的优化塔板数为6块,回流比0.2;吸余油塔(R-D塔)的优化塔板数为22块,回流比为0.29。在此工艺条件下,制取的脱溶剂脱附油中正构烷烃含量为98%左右,脱溶剂吸余油中非正构烷烃含量为92%左右。与原料石脑油相比,SMB脱溶剂脱附油作为乙烯裂解原料使乙烯收率提高约17个百分点,SMB脱溶剂吸余油的芳烃潜含量和研究法辛烷值分别提高了约10个单位和20个单位,显著提高了石脑油的综合利用价值,并实现了工艺技术的连续化,具有自主知识产权。与固定床气相吸附分离工艺相比,SMB工艺具有操作温度低;液相连续操作、年处理量高;石脑油中正构烷烃在5A分子筛上平衡吸附量高;装置结构紧凑、占地面积小等优势。
     最后本文对基于分子管理的石脑油模拟移动床吸附分离工艺热集成和固定床气相吸附分离工艺热集成方案效果进行比较,结果显示,与热集成SMB工艺方案Ⅰ相比,热集成SMB工艺方案Ⅱ可节约能耗约77%;与热集成固定床工艺方案相比,热集成SMB工艺方案Ⅱ可节约能耗约9%。同时本文还使用Microsoft Visual Basic语言分别编写了两种工艺的设计软件。
With molecule-scale management idea, a simulated moving bed (SMB) technology was developed and researched based on the previous fixed bed technology. Through SMB technology, SPC naphtha was separated into de-solvent extract oil (DEO) in which the content of normal paraffins was high and de-solvent raffinate oil (DRO) in which the content of non-normal paraffins was high. By this way. multi-object optimization on the ethylene cracking process and the catalytic reforming process with naphtha as the feed was achieved, the utilization efficiency of naphtha was increased and the level of molecule-scale management technology was developed to a new stage.
     An approach for determining the absolute liquid adsorption capacity of normal paraffins on 5A molecular sieves was designed, which was called "Inert-component method" in this paper. The wetting capacity of the sieves was firstly measured by using an inert component as the solution, in the next step when the sieves were immerged in the solution with n-paraffin as the solute and inert component as the solvent, the decreasing amount of the solution was called total adsorption capacity, then the absolute adsorption capacity was the difference between the total adsorption capacity and the wetting capacity. With this method, the absolute adsorption capacities of different normal paraffins on 5A sieves were determined, and it was found that the result from this method was more accurate than what's reported in literatures. With the increase of carbon number or decrease of adsorption temperature, the absolute adsorption capacity of n-paraffin on 5A sieves increased. The isotherm curves of n-paraffins on 5A sieves at different temperatures fit the Langmuir isotherm model. This experiment provided support for SMB technology.
     The investigation on the static adsorption/desorption process of n-paraffins on 5A sieves showed that n-pentane was the suitable desorbent for SMB. The phase diagrams of different normal paraffins on 5A sieves showed that with small difference of carbon number, the normal paraffin with less chain number would enter the adsorption pore easier, while with large difference of carbon number, the normal paraffin with more chain number would preferentially be adsorbed.
     Classic composition of naphtha could be divided into four groups, which were normal paraffins group, iso-paraffins group, cyclo-paraffins group and aromatics group. The influence of each non-normal paraffins group on the adsorption kinetics of normal paraffins on 5A sieves was investigated, and the result was fitted with the kinetics model and Arrhenius model. The result showed that the sequence of the influence on the adsorption rate was aromatics>cyclo-paraffins>iso-paraffins. Through the discussion on the adsorption mechanism, it was found that the aromatic solvent molecules were expected to be preferentially adsorbed on the external surface, forming an adsorbed layer which may act like a barrier to the diffusion of the sorbate molecules into the zeolite pores.
     For SPC naphtha, the optimal operation conditions were the operation temperature of 170℃, the flow rate of naphtha of 5ml/min, the flow rate of n-pentane of 20ml/min, the flow rate of extract oil of 10ml/min and the switch time of 900s. For the desorbent recycle process, the optimized conditions for D-D tower were 6 plates and the reflux ratio was 0.2, while the optimized conditions for R-D tower were 22 plates and the reflux ratio was 0.29. From the coupled technology of SMB with solvent recycle process, the n-paraffins content in DEO reached 98% and the non-normal paraffins content in DRO reached 92%. Compared with naphtha, with DEO as the feed for ethylene cracking process, the ethylene yield increased by 17%; while the aromatics potential content and octane number of DRO increased by 10 units and 20 units respectively. This technology improved the utilization efficiency of naphtha, accomplished the continuous operation and had the own property right. Compared with fixed bed technology. SMB technology had the advantages like lower temperature, liquid phase operation, higher handling capacity, higher adsorption capacity and smaller floor area.
     In the end, the heat integration for fixed bed and simulated moving bed technology was calculated, the result showed that the SMB heat-integration projectⅡcould save the energy cost by 9% as compared with the fixed bed technology, and by 77% as compared with the SMB heat-integration projectⅠ. And Microsoft Visual Basic language was used to make the two softwares for the two technologies.
引文
[1]兰州化学工业公司石油化工厂编.石油烃裂解技术[M].第一版.北京:燃料化学工业出版社,1974.7.
    [2]林世雄.石油炼制工程[M].第三版.北京:石油工业出版社,2000.9.
    [3]孙兆林.催化重整[M].北京:中国石化出版社,2006.36.
    [4]瞿国华.乙烯蒸汽裂解原料优化[J].乙烯工业.2002,14(4):61-65.
    [5]张福琴,陈国辉.我国乙烯工业发展值得思考的几个问题[J].国际石油经济.2006,14(2):38-41.
    [6]贾高印.利用SG-QZ汽油抗爆添加剂生产90号无铅汽油[J].天然气与石油.2004,22(4):37-40.
    [7]http://info.chem.hc360.com/2010/05/181041124921.shtml.2010-5-18.
    [8]邹仁鋆.石油化工裂解原理与技术[M].第一版.北京:化学工业出版社,1982.1.
    [9]True R.W. OGJ FOCUS:Global ethylene production continues advance in 2009[J]. Oil and Gas Journal.2010,108(27):102-110.
    [10]Holmquist K. Global ethylene surplus to last through 2011[J]. Oil and Gas Journal. 2010.
    [11]Nakamura D N. Global ethylene production rises 7 million tpy in 2008[J]. Oil and Gas Journal.2009.
    [12]王红秋,郑轶丹.世界乙烯工业发展现状与展望[J].炼化广角.2010,10:51-56.
    [13]http://www.sinosure.com.cn/sinosure/xwzx/rdzt/ckyj/hqcy/129023.html.2010-10-11.
    [14]丁建宁,章龙江,李吉春.中国石油乙烯工业发展现状及前景[J].石化技术与应用,2010,28(3):258-263.
    [15]孟祥德.我国乙烯工业现状及发展趋势探讨[J].齐鲁石油化工.2008,36(2):81-85.
    [16]瞿国华.新世纪中国乙烯工业原料优化发展趋势[J].化工进展.2004,23(3):238-243.
    [17]高春雨.世界及中国乙烯工业发展现状及预测[J].当代石油石化.2007,15(5):41-44.
    [18]http://31yx.toocle.com/detail/5660180.html.2011-2-18.
    [19]曹湘洪.我国乙烯工业面临的挑战与对策[J].化工进展.2002,21:1-12.
    [20]王平.我国乙烯工业现状以及未来发展[J].当代石油石化.2005,13(10):24-27.
    [21]崔小明.乙烯工业现状及发展趋势[J].化学工业.2008,26(3):26-31.
    [22]常艳燕.连续重整催化剂的新进展[J].内蒙古石油化工,2006,32(1):68-69.
    [23]胡德铭.国外催化重整工艺技术的发展(2)[J].炼油技术与工程,2008,38(12):1-5.
    [24]夏军保,亓玉台,尚亚卓等.催化重整工艺技术及其进展(Ⅰ)[J].抚顺石油学院学报,2001,21(4):1-5.
    [25]胡德铭.催化重整工艺进展[J].当代石油石化.2002,10(9):16-19.
    [26]David N. Worldwide refining capacity growth rises again in 2008[J]. Oil & Gas Journal.2008,106(48):46-51.
    [27]胡德铭.国外催化重整工艺技术的发展(1)[J].炼油技术与工程.2008,38(11):1-5.
    [28]徐承恩.催化重整工艺与工程[M].北京:中国石化出版社.2006.
    [29]常艳燕.连续重整催化剂的新进展[J].内蒙古石油化工.2006.32(1):68-69.
    [30]邵文.中国石油催化重整装置的现状分析[J].炼油技术与工程.2006,36(7):1-4.
    [31]邹劲松.乙烯供需状况及发展对策[J].石油化工技术经济.2001,17(4):32-39.
    [32]中外能源[J].中外能源.2011,16(1):127-128.
    [33]张兴福,张春祥,姜昌泉.关于优化乙烯裂解原料的探讨[J].化工科技.2004,12(1):50-52.
    [34]张永军,赵春晖,苑慧敏等.乙烯裂解原料发展趋势及优化建议[J].化工科技市场.2007,30(6):8-12.
    [35]张婧元,孔凡贵,贺德福等.乙烯裂解原料生产现状[J].化工中间体.2007,(8):31-34.
    [36]袁晴棠.石脑油原料的双向优化[J].石油炼制与化工.1994,25(4):6-10.
    [37]页:117鞠林青,霍宏伟,刘虹等.优化总工艺加工流程合理安排乙烯原料[J].当代石油石化.2006,1 4(2):32-34.
    [38]王松汉,何细藕.乙烯工艺与技术[M].北京:中国石化出版社,2000,114.
    [39]孙兆林.催化重整[M].北京:中国石化出版社,2006,69-72.
    [40]上海试剂五厂编.分子筛制备与应用[M].上海:L海人民出版社,1976.
    [41]Breck D W. Zeolite molecular sieves[M]. New York:John Wiley & Sons,1974.
    [42]中国科学院大连物理研究所分子筛组编.沸石分子筛[M].北京:科学出版社,1978.
    [43]张术根,申少华,李酽.廉价矿物原料沸石分子筛合成研究[M].长沙:中南大学出版社,2003.
    [44]Milton RM, Buffalo NY. Molecular sieve absorbents[P]. US 2882243,1959.
    [45]Albers EW, Vaughan DEW. Method for producing open framework zeolites[P]. US 3947482,1976.
    [46]张永全,顾晓明,张少俊.高性能变压吸附5A分子筛及其制备方法[P].CN1530167 A,2004.
    [47]Seidel R, Staudte B. The influence of clay binder material on the physical properties of the CaNaA molecular sieve used in a hydrocarbon separation process[J]. Zeolites. 1993.13:92-96.
    [48]Kettinger FR, Laudone JA. Pierce RH. Preparing zeolite NaA[P]. US 4150100,1979.
    [49]Robertson JA. Zeolite A crystals of uniformly small particle size and the manufacture thereof[P]. US 4173622.1979.
    [50]Pfenninger A. Manufacture and Use of Zeolites for Adsorption Processes[J]. Molecular Sieves.1999.2:164-197.
    [51]Kiselev AV. Vapor Adsorption on Zeolites considerd as crystalline specific adsorbents[J]. ACS Symposium Series.1971,102:31.
    [52]Doetsch IH, Ruthven DM. Loughlin KF. Sorption and Diffusion of n-Heptane in 5A Zeolite[J]. Can. J. Chem.1974.52:2717.
    [53]Vavlitis AP, Ruthven DM. Loughlin KF. Sorption of n-pentane, n-ocatane and n-decane in 5A zeolite crystals[J]. J. Colloid Interface Sci.1981,84:526.
    [54]Ruthven DM, Kaul BK. Adsroption of n-hexane and intermediate molecular weight aromatic hydrocarbons on LaY zeolite[J]. Ind. Eng. Chem. Res.1996,35:2060.
    [55]Martinez G, Basmadjian D. Towards a general gas adsorption isotherm[J]. Chem. Eng. Sci.1996,51:1043.
    [56]Yang RT. Gas Separation by adsorption process[M]. Stoneham:Butterworth,1987.
    [57]Peterson DL, Redlich O. Sorption of normal paraffins by molecular sieves type 5A[J]. J. Chem. Eng. Data.1962.7(4):570-574.
    [58]Silva JAC, Rodrigues AE. Sorption and diffusion of n-pentane in pellets of 5A zeolite[J]. Ind.Eng.Chem.Res.1997,36(2):493-500.
    [59]孙辉,沈本贤.正庚烷和正辛烷在无黏结剂5A分子筛上的吸附动力学特性[J].石油炼制与化工.2011,42(1):15-19.
    [60]Gupta RK, Kunzru D, Saraf DN. Liquid-phase adsorption of n-paraffins on molecular sieve[J]. J. Chem. Eng. Data.1980,25(1):14-16.
    [61]Roberts PV, York R. Adsorption of normal paraffins from binary liquid solutions by 5A molecular sieve adsorbent[J]. Ind. Eng. Chem. Process Des. Dev.1967,6(4): 516-525.
    [62]Awum F, Narayan S, Ruthven D. Measurement of intracrystalline diffusivities in NaX zeolite by liquid chromatography[J]. Ind. Eng. Chem. Res.1988,27(8): 1510-1515.
    [63]Barrer RM, Peterson DL. Kinetics of n-Paraffin Sorption in the Natural Zeolite Erionite[J]. J. Phys. Chem.1964.68(11):3427-3429.
    [64]Caro J, Bulow M. Karger J. Sorption kinetics of n-Decane on 5A zeolites from a nonadsorbing liquid solvent[J]. J. AIChE.1980.26(6):1044-1046.
    [65]Choudary VN. Jasra RV. Bhat SGT. Influence of presorbed molecules on the sorption of n-alkanes in zeolite NaCaA[J]. J.Chem.Soc.Faraday Trans.1992,88:3111-3115.
    [66]Karger J, Pfeifer H. Riedel E. Winkler H. Self-diffusion measurements of water adsorbed in NaY zeolites by means of NMR pulsed field gradient techniques[J]. J. Colloid. Interf. Sci.1973.44:187-188.
    [67]Jasra RV, Bhat TSG. Sorption kinetics of higher n-paraffins on zeolite molecular sieve 5A[J]. Ind. Eng. Chem. Res.1987.26(12):2544-2546.
    [68]Shen BX, Liu JC, Wang ZhX. Research on optimized utilization of naphtha resources based on adsorptive separation with zeolite[J]. China Petroleum Processing and Petrochemical Technology.2005, (1):49-55.
    [69]Liu JC, Shen BX, Sun H. Adsorption behavior of n-paraffins in a fixed adsorber containing 5A molecular sieves[J]. Adsorpt. Sci. Technol.2006,24(4):311-320.
    [70]Miano, F. Adsorption of hydrocarbon vapour mixtures onto zeolite 5A[J]. Colloid Surface A.1996,110(1):95-104.
    [71]Peterson DL, Redlich O. Sorption of n-paraffins by molecular sieves type 5A[J]. J. Chem. Eng. Data.1962,7(2):570-574.
    [72]Garazi MA, Haure PM, Resasco DE. N-hexane sorption in palletized 5A zeolite[J]. Ind. Eng. Chem. Process Des. Dev.1986,25(1):290-293.
    [73]Silva JAC, Rodrigues AE. Sorption and diffusion of n-pentane in pellets of 5A zeolite[J]. Ind. Eng. Chem. Res.1997,36(2):493-500.
    [74]Roma F, Riccardo JL, Ramirez-Pastor AJ. Statistical thermodynamics models for polyatomic adsorbates:Application to adsorption of n-paraffins in 5A zeolite[J]. Langmuir.2005,21(6):2454-2459.
    [75]Gupta RK, Kunzru D, Saraf DN. Liquid-phase adsorption of n-paraffins on molecular sieve[J]. J. Chem. Eng. Data.1980,25(1):14-16.
    [76]Sundstrom DW, Krautz FG. Equilibrium adsorption of liquid phase normal paraffins on type 5A molecular sieves[J]. J.Chem.Eng.Data.1968,13(2):223-226.
    [77]Schwartz RD, Brasseaux DJ. Determination of normal paraffins in olefin-free petroleum distillates by molecular sieve sorption and refractometry[J]. Anal. Chem. 1957,29(7):1022-1026.
    [78]Wanless GJ. Hydrocarbon separation process[P]. US 4000059.1976.
    [79]Neuzil RW, Grove D, Skala H. Method for improving molecular sieves[P]. US 3405057.1968.
    [80]Neuzil RW. Grove D. Skala H. Zeolite molecular sieve adsorbent for use in an aqueous system[P]. US 3405057.1968.
    [81]沈本贤,刘纪昌等.石脑油的优化利用方法[P].CN 1710030A.2005.
    [82]Rodrigues AE. Lu ZP, Loureiro JM. Pais LS. Separation of enantiomers of 1a,2,7,7a-tetrahydro-3-methoxynaphtha-(2,3b)-oxirane by liquid chromatography: laboratory-scale elution chromatography and modeling of simulated moving bed[J]. J. Chromatogr. A.1995,702:223-231.
    [83]Paredes G, Mazzotti M. Optimazation of simulated moving bed and column chromatography for a plasmid DNA purification step and for a chiral separation[J]. J. Chromatogr. A.2007.1142:56-68.
    [84]Lee HH, Kim KM. Lee CH. Improved performance of simulated moving bed process using column-modified feed[J]. AIChE J.2011,57:2036-2053.
    [85]Nam HG, Han MG, Yi SC, Chang YK, Mun S, Kim JH. Optimization of productivity in a four-zone simulated moving bed process for separation of succinic acid and lactic acid[J]. Chem. Eng. J.2011.171:92-103.
    [86]张红丽,赵亮,明永飞等.模拟移动床色谱分离制备手性农药甲霜灵的研究[J].分析试验室.2007,26(10):14-16.
    [87]陈柏礼,潘丰.苯丙氨酸模拟移动床色谱分离的建模和优化[J].计算机测量与控制.2005,13(8):796-799.
    [88]万红贵,方煜宇,叶慧.模拟移动床技术分离缬氨酸和丙氨酸.2005,31(12):50-53.
    [89]孟祥晶,王霞,张世东等.模拟移动床色谱生产精品茄尼醇的原料预处理工艺研究[J].2007,34(1):19-21.
    [90]Long NVD, Lee JW, Le TH. Kim JI, Koo, YM. Solvent-gradient SMB to separate o-xylene and p-xylene[J]. Korean J. Chem. Eng.2011,28:1110-1119.
    [91]Jin W, Wankat PC. Hybrid simulated moving bed processes for the purification of p-xylene[J]. Sep. Sci. Technol.2007,42:669-700.
    [92]Broughton DB, Carson DB. The molex process[J]. Pet. Refin.1959,38:130-134.
    [93]Broughton DB, Neuzil RW, Pharis JM, Brearley CS. The parex process for recovering paraxylene[J]. Chem. Eng. Prog.1970,66:70-75.
    [94]顾金生,蒋慰孙,顾幸生.模拟移动床Parex过程动态模型[J].华东理工大学学报.1997,23(6):725-730.
    [95]赵雪飞,高丽娟,赖仕全.模拟移动床色谱法分离C60的条件选择[J].辽宁科技大学学报.2008,31(3-4):225-228.
    [96]王晟,马正飞,姚虎卿.烷烃中少量芳烃的固定床和模拟移动床吸附[J].南京工业大学学报.2003,25(2):18-22.
    [97]王辉国,王德华,马剑锋等.国产RAX-2000A型对二甲苯吸附剂小型模拟移动床实验[J].石油化工.2005.34(9):850-854.
    [98]王建建.高丽娟,张丽华等.玉米须黄酮的模拟移动床色谱纯化工艺[J].安徽农业科学.2007.35(26):8096-8098.
    [99]陈铁鑫,张伟.王英平等.模拟移动床色谱分离玉米须粗提物[J].特产研究.2007,(1):16-19.
    [100]Broughton DB, Gerhold CG. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets[P]. US 2985589.1961.
    [101]Negawa M, Shoji F. Optical resolution by simulated moving-bed adsorption technology[J]. Journal of Chromatography.1992.590:113-117.
    [102]Helfferich F, Klein G. Multicomponent chromatography theory of interence[M]. New York:Marcd Dekker.1970.
    [103]Rhee HK, Aris R. Amudsen NR. First order partial differential equations[J]. Prentiss Hall Englewood Cliffs.1989,2:228.
    [104]Broughton DB. Process for separating normal and isoparaffins[P]. US 2985589. 1961.
    [105]Broughton DB. Continuous solid-fluid contacting process[P]. US 3274099.1963.
    [106]Lickus AG, Broughton DB. Separation of aliphatic paraffins from normally liquid hydrocarbon mixtures[P]. US 3239455.1966.
    [107]Park LG. Process for separating olefins from saturated hydrocarbons[P]. US 3723302.1971.
    [108]Broughton DB. Hydrocarbon separation[P]. US 3715409.1971.
    [109]Bieser HJ. Plaines D. Process for separating normal paraffins[P]. US 4006197.1977.
    [110]Broughton DB. Continuous solid-fluid contacting process[P]. US 3274099.1963.
    [111]Cao J, Shen BX. The influence of solvents on the liquid-phase adsorption rate of n-hexane in 5A molecular sieves[J]. Adsorp. Sci. Technol.2010,27:777-784.
    [112]Lickus AG, Broughton DB. Separation of aliphatic paraffins from normally liquid hydrocarbon mixtures[P]. US 3239455.1966.
    [113]Park LG. Process for separating olefins from saturated hydrocarbons[P]. US 3723302.1971.
    [114]Broughton DB. Hydrocarbon separation[P]. US 3715409.1971.
    [115]Bieser HJ. Plaines D. Process for separating normal paraffins[p]. US 4006197.1977.
    [116]刁九华,彭世浩,武劲松等.新建分子筛脱蜡装置设计与运行[J].炼油技术与工程.2003,33(5):23-26.
    [117]Swift J. Hydrocarbon ASIA.1998.5(4):42.
    [118]Rosback U, Donald H. Separation of ethylbenzene with an adsorbent comprising Sr and K exchanged X or Y zeolite[P]. US 4079094.1978.
    [119]Richard WN. Process for the separation of ethylbenzene[P]. US 4497972.1985.
    [120]Dabrowski A, Jaroniec M. Theoretical foundations of physical adsorption from binary non-electrolytic liquid mixtures on solid surfaces:present and future[J]. Advances in Colloid and Interface Sci.1987,27(3-4):211.
    [121]Daems I, Baron GV, Punnathanam S, Snurr RQ, Denayer FM. Molecular cage nestling in the liquid-phase adsorption of n-alkanes in 5A zeolite[J]. J. Phys. Chem. C.2007,111:2191-2197.
    [122]Jaroniec M. Marczewski AW. Adsorption from solutions of nonelectrolytes on heterogeneous solid surfaces:A four-parameter equation for the excess adsorption isotherm[J]. Monatsh. Chem.1984,115(5):541-550.
    [123]顾金生等.模拟移动床Parex过程建模与仿真[J].化工学报.1996.47(4):439-445.
    [124]Dabrowski A. Jaroniec M, Oscik J. Surface and Colloid Science[M]. New York: Plenum Press.1987:83-213.
    [125]Sundstrom DW, Krautz FG, Equilibrium adsorption of liquid phase normal paraffins on type 5A molecular sieves[J]. J. Chem. Eng. Data.1968,13:223-226.
    [126]Luyben WL. Distillation design and control using Aspen simulation[M]. New Jersey: John Wiley & Sons,2006:85-97.
    [127]李菲.戊烷系列产品的质量控制[J].广石化科技.2006,9(3):24-27.
    [128]沈本贤,刘纪昌.石脑油中正异构烃的适度分离及工艺方法对比[J].当代石油石化,2006,14(4):4244.
    [129]Guisnet M. Magnoux P, Martin D. Roles of acidity and pore structure in the deactivation of zeolites by carbonaceous deposits[J]. Stud. Surf. Sci. Catal.1997, 111:1-19.
    [130]Guisnet M, Magnoux P. Fundamental description of deactivation and regeneration of acid zeolites[J]. Stud. Surf. Sci. Catal.1994,88:53-68.
    [131]Karge HG. Coke formation on zeolites[J]. Stud. Surf. Sci. Catal.1991,58:531-570.
    [132]Bjorgen M, Olsbye U, Kolboe S. Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion[J]. J. Catal.2003,215: 30-44.
    [133]Guisnet M, Magnoux P. Coking and deactivation of zeolites:Influence of the pore structure[J]. Appl. Catal.1989,54:1-27.
    [134]Uguina MA, Sotelo JL, Calleje G. Effects of the operating conditions on coke deactivation of 5A molecular sieve in n-decane adsorption/desorption[J]. Adsorption. 2002,8:133-140.
    [135]Huang J. Jiang YJ, Marthala VRR. Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalyst[J]. J. Catal.2009,263: 277-283.
    [136]Misk M. Joly G. Magnoux P. Formation of coke from propene over 5A adsorbents-influence of the binder on the coke composition, location and removal[J]. Micropor. Mesopor. Mat.2000.40:197-204.
    [137]刘纪昌.基于分子管理的石脑油资源优化利用研究[D],2007.90-95.
    [138]http://oil.chem99.com.2011-10-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700