催化裂化烟气硫转移剂的制备、评价与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在FCC再生器中,催化剂通过烧焦来进行再生。催化剂在烧焦的过程中,会生成SO2。SO2会对FCC装置造成腐蚀;排放到空气中,会形成酸雨等。由于催化裂化原料的含硫量增大和环境保护法规日益严格,迫切要求控制FCC烟气中SO2的排放。添加硫转移剂是有效降低烟气中SO2排放的最佳方案。如果硫转移剂在高效脱硫的同时,还能有效助燃,这不仅能提高人们使用硫转移剂的积极性,而且还能节约成本。本论文制备了一种新型的硫转移剂;并对其改性,使其同时具有脱硫和助燃的活性。
     首先,本文通过对活性组分、载体和制备条件的考察,制备了脱硫活性和稳定性很高的新型硫转移剂。实验结果表明,铈的作用主要体现在氧化吸硫方面,铁的作用主要体现在还原脱硫方面,氧化镁的含量有一个最佳值;制备的硫转移剂是含铈铁的富镁尖晶石,在实验室自制的脱硫装置上其脱硫活性为100%,具有很好的氧化吸硫-还原脱硫循环稳定性和很高的抗水热老化的能力。
     然后,把硫转移剂的脱硫实验进行放大。提升管小试表明,该硫转移剂的添加量占催化剂藏量的2%时,其脱硫活性为88%,且该硫转移剂对提升管的产物分布无明显的负面影响。大港工业试验结果表明,在硫转移剂的添加量为FCC催化剂藏量的2%时,烟气中90%的SO2被脱除,这比专利文献中普遍报导的脱硫率高,同时对FCC的产品分布和汽油的质量没有明显的不利影响。
     最后,通过添加氧化铜对硫转移剂的活性组分进行改性,使其同时具有硫转移和CO助燃的功能。实验结果表明:该双功能助剂是在硫转移剂上引入了1%的氧化铜。从XRD和BET的表征结果可以看出,引入1%的氧化铜在结构上对硫转移剂的影响很小;但其助燃活性明显得到了改善。在自制的实验装置上,在温度为200℃时,该助剂能把CO完全氧化为CO2;而且在脱硫实验装置上,在700℃时,其脱硫活性为100%,饱和吸附硫容略微增大。
In fluid catalytic cracking(FCC) process, the burn-off of coke deposited on catalysts in FCC regenerator produces SOX(90%SO2 and 10%SO3). SO2 is one of the most hazardous atmospheric pollutants. SO2 and SO3 are acid rain precursors. And SO2 erodes FCC unit. Due to heavier feedstock and more and more stringent environmental regulations, it becomes urgent to cut down the emissions of SO2. In order to meet the requirement of environmental protection policies, sulfur-transfer additives are used in FCC process. If sulfur-transfer additives can highly effectively remove SO2, still can have good CO combustion activity, it will not only arouse people’s initiative but also save the cost. New sulfur-transfer additives were designed in my thesis, and the additives were modified to remove SO2 and CO.
     First, sulfur-transfer additives were prepared by systematic studies on active components, MgAl2O4 and preparation conditions in the self-made desulfurization unit in the laboratory. The experimental results demonstrated that the role of ceria was mainly reflected in SO2 oxidation. The role of iron was mainly reflected in SO2 reduction. The content of MgO in additives had an optimum value. The sulfur-transfer additives were ceria and iron-containing magnesia-excess spinels. The additives could completely remove SO2 from mixed reaction gas in the self-made desulfurization unit. The additives had very good SO2 oxidation–reduction performance and high hydrothermal stability.
     Then, sulfur-transfer additives were evaluated in riser pilot unit and FCC unit of Dagang Petrochemical Company. The riser test proved when appending 2% sulfur-transfer additives, SO2 in the flue gas was reduced by 88%. Moreover, it had no unfavorable effect on distributions of riser products. Industrial trial in Dagang’FCC unit showed when appending 2% sulfur transfer additives, sulfur-transfer additives’desulfuring activity was 90%. And it had no significant effect on distributions of FCC products and qualities of FCC gasoline.
     Finally, Cu as a combustion promoter was added into the sulfur-transfer additives, and the modified additives were tested in self-made fixed bed system. The experimental results showed that the weight content of CuO in the modified additives was 1%. The influence of CuO (1%) to sulfur-transfer additives was very small in additives’composition and structure. But additives’CO complete combustion temperature was reduced obviously, and additives’CO combustion activity was noticeably improved. Additives’combustion activity was 100% at 200℃and additives’SO2 saturation capacity increased. In a word, modified additives could simultaneously remove SO2 and CO.
引文
[1]李大江,孙国刚,潘利祥.催化裂化装置烟气污染物脱除技术的研究[J].石油化工设计, 2006, 23(1): 62-64
    [2] Jin S Yoo, John A. Karch. Catalytic SOX abatement: The role of magnesium aluminate spinel in the removal of SOX from fluid catalytic cracking (FCC) flue gas[J]. Ind Eng Chem Res, 1988, 27: 1356-1360
    [3]张德义.含硫原油加工技术[M].北京:中国石化出版社, 2003: 17-21
    [4]杨德凤.从催化裂化烟气分析结果探讨再生设备的腐蚀开裂[J].石油炼制与化工, 2000, 32(3): 49-53
    [5]刘忠生,方向晨,戴文军.炼油厂SOX排放及其控制技术[J].当代化工, 2005(12): 408-421
    [6]刘忠生,林大泉.催化裂化装置排放的二氧化硫问题及对策[J].石油炼制与化工, 1999, 30(3): 44-48
    [7]王一男.烟气脱硫技术在催化裂化中的应用[J].化工时刊, 2005 , 12(12): 38-47
    [8] Roncolatto R E, Cardoso M J.B., Lam Y L, et al. FCC SOX additives deactivation[J]. Ind.Eng.chem.Res, 2006, 45(8): 2646-2650
    [9] lessandro Trovarelli, Carla de leitenburg, Marta Boaro, et al. The utilization of ceria in industrial catalysis[J]. Catalysis Today, 1999: 353-367
    [10] Lowell P S, Schwitzgebel K, Parsons T B. Selection of metal oxides for removing SO2 from flue gas[J]. Ind. Eng. Chem. Process Des & Develop, 1971, 10(3): 384-390
    [11]李林波,许金山,梁颖杰,等.催化裂化烟气硫转移剂的研究进展[J].齐鲁石油化工, 2003, 31(3): 237-239
    [12]程之光.重油加工技术[M].北京:中国石化出版社, 1994:59
    [13] Gladrow E. M, Schuette W L, Reid T A, et al. Sulfur transfer process in catalytic cracking[P]. US 4240899, 1981
    [14] Blanton W A, Flanders R L, Anselmo S, et al. Process for controlling sulfur oxides using an aluminaim pregnated catalyst[P]. US 4332672, 1982
    [15] Dimitriadis V D, Vasalos I A. Evaluation and kinetics of commercially available additives for SOX control in fluid catalytic cracking units[J]. Ind. Eng. Chem. Res., 1992,31(12): 2741-2748
    [16]朱仁发,李承烈.流化催化裂化脱硫添加剂的研究进展[J].化工科技, 2000, 8(1): 50-55
    [17] Kim G, Olney. SOX control compositions[P]. US 5288675, 1994
    [18] A Bhattacharyya, M J Foral, W J Reagan. Absorbent and process for removing sulfur oxides from a gaseous mixture[P]. US 5426083, 1995
    [19]罗珍.减少催化裂化SOX排放的硫转移助剂[J].炼油设计, 2000(11): 60-62
    [20] Bhattacharyya A, Cormier W E, Woltermann G M, et al. Alkaline earth metal spinels and processes for making[P]. US 4728635, 1988
    [21]蒋文斌,冯维成,谭映临,等. RFS-C硫转移剂的试生产及工业试用[J].石油炼制与化工, 2003, 34(12): 21-25
    [22]陈德胜,侯典国.催化裂化烟气SOX转移助剂的工业应用[J].石油炼制与化工, 2003, 34 (4): 43
    [23]王斌,王涛.催化裂化再生烟气SOX转移剂RFS的开发[J].石油炼制与化工, 2002, 33(6): 37-40
    [24]李林波,周忠国,许金山,王瑞旭.多功能催化裂化烟气硫转移剂的工业应用[J].石油炼制与化工, 2001, (5): 13-15
    [25]梁颖杰,李林波,周忠国,等.催化裂化烟气硫转移剂的开发与应用[J].石化技术与应用, 2003, 21(2): 140
    [26]齐文义,王龙延,郭海卿. LST-1液体硫转移助剂的研究[J].炼油设计, 2000, 30(9): 5-8.
    [27]姚志强,武迎建. LT-8硫转移剂在II套催化裂化装置的工业应用[J].江西石油化工, 2002, 14(1): 9-14
    [28]冯明,杨彬. HL-9硫转移剂的工业应用[J].齐鲁石油化工, 2002, (1): 16-18.
    [29]杜伟,黄星亮,郑彦彬.国内外催化裂化CO助燃剂的现状与进展[J].石油化工, 2002, 31(12): 1022-1027
    [30] Hosseinpour N, Khodadadi A A, Mortazavi Y, et al. Nano-ceria-zirconia promoter effects on enhanced coke combustion and oxidation of CO formed in regeneration of silica-alumina coked during cracking of triisopropylbenzene[J]. Applied Catalysis A: General, 2009, 353:271-281
    [31]陈俊武.催化裂化工艺与工程[M].第二版.北京:中国石化出版社, 2005: 344-348
    [32]梁仕普.稀土助剂的助燃机理与工业试验[J].精细石油化工, 2000, (4): 23-24
    [33]李国祥,阳霞,丁玲.非贵金属复合氧化物CO助燃剂及其研究进展[J].四川化工, 2004, 7(5): 25-28
    [34] Gladrow E M, Rouge B, La. Hydrocarbon conversion catalyst containing a co-oxidation promoter[P]. US 4151121, 1979
    [35] Dolbear G E, Columbia, John S. Magee, et al. Hydrocarbon cracking with both a zeolite and Pt-U-alumina in the matrix[P]. US 3788977, 1974
    [36] Edwin J. Latos, Chicago. Use of noble metal solutions in catalyst regeneration zones[P]. US 4118339, 1978
    [37] Richard G. Graven, Westmont, Robert A.Sailor, et al. Temporary shutdowm of co-combustion devices[P]. US 4064037, 1977
    [38]储慧莉. CO助燃剂的新发展[J].工业催化, 1997, (4): 3-8
    [39]迟继运.新型5号CO助燃剂性能研究及其应用[J].工业催化, 1994, (2): 39-45
    [40]蔡智.新型5号助燃剂的工业应用效果[J].石油炼制与化工, 1995, 26(3): 22-25
    [41]林科.一种钙钛矿型稀土复合氧化物一氧化碳燃烧催化剂的制备方法及其产品和用途[P]. CN 1088961A, 1994
    [42]林科.钙钛矿型稀土复合氧化物一氧化碳助燃剂及其制备方法[P]. CN 1087111, 1994
    [43] Rovert C. Wilson, Jr. ,Woodbury, et al. Method of regenerating a hydrocarbon conversion catalyst to minimize carbon monoxide in regenerator effluent[P]. US 3808121, 1974
    [44]黄星亮,殷慧玲,李淑云. CuO-Co2O3/La-Al2O3催化剂CO氧化活性的实验研究[J].石油大学学报(自然科学版), 1992, 16(5): 83-89
    [45] Kenneth S. Wheelock,Robert C. Schucker. Process for regenerating perovskite catalysts and hydrocarbon treating processes utilizing the regenerated catalyst[J]. US4446011, 1984
    [46]殷慧龄,黄星亮,等.非贵金属氧化物一氧化碳助燃剂及制备方法[P]. CN 1072109, 1993
    [47]冯长辉,黄星亮,殷慧龄.一种非贵金属CO助燃剂抗硫和硫转移性能的研究[J].石油炼制与化工, 1999, 30(8): 9-12
    [48]黄星亮,冯长辉,靳广州,等.非贵金属复合氧化物CO助燃剂的催化性能研究[J].石油炼制与化工, 1996, 27(8): 17-21
    [49] Bin Wen, Ming yuan He, Colleen Costello. Simultaneous catalytic removal of NOX, SOX, and CO from FCC regenerator[J]. Energy & Fuels, 2002, 16: 1048-1053
    [50]陈志,段东升,徐文长.催化裂化烟气转硫脱氮和助燃三功能催化剂FP-DSN的工业应用[J].炼油设计, 2002, 32(11): 7~10
    [51]朱仁发,谭乐成,王金安,等.调变组分对流化催化裂化助剂脱硫性能的影响[J].华东理工大学学报, 2000, 26(2): 149-153
    [52] Jin an Wang, Li fang Chen, Cheng lie Li. Roles of cerium oxide and the reducibility and recoverability of the surface oxygen species in the CeO2/MgAl2O4 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 1999, 139(2): 315–323
    [53]秦绍清,朱仁发,李承烈. FCC脱硫助剂还原分解非等温反应动力学研究[J].安徽大学学报(自然科学版), 2002, 26(3): 79-84
    [54] Jin an Wang, Li fang Chen, Ballesteros R.L, et al.Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2003, 194 (1): 181–193
    [55]李晓,谭乐成,李承烈.镁铝尖晶石作为催化裂化双功能助剂的研究[J].石油学报(石油加工), 2001, 17(3): 57-61
    [56]张信,朱华元,冉云,等.抗钠FCC催化剂的研制和工业应用[J].炼油设计, 1997, 27(2): 58-60
    [57]朱仁发,鲍成根.脱硫催化剂的酸法制备及性能研究[J].安庆师范学院学报(自然科学版), 1999, 5(1): 54-57
    [58]朱仁发,李承烈,谭乐成.脱硫添加剂氧化吸硫原位还原研究[J].石油学报(石油加工), 2000, 16(2): 20-24
    [59]朱仁发,黄家桢,钱枫,等.含铈尖晶石的脱硫活性及性能研究[J].化工科技[J].2000, (4): 5-8
    [60]张博,张晓伟,林大泉,等.循环镁法烟气脱硫产物中硫酸镁(MgSO4)的热解研究[J].化学工程师. 2009, 164(5): 13-20
    [61]朱仁发,李承烈. FCC再生烟气的脱硫助剂研究进展[J].化工进展, 2000(3): 22-29
    [62]林炳雄,张婉静,刘英骏,等.铜铝-铈铝复合氧化物燃烧催化剂及其制备和用途[P]. CN1345629A, 2002
    [63]崔连起,李琬,张岱山,等. CO助燃剂及其制备方法[P]. CN1065560C, 2001
    [64]王素坤.一种一氧化碳助燃剂及其制备方法[P]. CN1301803A, 2001
    [65] Jorge Laine, Francisco Severino. Changes in alumina-supported copper and copper-chromite catalysts by the introduction of water during carbon monoxide oxidation[J]. Applied Catalysis, 1990, 65(2): 253-258
    [66] Nai Ynen Chen, Cherry Hill, N.J., et al. Novel cyclic catalytic process for the conversion of hydrocarbons[P]. US 3364136, 1968
    [67] Michel Prigent,Rueil Malmaison, Gilbert Blanchard, et al. Catalyst supports/catalysts for the treatment of vehicular exhaust gases[P]. US 4985387, 1991
    [68] LinLuo, Darrell Rainer, Jorge A. Gonzalez. Laboratory deactivation testing for the stability of FCC CO combustion promoters[J]. Applied catalysis B, 2007: 212-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700