氧化应激诱导间充质干细胞凋亡及磷脂类分子调节血管内皮生长因子分泌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞移植治疗缺血性心肌病已取得较大进展,但由于多种因素的制约限制了其治疗效果。移植骨髓间充质干细胞(MSCs)的低存活率是限制其治疗效果的重要因素之一,梗死心肌微环境中除缺血缺氧外,可能还存在多种因素会诱导MSCs凋亡,其中梗死心脏中由于活性氧(ROS)增高而导致的持续氧化应激可能是诱导MSCs凋亡的另一个重要因素,研究这些因素及作用机制有助于寻找抗凋亡的有效途径。
     十细胞的旁分泌是其治疗缺血性心肌病的重要机制之一。MSCs能够分泌多种细胞因子,其中血管内皮生长因子(VEGF)具有促血管生成和心肌保护等多种功能,增加MSCs中VEGF分泌能够显著提高细胞移植的治疗效果。溶血磷脂酸(Lysophospholipids acid,LPA)作为一种内源性磷脂类分子在许多生理和病理过程中都发挥着重要作用。我们前期研究表明LPA预处理的MSCs增加了心肌梗死区毛细血管密度,促进MSCs分泌VEGF,但其具体作用机制尚不明确。作为一种新型磷脂,二酰基甘油焦磷酸(DGPP)常用作LPA1/3受体拮抗剂,目前关于DGPP对MSCs生长调节方面的研究还是空白,我们的前期实验意外发现DGPP能比LPA更为有效地促进VEGF分泌,但其具体的机制还不明确。而这些磷脂分子对MSCs的具体作用效果和机制的阐明将可能为MSCs移植增效提供新的候选药物。
     针对上述背景,本论文分析了梗死心肌中增高的活性氧化物对移植MSCs存活的影响以及其作用机制,分别探讨了LPA和DGPP对MSCs旁分泌的作用及其调控机制,研究了LPA对MSCs的增殖调控及其相关信号通路。本研究主要包括以下四部分内容:
     1.过氧化氢对MSCs存活的影响及其调节信号通路
     为研究活性氧化物对移植十细胞存活的影响,本研究建立了体外氧化应激模型,并对H2O2诱导MSCs凋亡的机制进行了研究。结果表明H2O2浓度等于或高于0.9 mM,作用时间超过12小时,细胞发生明显凋亡。H2O2导致细胞线粒体膜电位降低,细胞色素c从线粒体释放入胞浆,bax从胞浆向线粒体转移。H2O2处理还导致caspase-3和caspase-12的活化,二者的抑制剂不同程度抑制了MSCs的凋亡,而caspase-12抑制剂没有抑制细胞色素c的释放和caspase-3的切割。H2O2增加JNK和p38的磷酸化水平,其中p38抑制剂也阻止了MSCs的早期凋亡,并抑制了细胞色素c的释放及bax的转移,而JNK抑制剂减少了细胞的晚期凋亡。因此,H2O2以浓度和时间依赖性诱导MSCs凋亡,凋亡同时通过线粒体途经和内质网应激途径。H2O2也活化了JNK/p38途经,其中p38通过调节线粒体途经调控MSCs的早期凋亡,而JNK调节细胞的晚期凋亡,并独立于线粒体途径。
     2.LPA促进MSCs分泌VEGF及其调节机制
     为研究LPA对MSCs分泌VEGFI的调控及其机制,应用LPA处理MSCs,分别检测相关蛋白表达与定位、ATP酶及离子通道的变化情况,结果表明LPA以浓度和时间依赖性促进MSCs分泌VEGF,而对细胞内VEGF蛋白和VEGF mRNA的表达没有影响。LPA抑制了Na+,K+-ATPase活性,上调了150KD氧调控蛋白(ORP150)的表达,并减少了VEGF蛋白在内质网内的驻留。钾离子通道开放剂diazoxide抑制了LPA的诱导ORP150表达增高,同时也抑制了LPA促进的VEGF分泌,增加了VEGF的内质网驻留。因此,上述结果证明LPA在翻译后水平调控VEGF分泌,其调节途径如下:LPA降低了MSCs中Na+, K+-ATPase活性,使ATP/ADP下降,线粒体ATP-敏感型钾离子通道(mitoKATP channel)关闭,进而导致ORP150表达增高,高表达的ORP150促进VEGF从内质网向细胞外运输。
     3. DGPP促进MSCs分泌VEGF及其调节机制
     为检测(?)3GPP对MSCs分泌VEGF的调节,应用DGPP处理MSCs后,检测VEGF的分泌,并对相关机制进行研究分析,结果显示DGPP显著促进MSCs分泌VEGF,其促VEGF的分泌效果强于LPA。低血清条件下DGPP没有显著改变存活细胞数量,高浓度DGPP抑制了MSCs增殖。DGPP没有影响细胞内VEGF蛋白和VEGF mRNA的表达。钾离子通道开放剂diazoxide没有抑制DGPP导致的VEGF分泌增高。DGPP上调了GRP94 mRNA的表达。Sulfinator分析预测VEGF蛋白存在酪氨酸硫酸化修饰位点。因此,DGPP能够比LPA更为有效促进MSCs中VEGF的分泌,并与细胞数量变化无关。与LPA不同,DGPP调节VEGF可能没有涉及mitoKATP通道的调节。GRP94、VEGFN-糖基化、酪氨酸硫酸化在DGPP促VEGF分泌过程中的作用有待进一步研究。
     4.LPA对MSCs增殖的调节作用及其作用机制
     为研究LPA对MSCs增殖的调节作用,用LPA处理MSCs,检测细胞增殖情况,并对其相关信号通路进行分析,结果表明LPA促进MSCs增殖,并呈浓度依赖性。LPA1/3受体特异性抑制剂,ERK信号通路抑制剂都不同程度降低了LPA的促增殖作用。LPA使细胞内c-myc蛋白表达上调,而加入上述抑制剂则下调了c-myc蛋白的表达。因此,LPA能够促进间充质干细胞增殖,这种作用是通过结合LPA1/3受体,活化ERK信号通路,从而上调c-myc蛋白表达实现的。
     综上所述,本研究确定了氧化应激对MSCs促凋亡作用及其机制,分析了磷脂分子对MSCs旁分泌和增殖等生物学功能的调节,为提高移植MSCs存活率,促进磷脂分子在MSCs移植治疗心血管疾病方面的应用,改善MSCs移植治疗效果提供了依据。
Although mesenchymal stem cells (MSCs) have great promise in the recovery of damaged myocardium after myocardial infarction, several factors limit therapeutic effect of MSCs transplantation. One of them is low viability of MSCs transplanted into infarcted heart. MSCs apoptosis transplanted into infarcted heart might result from more than one factor besides hypoxia and serum deprivation (Hypoxia/SD). The increase of exogenous reactive oxygen species (ROS) in infracted heart might be another important factor to induce apoptosis of MSCs. Identification of such factors contributes to improvement of the cell viability.
     Transplanted MSCs without any modification might be another factor to limit the therapeutic effect. The therapeutic effects of MSCs results partly from release of paracrine factors, among which vascular endothelial growth factor (VEGF) is one of crucial mediators by regulating angiogenesis and protecting myocardium against ischemic injury. Increase of VEGF secreted from MSCs improves the therapeutic effects of MSCs. Lysophosphatidic acid (LPA), as an endogenous lipid messenger, is involved in diverse physiological and pathological processes. Our previous studies indicated that LPA enhanced capillary density after transplantation of MSCs in ischemic myocardium in vivo, and increase VEGF production under hypoxia/SD in vitro, but its mechanism is not known. DGPP is a novel phospholipid, and ofen used as one of LPA1/3 receptor antagonists, but the effect of DGPP on MSCs is not clear. In our previous study, we superisely found that DGPP promote VEGF secretion than LPA in MSCs, but its accurate effect and mechanism are not well understood.
     According to the background mentioned above, we investigated the role of reactive oxidative species (ROS) in transplanted MSCs, the effect of LPA and DGPP in paracrine of MSCs and their mechanism, and the regulation of LPA on MSCs proliferation. The study includes four sections.
     1. The role of hydrogen peroxides in the viability of MSCs and its mechanism
     To identify the role of hydrogen peroxide, a model of oxidative stress was established to mimic the environment in vivo, and the mechanism of H2O2 on MSC apoptosis was investigated. Obvious apoptosis of MSCs resulted from a certain concentration of H2O2 (≧0.9 mM) and treatment time (≧12 h). H2O2 treatment resulted into loss of mitochondrialΔΨm, release of cytochrome C released from mitochondria to cytosol and bax translocation from the cytosol to the mitochondria in MSCs.Caspase-3 and caspase-12 were activated after H2O2 treatment, and their inhibitors prevented apoptosis of MSCs.However, the caspase-12 inhibitor had no effect on cytochrome C release and cleavage of caspase-3 caused by H2O2. Transient phosphorylation of JNK/p38 increased after H2O2 treatment. P38 inhibitor prevented the early apoptosis of MSCs, accompanied by the decrease of cytochrome C release and bax translocation, while JNK inhibitor inhibited the late apoptosis. In conclusion, H2O2 induced apoptosis of MSCs in a dose and time dependent way. Apoptosis of the cells involved both mitochondrial death pathway and ER stress which were parallel. H2O2 activated the JNK/p-38 pathway, among which p-38 contributed to the early apoptosis of MSCs by regulating mitochondrial pathway, and JNK was involved in the late apoptosis independent of mitochondrial pathway. 2.The effect of LPA on VEGF secretion in MSCs and its mechanism
     To identify the effect of LPA on VEGF secretion, MSCs were treated with LPA, and the relative signaling pathways were detected. The results indicated that LPA promoted VEGF secretion in a dose and time manner in MSCs, but had no effect on expression of VEGF protein and VEGF mRNA in the cells. LPA inhibited Na+, K+-ATPase activity, upgraded the expression of ORP150, and decreased the resident of VEGF in endoplasmic reticulum(ER).Diazoxide, the mitochondrial KATP channel opener, inhibited both the expression of ORP150, the secretion of VEGF, and the resident of VEGF in ER induced by LPA. In conclusion, LPA promoted VEGF secretion in MSCs through the post-translation level. LPA stimulated VEGF secretion by upgrading ORP150 expression, and the increase of ORP150 expression resulted from inhibition of Na+, K+-ATPase activity and mitoKATP channels induced by LPA.
     3.The role of DGPP in VEGF secretion in MSCs and its mechanism
     To investigate the role of DGPP in VEGF secrection, MSCs were treated with DGPP, VEGF secretion was detected, and the relative mechanism was investigated. The results indicated that DGPP promoted more VEGF production secreted to extracellular supernatant than LPA, and it did not change the amount of the apoptosis cells at the same condition, but high concentration of DGPP inhibited MSCs proliferation. DGPP had no effect on the expression of VEGF protein and VEGF mRNA in the cells.The mitochondrial KATP channel opener diazoxide failed to inhibit VEGF secretion induced by VEGF.DGPP increased the expression of GRP94 mRNA. The Sulfinator software predicted the tyrosine sulfation sites of VEGF.In conclusion, DGPP had better effect in VEGF secretion than LPA in MSCs, and the increase VEGF production did not result from the amount of the cells.The mitochondrial KATP channel was not involved in VEGF secretion induced by DGPP, thus, it was different between DGPP and LPA in the regulation of VEGF secretion. The roles of GRP94, N-glycosylation and tyrosine sulfation of VEGF in VEGF secretion were worth to further explore.
     4.The effect of LPA on MSCs proliferation and its mechanism
     MSCs were treated with LPA, and proliferation of the cells was detected and its mechanism was investigated. The results demonstrated that LPA promoted MSCs proliferation in a dose-dependent manner. The inhibitors for LPA1/3 receptor and ERK prevented the cell proliferation. LPA also increased the expression of c-myc,which was inhibited by the inhibitors of LPA1/3 receptor and ERK. In conclusion, LPA promoted proliferation of MSCs by binding LPA1/3 receptor, activating ERK pathway and increasing the expression of c-myc.
     In sum, the study identified the effect of ROS in MSCs viability and its signaling pathway, analyzed the role of the phospholipids in MSCs paracrine and proliferation and their mechanism. The data would improve the viability of transplanted MSCs, facilitate application of the phospholipids in cell transplantation, and enhance the therapeutic effects of transplanted MSCs.
引文
1. Hughes S. Cardiac stem cells. JPathol. 2002;197(4):468-478.
    2. Kuehnle I, Goodell MA. The therapeutic potential of stem cells from adults. BMJ. 2002;325(7360):372-376.
    3. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature. 2002;415(6868):240-243.
    4. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV, Mesquita CT, Belem L, Vaughn WK, Rangel FO, Assad JA, Carvalho AC, Branco RV, Rossi MI, Dohmann HJ, Willerson JT. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation.2004;110(11 Suppl 1):II213-218.
    5. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner 5. Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial. Lancet 2004;364(9429):141-148.
    6. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377-384.
    7. Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H, Hata J, Umezawa A. Brain from bone:efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation.2001;68(4-5):235-244.
    8. Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther. 2008;10(5):223.
    9. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5):697-705.
    10. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94(5):678-685.
    11. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation.2005;112(8):1128-1135.
    12. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res.2004;95(1):9-20.
    13. Muller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L. Survival and development of neonatal rat cardiomyocytes transplanted'into adult myocardium. JMol Cell Cardiol. 2002;34(2):107-116.
    14. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair:graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33(5):907-921.
    15. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. JMol Cell Cardiol. 2008;45(4):567-581.
    16. Zhu W, Chen J, Cong X, Hu S, Chen X. Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells.2006;24(2):416-425.
    17. Gao F, He T, Wang H, Yu S, Yi D, Liu W, Cai Z. A promising strategy for the treatment of ischemic heart disease:Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol. 2007;23(11):891-898.
    18. Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T, Liu J, Yu J, Zhou X, Hu J. Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology.2007;107(1):17-29.
    19. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93-98.
    20. Li X, Yu X, Lin Q, Deng C, Shan Z, Yang M, Lin S. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol. 2007;42(2):295-303.
    21. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature.2001;410(6829):701-705.
    22. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature.2004;428(6983):664-668.
    23. Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes:a novel mechanism for cell fate changes? Circ Res.2005;96(10):1039-1041.
    24. Sanchez PL, San Roman JA, Villa A, Fernandez ME, Fernandez-Aviles F. Contemplating the bright future of stem cell therapy for cardiovascular disease. Nat Clin Pract Cardiovasc Med.2006;3 Suppl 1:S138-151.
    25. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111(2):150-156.
    26. Tang YL, Zhao Q, Zhang YC, Cheng L, Liu M, Shi J, Yang YZ, Pan C, Ge J, Phillips MI. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept. 2004;117(1):3-10.
    27. Tang YL, Qian K, Zhang YC, Shen L, Phillips MI. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid mediated stromal-cell-derived factor-1alpha (SDF-lalpha) treatment. Regul Pept. 2005;125(1-3):1-8.
    28. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation.2001;104(9):1046-1052.
    29. Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, Phillips MI. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg.2005;80(1):229-236; discussion 236-227.
    30. Ye NS, Chen J, Luo GA, Zhang RL, Zhao YF, Wang YM. Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev. 2006;15(5):665-676.
    31. Zheng W, Brown MD, Brock TA, Bjercke RJ, Tomanek RJ. Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res. 1999;85(2):192-198.
    32. Helisch A, Ware JA. Therapeutic angiogenesis in ischemic heart disease. Thromb Haemost. 1999;82(2):772-780.
    33. Nor JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol.1999;154(2):375-384.
    34. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res.2006;98(11):1414-1421.
    35. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation.1994;89(5):2183-2189.
    36. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, Kloner RA. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat-angiogenesis and angioma formation. J Am Coll Cardiol. 2000;35(5):1323-1330.
    37. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM. Gene therapy for myocardial angiogenesis:initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation.1998;98(25):2800-2804.
    38. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG. Angiogenesis gene therapy:phase Ⅰ assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation.1999;100(5):468-474.
    39. Li Z, Guo J, Chang Q, Zhang A. Paracrine role for mesenchymal stem cells in acute myocardial infarction. Biol Pharm Bull 2009;32(8):1343-1346,
    40. Valet P, Pages C, Jeanneton O, Daviaud D, Barbe P, Record M, Saulnier-Blache JS, Lafontan M. Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth. J Clin Invest 1998;101(7):1431-1438.
    41. Goetzl EJ, Lee H, Dolezalova H, Kalli KR, Conover CA, Hu YL, Azuma T, Stossel TP, Karliner JS, Jaffe RB. Mechanisms of lysolipid phosphate effects on cellular survival and proliferation. Ann N YAcad Sci. 2000;905:177-187.
    42. Tigyi G. Physiological responses to lysophosphatidic acid and related glycero-phospholipids. Prostaglandins.2001;64(1-4):47-62.
    43. An S, Bleu T, Hallmark OG, Goetzl EJ. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. JBiol Chem.1998;273(14):7906-7910.
    44. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999;274(39):27776-27785.
    45. Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol. 1996;135(4):1071-1083.
    46. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. GPR92 as a new G12/13-and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5.J Biol Chem. 2006;281(33):23589-23597.
    47. Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem. 2003;278(28):25600-25606.
    48. Murakami M, Shiraishi A, Tabata K, Fujita N. Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. Biochem Biophys Res Commun.2008;371(4):707-712.
    49. Pasternack SM, von Kugelgen I, Aboud KA, Lee YA, Ruschendorf F, Voss K, Hillmer AM, Molderings GJ, Franz T, Ramirez A, Nurnberg P, Nothen MM, Betz RC. G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet. 2008;40(3):329-334.
    50. Tabata K, Baba K, Shiraishi A, Ito M, Fujita N. The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res Commun.2007;363(3):861-866.
    51. McIntyre TM, Pontsler AV, Silva AR, St Hilaire A, Xu Y, Hinshaw JC, Zimmerman GA, Hama K, Aoki J, Arai H, Prestwich GD. Identification of an intracellular receptor for lysophosphatidic acid (LPA):LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA.2003;100(1):131-136.
    52. Lee CW, Rivera R, Dubin AE, Chun J. LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. JBiol Chem.2007;282(7):4310-4317.
    53. Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer.2003;3(8):582-591.
    54. Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH. G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem. 2004;92(5):949-966.
    55. Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, Shi L, Cong X, Hu S, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells.2008;26(1):135-145.
    56. Liu X, Hou J, Shi L, Chen J, Sang J, Hu S, Cong X, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev. 2009;18(7):947-954.
    57. Memon AR, Boss WF. Rapid light-induced changes in phosphoinositide kinases and H(+)-ATPase in plasma membrane of sunflower hypocotyls. J Biol Chem. 1990;265(25):14817-14821.
    58. Wissing JB, Behrbohm H. Diacylglycerol pyrophosphate, a novel phospholipid compound. FEBS Lett.1993;315(1):95-99.
    59. Munnik T, de Vrije T, Irvine RF, Musgrave A. Identification of diacylglycerol pyrophosphate as a novel metabolic product of phosphatidic acid during G-protein activation in plants. J Biol Chem.1996;271(26):15708-15715.
    60. van Schooten B, Testerink C, Munnik T. Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim Biophys Acta.2006;1761(2):151-159.
    61. Meijer HJ, Arisz SA, Van Himbergen JA, Musgrave A, Munnik T. Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. Plant J.2001;25(5):541-548.
    62. Pical C, Westergren T, Dove SK, Larsson C, Sommarin M. Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem. 1999;274(53):38232-38240.
    63. Munnik T, Meijer HJ, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A. Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J.2000;22(2):147-154.
    64. van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T. Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol. 2000;123(4):1507-1516.
    65. den Hartog M, Musgrave A, Munnik T. Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation:a role for phospholipase C and D in root hair deformation. Plant J.2001;25(1):55-65.
    66. Balboa MA, Balsinde J, Dillon DA, Carman GM, Dennis EA. Proinflammatory macrophage-activating properties of the novel phospholipid diacylglycerol pyrophosphate. J Biol Chem.1999;274(1):522-526.
    67. Fischer DJ, Nusser N, Virag T, Yokoyama K, Wang D, Baker DL, Bautista D, Parrill AL, Tigyi G. Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol Pharmacol. 2001;60(4):776-784.
    68. Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M, et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact-rabbit hearts subjected to ischemia and reflow. JBiol Chem. 1993;268(25):18532-18541.
    69. Vanden Hoek T, Becker LB, Shao ZH, Li CQ, Schumacker PT. Preconditioning in cardiomyocytes protects by attenuating oxidanf stress at reperfusion. Circ Res. 2000;86(5):541-548.
    70. Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J PhysioL 1999;277(6 Pt 2):H2240-2246.
    71. Lu L, Quinn MT, Sun Y. Oxidative stress in the infarcted heart:role of de novo angiotensin II production. Biochem Biophys Res Commun. 2004;325(3):943-951.
    72. Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, Takeshita A. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice:role of oxidative stress. Circ Res. 2000;87(5):392-398.
    73. Sun Y. Oxidative stress and cardiac repair/remodeling following infarction. Am J Med Sci. 2007;334(3):197-205.
    74. Olson M, Kornbluth S. Mitochondria in apoptosis and human disease. Curr Mol Med. 2001;1(1):91-122.
    75. Tsutsui H, Ide T, Kinugawa S. Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal, 2006;8(9-10):1737-1744.
    76. Saito M, Korsmeyer SJ, Schlesinger PH. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol. 2000;2(8):553-555.
    77. Muppidi JR, Tschopp J, Siegel RM. Life and death decisions:secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity.2004;21(4):461-465.
    78. Brenner S. Special Achievement in Medical Science Award. From cell physiology to cell physiology. Nat Med.2000;6(10):1087-1088.
    79. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol.2000;150(4):887-894.
    80. Jimbo A, Fujita E, Kouroku Y, Ohnishi J, Inohara N, Kuida K, Sakamaki K, Yonehara S, Momoi T. ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res.2003;283(2):156-166.
    81. Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P. Regulation of the expression and processing of caspase-12.J Cell Biol. 2003;162(3):457-467.
    82. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. JBiol Chem.2002;277(37):34287-34294.
    83. Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G, Bredesen DE, Ellerby HM. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. JBiol Chem.2002;277(24):21836-21842.
    84. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006;12(4):459-465.
    85. Saito T, Kuang JQ, Lin CC, Chiu RC. Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg.2003;126(1):114-123.
    86. Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow stromal cells for myocardial regeneration:pathophysiologic and therapeutic implications.J Thorac Cardiovasc Surg.2001;122(4):699-705.
    87. Finkel T. Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol. 1999;65(3):337-340.
    88. Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J, Abe Y. Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun.2001;281(5):1200-1206.
    89. Hill MF, Singal PK. Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation.1997;96(7):2414-2420.
    90. Park BG, Yoo CI, Kim HT, Kwon CH, Kim YK. Role of mitogen-activated protein kinases in hydrogen peroxide-induced cell death in osteoblastic cells. Toxicology. 2005;215(1-2):115-125.
    91. Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. New York:Oxford University Press.1999. pp.1991-1350.
    92. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal.2007;9(1):49-89.
    93. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95.
    94. Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene. 1999;18(3):747-757.
    95. Maheshwari A, Misro MM, Aggarwal A, Sharma RK, Nandan D. Pathways involved in testicular germ cell apoptosis induced by H2O2 in vitro. FEBS J.2009;276(3):870-881.
    96. Cook SA, Sugden PH, Clerk A. Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes:association with changes in mitochondrial membrane potential. Circ Res.1999;85(10):940-949.
    97. Pantano C, Shrivastava P, McElhinney B, Janssen-Heininger Y. Hydrogen peroxide signaling through tumor necrosis factor receptor 1 leads to selective activation of c-Jun N-terminal kinase. JBiol Chem. 2003;278(45):44091-44096.
    98. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev.2004;18(24):3066-3077.
    99. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IREl. Science.2000;287(5453):664-666.
    100. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Nishi T, Maier CM, Kinouchi H, Chan PH. Oxidative damage to the endoplasmic reticulum is implicated in ischemic neuronal cell death. J Cereb Blood Flow Metab.2003;23(10):1117-1128.
    101. Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. JBiol Chem. 2001;276(36):33869-33874.
    102. Sitia R, Molteni SN. Stress, protein (mis)folding, and signaling:the redox connection. Sci STKE.2004;2004(239):pe27.
    103. Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, Ulevitch RJ, Green DR, Nicholson DW. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature.2006;440(7087):1064-1068.
    104. Purdom S, Chen QM. Epidermal growth factor receptor-dependent and-independent pathways in hydrogen peroxide-induced mitogen-activated protein kinase activation in cardiomyocytes and heart fibroblasts. J Pharmacol Exp Ther.2005;312(3):1179-1186.
    105. Wang X, Martindale JL, Liu Y, Holbrook NJ. The cellular'response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J.1998;333 (Pt 2):291-300.
    106. Lee JS, Kim SY, Kwon CH, Kim YK. EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch Toxicol.2006;80(6):337-346.
    107. Li Y, Arita Y, Koo HC, Davis JM, Kazzaz JA. Inhibition of c-Jun N-terminal kinase pathway improves cell viability in response to oxidant injury. Am J Respir Cell Mol Biol. 2003;29(6):779-783.
    108. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005;120(5):649-661.
    109. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H. Physiological roles of ASK1-mediated signal transduction in oxidative stress-and endoplasmic reticulum stress-induced apoptosis:advanced findings from ASK1 knockout mice. Antioxid Redox Signal.2002;4(3):415-425.
    1. Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, Shi L, Cong X, Hu S, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells.2008;26(1):135-145.
    2. Liu X, Hou J, Shi L, Chen J, Sang J, Hu S, Cong X, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev. 2009;18(7):947-954.
    3. Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA. The mitochondrial KATP channel as a receptor for potassium channel openers. JBiol Chem.1996;271(15):8796-8799.
    4. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T.
    Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation.2001;104(9):1046-1052.
    5. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D; Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111(2):150-156.
    6. Tang YL, Qian K, Zhang YC, Shen L, Phillips MI. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid mediated stromal-cell-derived factor-lalpha (SDF-lalpha) treatment. Regul Pept. 2005;125(1-3):1-8.
    7. Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, Phillips MI. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg.2005;80(1):229-236; discussion 236-227.
    8. Tang YL, Zhao Q, Zhang YC, Cheng L, Liu M, Shi J, Yang YZ, Pan C, Ge J, Phillips MI. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept 2004;117(1):3-10.
    9. Gao F, He T, Wang H, Yu S, Yi D, Liu W, Cai Z. A promising strategy for the treatment of ischemic heart disease:Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J CardioL 2007;23(11):891-898.
    10. Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T, Liu J, Yu J, Zhou X, Hu J. Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology.2007;107(1):17-29.
    11. Laham RJ, Li J, Tofukuji M, Post M, Simons M, Sellke FW. Spatial heterogeneity in VEGF-induced vasodilation:VEGF dilates microvessels but not epicardial and systemic arteries and veins. Ann Vasc Surg.2003;17(3):245-252.
    12. Nor JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am JPathoL 1999;154(2):375-384,
    13. Sellke FW, Wang SY, Stamler A, Lopez JJ, Li J, Simons M. Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium. Am J Physiol. 1996;271(2 Pt 2):H713-720.
    14. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res.2006;98(11):1414-1421.
    15. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation.1994;89(5):2183-2189.
    16. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM. Gene therapy for myocardial angiogenesis:initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation.1998;98(25):2800-2804.
    17. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG Angiogenesis gene therapy:phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation.1999;100(5):468-474.
    18. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, Kloner RA. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat--angiogenesis and angioma formation. J Am Coll Cardiol. 2000;35(5):1323-1330.
    19. Lin CI, Chen CN, Huang MT, Lee SJ, Lin CH, Chang CC, Lee H. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation-and EGFR transactivation-dependent mechanisms. Cell Signal. 2008;20(10):1804-1814.
    20. Sako A, Kitayama J, Shida D, Suzuki R, Sakai T, Ohta H, Nagawa H. Lysophosphatidic acid (LPA)-induced vascular endothelial growth factor (VEGF) by mesothelial cells and quantification of host-derived VEGF in malignant ascites. JSurg Res.2006;130(1):94-101.
    21. Urbach V, Van Kerkhove E, Maguire D, Harvey BJ. Cross-talk between ATP-regulated K+ channels and Na+transport via cellular metabolism in frog skin principal cells.J Physiol. 1996;491 (Pt 1):99-109.
    22. Tsuchiya K, Wang W, Giebisch G, Welling PA. ATP is a coupling modulator of parallel Na,K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci U S A. 1992;89(14):6418-6422.
    23. Wang W, Giebisch G Dual effect of adenosine triphosphate on the apical small conductance K+channel of the rat cortical collecting duct. J Gen Physiol. 1991;98(1):35-61.
    24. Ding WG, He LP, Omatsu-Kanbe M, Kitasato H. A possible role of the ATP-sensitive potassium ion channel in determining the duration of spike-bursts in mouse pancreatic beta-cells. Biochim Biophys Acta.1996;1279(2):219-226.
    25. Szewczyk A, Wojtczak L. Mitochondria as a pharmacological target. Pharmacol Rev. 2002;54(1):101-127.
    26. Huittinen T, Leinonen M, Tenkanen L, Manttari M, Virkkunen H, Pitkanen T, Wahlstrom E, Palosuo T, Manninen V, Saikku P. Autoimmunity to human heat shock protein 60, Chlamydia pneumoniae infection, and inflammation in predicting coronary risk. Arterioscler Thromb Vasc Biol 2002;22(3):431-437.
    27. Xu Q, Kiechl S, Mayr M, Metzler B, Egger G, Oberhollenzer F, Willeit J, Wick G. Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow-up study. Circulation.1999;100(11):1169-1174.
    28. Aleshin AN, Sawa Y, Kitagawa-Sakakida S, Bando Y, Ono M, Memon IA, Tohyama M, Ogawa S, Matsuda H.150-kDa oxygen-regulated protein attenuates myocardial ischemia-reperfusion injury in rat heart. J Mol Cell Cardiol. 2005;38(3):517-525.
    29. Kobayashi T, Ohta Y.150-kD oxygen-regulated protein is an essential factor for insulin release. Pancreas.2005;30(4):299-306.
    30. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W, Ogawa S, Ohshima T. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport.J Clin Invest. 2001;108(1):41-50.
    31. Ozawa K, Tsukamoto Y, Hori O, Kitao Y, Yanagi H, Stern DM, Ogawa S. Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Res.2001;61(10):4206-4213.
    1. Liu X, Hou J, Shi L, Chen J, Sang J, Hu S, Cong X, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev. 2009;18(7):947-954.
    2. Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, Shi L, Cong X, Hu S, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells.2008;26(1):135-145.
    3. Claffey KP, Senger DR, Spiegelman BM. Structural requirements for dimerization, glycosylation, secretion, and biological function of VPF/VEGF. Biochim Biophys Acta. 1995;1246(1):1-9.
    4. Stone MJ, Chuang S, Hou X, Shoham M, Zhu JZ. Tyrosine sulfation:an increasingly recognised post-translational modification of secreted proteins. N Biotechnol. 2009;25(5):299-317.
    5. Pical C, Westergren T, Dove SK, Larsson C, Sommarin M. Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem. 1999;274(53):38232-38240.
    6. Meijer HJ, Arisz SA, Van Himbergen JA, Musgrave A, Munnik T. Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. Plant J.2001;25(5):541-548.
    7. den Hartog M, Musgrave A, Munnik T. Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation:a role for phospholipase C and D in root hair deformation. Plant J.2001;25(1):55-65.
    8. Balboa MA, Balsinde J, Dillon DA, Carman GM, Dennis EA. Proinflammatory macrophage-activating properties of the novel phospholipid diacylglycerol pyrophosphate. J Biol Chem.1999;274(1):522-526.
    9. Munnik T, de Vrije T, Irvine RF, Musgrave A. Identification of diacylglycerol pyrophosphate as a novel metabolic product of phosphatidic acid during G-protein activation in plants. J Biol Chem.1996;271(26):15708-15715.
    10. Melnick J, Aviel S, Argon Y. The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J Biol Chem. 1992;267(30):21303-21306.
    11. Clairmont CA, De Maio A, Hirschberg CB. Translocation of ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its binding to luminal proteins including BiP (GRP 78) and GRP 94. J Biol Chem.1992;267(6):3983-3990.
    12. Koch G, Smith M, Macer D, Webster P, Mortara R. Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci. 1986;86:217-232.
    13. Nganga A, Bruneau N, Sbarra V, Lombardo D, Le Petit-Thevenin J. Control of pancreatic bile-salt-dependent-lipase secretion by the glucose-regulated protein of 94 kDa (Grp94). Biochem J.2000;352 Pt 3:865-874.
    14. Jones J, Krag SS, Betenbaugh MJ. Controlling N-linked glycan site occupancy. Biochim Biophys Acta.2005;1726(2):121-137.
    15. Brooks SA. Protein glycosylation in diverse cell systems:implications for modification and analysis of recombinant proteins. Expert Rev Proteomics.2006;3(3):345-359.
    16. Molinari M. N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol.2007;3(6):313-320.
    17. Ruddock LW, Molinari M. N-glycan processing in ER quality control. J Cell Sci. 2006;119(Pt 21):4373-4380.
    18. Liu Y, Nguyen A, Wolfert RL, Zhuo S. Enhancing the secretion of recombinant proteins by engineering N-glycosylation sites. Biotechnol Prog.2009;25(5):1468-1475.
    19. Hoffhines AJ, Damoc E, Bridges KG, Leary JA, Moore KL. Detection and purification of tyrosine-sulfated proteins using a novel anti-sulfotyrosine monoclonal antibody. J Biol Chem.2006;281(49):37877-37887.
    1. Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells.2002;20(3):249-258.
    2. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A.2001;98(18):10344-10349.
    3. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation.2002;106(15):1913-1918.
    4. Saito T, Kuang JQ, Lin CC, Chiu RC. Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg. 2003;126(1):114-123.
    5. Wang JS, Shum-Tim D, Chedrawy E, Chiu RC. The coronary delivery of marrow stromal cells for myocardial regeneration:pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg.2001;122(4):699-705.
    6. Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, Shi L, Cong X, Hu S, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells.2008;26(1):135-145.
    7. Liu X, Hou J, Shi L, Chen J, Sang J, Hu S, Cong X, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo. Stem Cells Dev. 2009;18(7):947-954.
    8. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair:graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33(5):907-921.
    9. Muller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol. 2002;34(2):107-116.
    10. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107(11):1395-1402.
    11. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science.1999;284(5411):143-147.
    12. Lee CW, Rivera R, Dubin AE, Chun J. LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. J Biol Chem.2007;282(7):4310-4317.
    13. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. GPR92 as a new G12/13-and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem. 2006;281(33):23589-23597.
    14. Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer.2003;3(8):582-591.
    15. Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH. G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival.J Cell Biochem. 2004;92(5):949-966.
    16. Goetzl EJ, Lee H, Dolezalova H, Kalli KR, Conover CA, Hu YL, Azuma T, Stossel TP, Karliner JS, Jaffe RB. Mechanisms of lysolipid phosphate effects on cellular survival and proliferation. Ann N YAcad Sci.2000;905:177-187.
    17. Tigyi G. Physiological responses to lysophosphatidic acid and related glycero-phospholipids. Prostaglandins.2001;64(1-4):47-62.
    18. An S, Bleu T, Hallmark OG, Goetzl EJ. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. JBiol Chem.1998;273(14):7906-7910.
    19. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999;274(39):27776-27785.
    20. Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol. 1996;135(4):1071-1083.
    21. Murakami M, Shiraishi A, Tabata K, Fujita N. Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. Biochem Biophys Res Commun.2008;371(4):707-712.
    22. Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem. 2003;278(28):25600-25606.
    23. Pasternack SM, von Kugelgen I, Aboud KA, Lee YA, Ruschendorf F, Voss K, Hillmer AM, Molderings GJ, Franz T, Ramirez A, Nurnberg P, Nothen MM, Betz RC. G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet. 2008;40(3):329-334.
    24. Tabata K, Baba K, Shiraishi A, Ito M, Fujita N. The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res Commun.2007;363(3):861-866.
    1. Billah MM, Lapetina EG, Cuatrecasas P. Phospholipase A2 and phospholipase C activities of platelets. Differential substrate specificity, Ca2+requirement, pH dependence, and cellular localization. JBiol Chem. 1980;255(21):10227-10231.
    2. Sano T, Baker D, Virag T, Wada A, Yatomi Y, Kobayashi T, Igarashi Y, Tigyi G. Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. JBiol Chem.2002;277(24):21197-21206.
    3. Billah MM, Lapetina EG, Cuatrecasas P. Phospholipase A2 activity specific for phosphatidic acid. A possible mechanism for the production of arachidonic acid in platelets. J Biol Chem. 1981;256(11):5399-5403.
    4. Gaits F, Fourcade O, Le Balle F, Gueguen G, Gaige B, Gassama-Diagne A, Fauvel J, Salles JP, Mauco G, Simon MF, Chap H. Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis. FEBS Lett. 1997;410(1):54-58.
    5. Lapetina EG, Billah MM, Cuatrecasas P. Lysophosphatidic acid potentiates the thrombin-induced production of arachidonate metabolites in platelets. J Biol Chem. 1981;256(23):11984-11987.
    6. Lapetina EG, Billah MM, Cuatrecasas P. The initial action of thrombin on platelets. Conversion of phosphatidylinositol to phosphatidic acid preceding the production of arachidonic acid. J Biol Chem.1981;256(10):5037-5040.
    7. Fourcade O, Simon MF, Viode C, Rugani N, Leballe F, Ragab A, Fournie B, Sarda L, Chap
    H. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 1995;80(6):919-927.
    8. Valet P, Pages C, Jeanneton O, Daviaud D, Barbe P, Record M, Saulnier-Blache JS, Lafontan M. Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth.J Clin Invest 1998;101(7):1431-1438.
    9. Tokumura A, Harada K, Fukuzawa K, Tsukatani H. Involvement of lysophospholipase D in the production of lysophosphatidic acid in rat plasma. Biochim Biophys Acta. 1986;875(1):31-38.
    10. Tokumura A, Kanaya Y, Kitahara M, Miyake M, Yoshioka Y, Fukuzawa K. Increased formation of lysophosphatidic acids by lysophospholipase D in serum of hypercholesterolemic rabbits. JLipid Res.2002;43(2):307-315.
    11. Lee HY, Bae GU, Jung ID, Lee JS, Kim YK, Noh SH, Stracke ML, Park CG, Lee HW, Han JW. Autotaxin promotes motility via G protein-coupled phosphoinositide 3-kinase gamma in human melanoma cells. FEBSLett 2002;515(1-3):137-140.
    12. Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA, Stracke ML. Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res. 2001;61(18):6938-6944.
    13. Stracke ML, Clair T, Liotta LA. Autotaxin, tumor motility-stimulating exophosphodiesterase. Adv Enzyme Regul.1997;37:135-144.
    14. Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi GJ. Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal Biochem. 2001;292(2):287-295.
    15. Siess W, Zangl KJ, Essler M, Bauer M, Brandl R, Corrinth C, Bittman R, Tigyi G, Aepfelbacher M. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci U S A.1999;96(12):6931-6936.
    16. Brindley DN, Waggoner DW. Mammalian lipid phosphate phosphohydrolases. JBiol Chem. 1998;273(38):24281-24284.
    17. Baker RR, Chang H. A metabolic path for the degradation of lysophosphatidic acid, an inhibitor of lysophosphatidylcholine lysophospholipase, in neuronal nuclei of cerebral cortex. Biochim Biophys Acta.2000;1483(1):58-68.
    18. Kai M, Wada I, Imai S, Sakane F, Kanoh H. Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem. 1997;272(39):24572-24578.
    19. Roberts R, Sciorra VA, Morris AJ. Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a,2b, and 2c enzymes and cell surface activity of the 2a isoform. JBiol Chem.1998;273(34):22059-22067.
    20. Waggoner DW, Gomez-Munoz A, Dewald J, Brindley DN. Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. JBiol Chem.1996;271(28):16506-16509.
    21. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 1997;275(5304):1308-1311.
    22. Ulrix W, Swinnen JV, Heyns W, Verhoeven G. Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP. J Biol Chem.1998;273(8):4660-4665.
    23. Simon MF, Rey A, Castan-Laurel I, Gres S, Sibrac D, Valet P, Saulnier-Blache JS. Expression of ectolipid phosphate phosphohydrolases in 3T3F442A preadipocytes and adipocytes. Involvement in the control of lysophosphatidic acid production. J Biol Chem. 2002;277(26):23131-23136.
    24. Aguado B, Campbell RD. Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. JBiol Chem.1998;273(7):4096-4105.
    25. Leung DW. The structure and functions of human lysophosphatidic acid acyltransferases. Front Biosci. 2001;6:D944-953.
    26. Hannah MJ, Schmidt AA, Huttner WB. Synaptic vesicle biogenesis. Annu Rev Cell Dev Biol. 1999;15:733-798.
    27. Modregger J, Schmidt AA, Ritter B, Huttner WB, Plomann M. Characterization of Endophilin B1b, a brain-specific membrane-associated lysophosphatidic acid acyl transferase with properties distinct from endophilin Al. J Biol Chem. 2003;278(6):4160-4167.
    28. Reutens AT, Begley CG. Endophilin-1:a multifunctional protein. Int J Biochem Cell Biol. 2002;34(10):1173-1177.
    29. Weigert R, Silletta MG, Spano S, Turacchio G. Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M, Facchiano F, Burger KN, Mironov A, Luini A, Corda D. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature. 1999;402(6760):429-433.
    30. Yamashita A, Kawagishi N, Miyashita T, Nagatsuka T, Sugiura T, Kume K, Shimizu T, Waku K. ATP-independent fatty acyl-coenzyme A synthesis from phospholipid:coenzyme A-dependent transacylation activity toward lysophosphatidic acid catalyzed by acyl-coenzyme A:lysophosphatidic acid acyltransferase. J Biol Chem. 2001;276(29):26745-26752.
    31. Eberhardt C, Gray PW, Tjoelker LW. Human lysophosphatidic acid acyltransferase. cDNA cloning, expression, and localization to chromosome 9q34.3. J Biol Chem. 1997;272(32):20299-20305.
    32. Wang A, Yang HC, Friedman P, Johnson CA, Dennis EA. A specific human lysophospholipase:cDNA cloning, tissue distribution and kinetic characterization. Biochim Biophys Acta.1999;1437(2):157-169.
    33. Thompson FJ, Clark MA. Purification of a lysophosphatidic acid-hydrolysing lysophospholipase from rat brain. Biochem J.1994;300 (Pt 2):4J7-461.
    34. van Corven EJ, Groenink A, Jalink K, Eichholtz T, Moolenaar WH. Lysophosphatidate-induced cell proliferation:identification and dissection of signaling pathways mediated by G proteins. Cell.1989;59(1):45-54.
    35. Goetzl EJ, Lee H, Azuma T, Stossel TP, Turck CW, Karliner JS. Gelsolin binding and cellular presentation of lysophosphatidic acid. J Biol Chem.2000;275(19):14573-14578.
    36. Hilal-Dandan R, Means CK, Gustafsson AB, Morissette MR; Adams JW, Brunton LL, Heller Brown J. Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. J Mol Cell Cardiol. 2004;36(4):481-493.
    37. Hall RA, Lefkowitz RJ. Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ Res.2002;91(8):672-680.
    38. Ishii I, Contos JJ, Fukushima N, Chun J. Functional comparisons of the lysophosphatidic acid receptors, LP(Al)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol 2000;58(5):895-902.
    39. Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, Brown JH, Chun J. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice:signaling deficits without obvious phenorypic abnormality attributable to lpa(2). Mol Cell Biol 2002;22(19):6921-6929.
    40. Fukushima N, Kimura Y, Chun J. A single receptor encoded by vzg-1/lpAl/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc Natl Acad Sci USA.1998;95(11):6151-6156.
    41. Tigyi G, Dyer DL, Miledi R. Lysophosphatidic acid possesses dual action in cell proliferation. Proc Natl Acad Sci U S A.1994;91(5):1908-1912.
    42. Goetzl EJ, Lynch KR. Preface:the omnific lysophospholipid growth factors. Ann N YAcad Sci.2000;905:ⅹⅰ-ⅹⅳ.
    43. Karliner JS, Honbo N, Summers K, Gray MO, Goetzl EJ. The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. JMol Cell Cardiol. 2001;33(9):1713-1717.
    44. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, Barr PJ. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature. 1995;374(6524):736-739.
    45. Melkonyan HS, Ushakova TE, Umansky SR. Hsp70 gene expression in mouse lung cells upon chronic gamma-irradiation.Int JRadiat Biol. 1995;68(3):277-280.
    46. Umansky SR, Cuenco GM, Khutzian SS, Barr PJ, Tomei LD. Post-ischemic apoptotic death of rat neonatal cardiomyocytes. Cell Death Differ.1995;2(4):235-241.
    47. Umansky SR, Shapiro JP, Cuenco GM, Foehr MW, Bathurst IC, Tomei LD. Prevention of rat neonatal cardiomyocyte apoptosis induced by simulated in vitro ischemia and reperfusion. Cell Death Differ.1997;4(7):608-616.
    48. Fang X, Yu S, LaPushin R, Lu Y, Furui T, Penn LZ, Stokoe D, Erickson JR, Bast RC, Jr., Mills GB. Lysophosphatidic acid prevents apoptosis in fibroblasts via G(i)-protein-mediated activation of mitogen-activated protein kinase. Biochem J.2000;352 Pt 1:135-143.
    49. Levine JS, Koh JS, Triaca V, Lieberthal W. Lysophosphatidic acid:a novel growth and survival factor for renal proximal tubular cells. Am J PhysioL 1997;273(4 Pt 2):F575-585.
    50. Bielawska AE, Shapiro JP, Jiang L, Melkonyan HS, Piot C, Wolfe CL, Tomei LD, Hannun YA, Umansky SR. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am JPathol.1997;151(5):1257-1263.
    51. Sautin YY, Crawford JM, Svetlov SI. Enhancement of survival by LPA via Erkl/Erk2 and PI 3-kinase/Akt pathways in a murine hepatocyte cell line. Am J Physiol Cell Physiol. 2001;281(6):C2010-2019.
    52. Weiner JA, Chun J. Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc Natl Acad Sci U S A.1999;96(9):5233-5238.
    53. Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci U S A. 2000;97(24):13384-13389.
    54. de Vries B, Matthijsen RA, van Bijnen AA, Wolfs TG, Buurman WA. Lysophosphatidic acid prevents renal ischemia-reperfusion injury by inhibition of apoptosis and complement activation. Am J Pathol.2003;163(1):47-56.
    55. Goetzl EJ, Lee H, Dolezalova H, Kalli KR, Conover CA, Hu YL, Azuma T, Stossel TP, Karliner JS, Jaffe RB. Mechanisms of lysolipid phosphate effects on cellular survival and proliferation. Ann N YAcad Sci.2000;905:177-187.
    56. Deng W, Balazs L, Wang DA, Van Middlesworth L, Tigyi G, Johnson LR. Lysophosphatidic acid protects and rescues intestinal epithelial cells from radiation-and chemotherapy-induced apoptosis. Gastroenterology.2002;123(1):206-216.
    57. Lai JM, Hsieh CL, Chang ZF. Caspase activation during phorbol ester-induced apoptosis requires ROCK-dependent myosin-mediated contraction, J Cell Sci. 2003;116(Pt 17):3491-3501.
    58. Holtsberg FW, Steiner MR, Bruce-Keller AJ, Keller JN, Mattson MP, Moyers JC, Steiner SM. Lysophosphatidic acid and apoptosis of nerve growth factor-differentiated PC12 cells. J Neurosci Res.1998;53(6):685-696.
    59. Ediger TL, Toews ML. Dual effects of lysophosphatidic acid on human airway smooth muscle cell proliferation and survival. Biochim Biophys Acta.2001;1531(1-2):59-67.
    60. Chernomordik L, Kozlov MM, Zimmerberg J. Lipids in biological membrane fusion. J Membr Biol. 1995;146(1):1-14.
    61. Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikoy AV,Witke W, Huttner WB, Soling HD. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature.1999;401(6749):133-141.
    62. Postma FR, Jalink K, Hengeveld T, Offermanns S, Moolenaar WH. Galpha(13) mediates activation of a depolarizing chloride current that accompanies RhoA activation in both neuronal and nonneuronal cells. Curr Biol. 2001;11(2):121-124.
    63. Nishikawa T, Tomori Y, Yamashita S, Shimizu S. Inhibition of Na+,K+-ATPase activity by phospholipase A2 and several lysophospholipids:possible role of phospholipase A2 in noradrenaline release from cerebral cortical synaptosomes. J Pharm Pharmacol. 1989;41(7):450-458.
    64. Shiono S, Kawamoto K, Yoshida N, Kondo T, Inagami T. Neurotransmitter release from lysophosphatidic acid stimulated PC12 cells:involvement of lysophosphatidic acid receptors. Biochem Biophys Res Commun. 1993;193(2):667-673.
    65. Kappelle LJ. Symptomatic carotid artery stenosis. JNeurol.2002;249(3):254-259.
    66. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J.1999;138(5 Pt 2):S419-420.
    67. Tigyi G. Physiological responses to lysophosphatidic acid and related glycero-phospholipids. Prostaglandins.2001;64(1-4):47-62.
    68. Aoki J, Taira A, Takanezawa Y, Kishi Y, Hama K, Kishimoto T, Mizuno K, Saku K, Taguchi R, Arai H. Serum lysophosphatidic acid is produced through diverse phospholipase pathways. JBiol Chem.2002;277(50):48737-48744.
    69. Schumacher KA, Classen HG, Spath M. Platelet aggregation evoked in vitro and in vivo by phosphatidic acids and lysoderivatives:identity with substances in aged serum (DAS).
    Thromb Haemost.1979;42(2):631-640.
    70. Simon MF, Chap H, Douste-Blazy L. Human platelet aggregation induced by 1-alkyl-lysophosphatidic acid and its analogs:a new group of phospholipid mediators? Biochem Biophys Res Commun. 1982;108(4):1743-1750.
    71. Gerrard JM, Graff G, Dedon PC, Kindom SE, White JG 1-Arachidonyl-monoglyceride causes platelet aggregation--implications for an acylglycerol acylhydrolase involvement in control of prostaglandin synthesis. Prog Lipid Res.1981;20:575-578.
    72. Gerrard JM, Kindom SE, Peterson DA, White JG Lysophosphatidic acids. II. Interaction of the effects of adenosine diphosphate and lysophosphatidic acids in dog, rabbit, and human platelets. Am JPathol. 1979;97(3):531-547.,
    73. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R, Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation.2001;103(15):1955-1960.
    74. Essler M, Retzer M, Bauer M, Zangl KJ, Tigyi G, Siess W. Stimulation of platelets and endothelial cells by mildly oxidized LDL proceeds through activation of lysophosphatidic acid receptors and the Rho/Rho-kinase pathway. Inhibition by lovastatin. Ann N Y Acad Sci. 2000;905:282-286.
    75. Fueller M, Wang DA, Tigyi G, Siess W. Activation of human monocytic cells by lysophosphatidic acid and sphingosine-1-phosphate. Cell Signal. 2003;15(4):367-375.
    76. Rizza C, Leitinger N, Yue J, Fischer DJ, Wang DA, Shih PT, Lee H, Tigyi G, Berliner JA. Lysophosphatidic acid as a regulator of endothelial/leukocyte interaction. Lab Invest 1999;79(10):1227-1235.
    77.Tigi G, Parrill AL. Molecular mechanisms of lysophosphatidic acid action. Prog Lipid Res. 2003;42(6):498-526.
    78. Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, Davis RG, Hull-Ryde EA, Lenhard JM, Patel L, Plunket KD, Shenk JL, Stimmel JB, Therapontos C, Willson TM, Blanchard SG Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry. 2002;41(21):6640-6650.
    79. Hein TW, Zhang C, Wang W, Chang CI, Thengchaisri N, Kuo L. Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles:counteracting role of arginase. FASEB J.2003;17(15):2328-2330.
    80. Imamura F, Horai T, Mukai M, Shinkai K, Sawada M, Akedo H. Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. Biochem Biophys Res Commun.1993;193(2):497-503.
    81. Mukai M, Shinkai K, Yoshioka K, Imamura F, Akedo H. [Mechanism of tumor cell invasion studied by a culture model--modification of invasiveness by host mediators]. Hum Cell. 1993;6(3):194-198.
    82. Xu Y, Scheinberg DA. Elimination of human leukemia by monoclonal antibodies in an athymic nude mouse leukemia model. Clin Cancer Res.1995;1(10):1179-1187.
    83. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA.1998;280(8):719-723.
    84. Westermann AM, Havik E, Postma FR, Beijnen JH, Dalesio O, Moolenaar WH, Rodenhuis S. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol. 1998;9(4):437-442.
    85. Xiao Y, Chen Y, Kennedy AW, Belinson J, Xu Y. Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry (ESI-MS) analyses. Ann N Y Acad Sci. 2000;905:242-259.
    86. Goetzl EJ, Dolezalova H, Kong Y, Hu YL, Jaffe RB, Kalli KR, Conover CA. Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res. 1999;59(20):5370-5375.
    87. Huang MC, Graeler M, Shankar G, Spencer J, Goetzl EJ. Lysophospholipid mediators of immunity and neoplasia. Biochim Biophys Acta.2002;1582(1-3):161-167.
    88. Frankel A, Mills GB. Peptide and lipid growth factors decrease cis-diamminedichloroplatinum-induced cell death in human ovarian cancer cells. Clin Cancer Res.1996;2(8):1307-1313.
    89. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. JBiol Chem.1992;267(4):2524-2529.
    90. Stracke ML, Liotta LA. Multi-step cascade of tumor;cell metastasis. In Vivo. 1992;6(4):309-316.
    91. Tokumura M, Yoshiba S, Kojima Y, Nanri S. Impaired cardiorespiratory response to brief sudden strenuous exercise in the postoperative tetralogy of fallot patients:a ten-second pedaling test. Pediatr Cardiol. 2002;23(5):496-501.
    92. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol. 2002;158(2):227-233.
    93. Fleming IN, Elliott CM, Collard JG, Exton JH. Lysophosphatidic acid induces threonine phosphorylation of Tiaml in Swiss 3T3 fibroblasts via activation of protein kinase C. J Biol Chem.1997;272(52):33105-33110.
    94. Imamura F, Mukai M, Ayaki M, Takemura K, Horai T, Shinkai K, Nakamura H, Akedo H. Involvement of small GTPases Rho and Rac in the invasion of rat ascites hepatoma cells. Clin Exp Metastasis.1999;17(2):141-148.
    95. Kumagai N, Morii N, Fujisawa K, Nemoto Y, Narumiya S. ADP-ribosylation of rho p21 inhibits lysophosphatidic acid-induced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation in cultured Swiss 3T3 cells. J Biol Chem. 1993;268(33):24535-24538.
    96. Ridley AJ, Hall A. Signal transduction pathways regulating Rho-mediated stress fibre formation:requirement for a tyrosine kinase. EMBO J.1994;13(11):2600-2610.
    97. Gschwind A, Prenzel N, Ullrich A. Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res.2002;62(21):6329-6336.
    98. Kue PF, Taub JS, Harrington LB, Polakiewicz RD, Ullrich A, Daaka Y. Lysophosphatidic acid-regulated mitogenic ERK signaling in androgen-insensitive prostate cancer PC-3 cells. Int J Cancer.2002;102(6):572-579.
    99. Nath D, Williamson NJ, Jarvis R, Murphy G. Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Sci.2001;114(Pt 6):1213-1220.
    100. An S, Bleu T, Hallmark OG, Goetzl EJ. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem.1998;273(14):7906-7910.
    101. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999;274(39):27776-27785.
    102. Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol.1996;135(4):1071-1083.
    103. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. GPR92 as a new G12/13-and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem. 2006;281(33):23589-23597.
    104. Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem. 2003;278(28):25600-25606.
    105. Murakami M, Shiraishi A, Tabata K, Fujita N. Identification of the orphan GPCR, P2Y(10) receptor as the sphingosine-1-phosphate and lysophosphatidic acid receptor. Biochem Biophys Res Commun.2008;371(4):707-712.
    106. Pasternack SM, von Kugelgen I, Aboud KA, Lee YA, Ruschendorf F, Voss K, Hillmer AM, Molderings GJ, Franz T, Ramirez A, Nurnberg P, Nothen MM, Betz RC. G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet. 2008;40(3):329-334.
    107. Tabata K, Baba K, Shiraishi A, Ito M, Fujita N. The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem Biophys Res Commun.2007;363(3):861-866.
    108. Weiner JA, Hecht JH, Chun J. Lysophosphatidic acid receptor gene vzg-1/IpAl/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp NeuroL 1998;398(4):587-598.
    109. Contos JJ, Ye X, Sah VP, Chun J. Tandem genomic arrangement of a G protein (Gna15) and G protein-coupled receptor (slp(4)/lp(C1)/Edg6) gene. FEBSLett.2002;531(1):99-102.
    110. Weiner JA, Fukushima N, Contos JJ, Scherer SS, Chun J. Regulation of Schwann cell morphology and adhesion by receptor-mediated lysophosphatidic acid signaling. J Neurosci. 2001;21(18):7069-7078.
    111. Fukushima N, Weiner JA, Chun J. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev BioL 2000;228(1):6-18.
    112. Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci. 2003;6(12):1292-1299.
    113. Goetzl EJ, Tigyi G. Lysophospholipids and their G protein-coupled receptors in biology and diseases. J Cell Biochem.2004;92(5):867-868.
    114. Contos JJ, Chun J. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene:genomic structure, chromosomal localization, and expression pattern. Gene.2001;267(2):243-253.
    115. Im DS, Heise CE, Harding MA, George SR, O'Dowd BF, Theodorescu D, Lynch KR. Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol 2000;57(4):753-759.
    116. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature.2005;435(7038):104-108.
    117. Frenkian M, Segond N, Pidoux E, Cohen R, Jullienne A. Indomethacin, a COX inhibitor,
    enhances 15-PGDH and decreases human tumoral C cells proliferation. Prostaglandins. 2001;65(1):11-20.
    118. Kinoshita K, Satoh K, Ishihara O, Tsutsumi O, Kashimura F, Nishizawa C, Mizuno M. Plasma 6-keto-prostaglandin F1 alpha by radioimmunoassay. Adv Prostaglandin Thromboxane Leukot Res.1985;15:79-81.
    119. Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos JM, Dey SK. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell.1997;91(2):197-208.
    120. Reese J, Brown N, Paria BC, Morrow J, Dey SK. COX-2 compensation in the uterus of COX-1 deficient mice during the pre-implantation period. Mol Cell Endocrinol. 1999;150(1-2):23-31.
    121. Song H, Lim H, Paria BC, Matsumoto H, Swift LL, Morrow J, Bonventre JV, Dey SK. Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for 'on-time'embryo implantation that directs subsequent development. Development. 2002;129(12):2879-2889.
    122. Yanagida K, Ishii S, Hamano F, Noguchi K, Shimizu T. LPA4/p2y9/GPR23 mediates rho-dependent morphological changes in a rat neuronal cell line. J Biol Chem. 2007;282(8):5814-5824.
    123. Lee Z, Cheng CT, Zhang H, Subler MA, Wu J, Mukherjee A, Windle JJ, Chen CK, Fang X. Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell 2008;19(12):5435-5445.
    124. Ohuchi H, Hamada A, Matsuda H, Takagi A, Tanaka M, Aoki J, Arai H, Noji S. Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev Dyn. 2008;237(11):3280-3294.
    125. Hama K, Aoki J, Fukaya M, Kishi Y, Sakai T, Suzuki R, Ohta H, Yamori T, Watanabe M, Chun J, Arai H. Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1. J Biol Chem.2004;279(17):17634-17639.
    126. Stortelers C, Kerkhoven R, Moolenaar WH. Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling. BMC Genomics.2008;9:387.
    127. Valentine WJ, Fujiwara Y, Tsukahara R, Tigyi G. Lysophospholipid signaling:beyond the EDGs. Biochim Biophys Acta.2008;1780(3):597-605.
    128. Ishii S, Noguchi K, Yanagida K. Non-Edg family lysophosphatidic acid (LPA) receptors. Prostaglandins Other Lipid Mediat. 2009;89(3-4):57-65.
    129. Liu YB, Kharode Y, Bodine PV, Yaworsky PJ, Robinson JA, Billiard J. LPA induces osteoblast differentiation through interplay of two receptors:LPA1 and LPA4. J Cell Biochem.109(4):794-800.
    130. Dottori M, Leung J, Turnley AM, Pebay A. Lysophosphatidic acid inhibits neuronal differentiation of neural stem/progenitor cells derived from human embryonic stem cells. Stem Cells.2008;26(5):1146-1154.
    131. Shano S, Moriyama R, Chun J, Fukushima N. Lysophosphatidic acid stimulates astrocyte proliferation through LPA1. Neurochem Int. 2008;52(1-2):216-220.
    132. Oh DY, Yoon JM, Moon MJ, Hwang JI, Choe H, Lee JY, Kim JI, Kim S, Rhim H, O'Dell DK, Walker JM, Na HS, Lee MG, Kwon HB, Kim K, Seong JY. Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J Biol Chem, 2008;283(30):21054-21064.
    133. Amisten S, Braun OO, Bengtsson A, Erlinge D. Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thromb Res. 2008;122(1):47-57.
    134. Khandoga AL, Fuji war a Y, Goyal P, Pandey D, Tsukahara R, Bolen A, Guo H, Wilke N, Liu J, Valentine WJ, Durgam GG, Miller DD, Jiang G, Prestwich GD, Tigyi G, Siess W. Lysophosphatidic acid-induced platelet shape change revealed through LPA(1-5) receptor-selective probes and albumin. Platelets.2008;19(6):415-427.
    135. Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, Leeb-Lundberg LM, Olde B. Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther. 2006;318(2):619-628.
    136. Herzog H, Darby K, Hort YJ, Shine J. Intron 17 of the human retinoblastoma susceptibility gene encodes an actively transcribed G protein-coupled receptor gene. Genome Res. 1996;6(9):858-861.
    137. Hirakawa M, Oike M, Karashima Y, Ito Y. Sequential activation of RhoA and FAK/paxillin leads to ATP release and actin reorganization in human endothelium. J Physiol. 2004;558(Pt 2):479-488.
    138. van Nieuw Amerongen GP, Vermeer MA, van Hinsbergh VW. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol. 2000;20(12):E127-133.
    139. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S. Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem.2009;284(26):17731-17741.
    140. Shimomura Y, Wajid M, Ishii Y, Shapiro L, Petukhova L, Gordon D, Christiano AM. Disruption of P2RY5, an orphan G protein-coupled receptor, underlies autosomal recessive woolly hair. Nat Genet. 2008;40(3):335-339.
    141. Kazantseva A, Goltsov A, Zinchenko R, Grigorenko AP, Abrukova AV, Moliaka YK, Kirillov AG, Guo Z, Lyle S, Ginter EK, Rogaev El. Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science.2006;314(5801):982-985.
    142. McIntyre TM, Pontsler AV, Silva AR, St Hilaire A, Xu Y, Hinshaw JC, Zimmerman GA, Hama K, Aoki J, Arai H, Prestwich GD. Identification of an intracellular receptor for lysophosphatidic acid (LPA):LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA.2003;100(1):131-136.
    143. Pages G, Girard A, Jeanneton O, Barbe P, Wolf C, Lafontan M, Valet P, Saulnier-Blache JS. LPA as a paracrine mediator of adipocyte growth and function. Ann N Y Acad Sci. 2000;905:159-164.
    144. Lusis AJ. Atherosclerosis. Nature.2000;407(6801):233-241.
    145. Auwerx J. PPARgamma, the ultimate thrifty gene. Diabetologia.1999;42(9):1033-1049.
    146. Kenakin T. Inverse, protean, and ligand-selective agonism:matters of receptor conformation. FASEB J.2001;15(3):598-611.
    147. de Ligt RA, Kourounakis AP, AP IJ. Inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br J Pharmacol. 2000;130(1):1-12.
    148. Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, Yagi M, Sato M, Suzuki R, Murooka H, Sakai T, Nishitoba T, Im DS, Nochi H, Tamoto K, Tomura H, Okajima F. Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol. 2003;64(4):994-1005.
    149. Moughal NA, Waters CM, Valentine WJ, Connell M, Richardson JC, Tigyi G, Pyne S, Pyne NJ. Protean agonism of the lysophosphatidic acid receptor-1 with Ki16425 reduces nerve growth factor-induced neurite outgrowth in pheochromocytoma 12 cells. J Neurochem. 2006;98(6):1920-1929.
    150. Gbahou F, Rouleau A, Morisset S, Parmentier R, Crochet S, Lin JS, Ligneau X, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz JC, Arrang JM. Protean agonism at histamine H3 receptors in vitro and in vivo. Proc Natl Acad Sci U S A. 2003;100(19):11086-11091.
    151. Fischer DJ, Nusser N, Virag T, Yokoyama K, Wang D, Baker DL, Bautista D, Parrill AL, Tigyi G. Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol Pharmacol. 2001;60(4):776-784.
    152. Balboa MA, Balsinde J, Dillon DA, Carman GM, Dennis EA. Proinflammatory macrophage-activating properties of the novel phospholipid diacylglycerol pyrophosphate. J Biol Chem.1999;274(1):522-526.
    153. Ahn DK, Lee SY, Han SR, Ju JS, Yang GY, Lee MK, Youn DH, Bae YC. Intratrigeminal ganglionic injection of LPA causes neuropathic pain-like behavior and demyelination in rats. Pain.2009;146(1-2):114-120.
    154. Okusa MD, Ye H, Huang L, Sigismund L, Macdonald T, Lynch KR. Selective blockade of lysophosphatidic acid LPA3 receptors reduces murine renal ischemia-reperfusion injury. Am JPhysiol Renal PhysioL 2003;285(3):F565-574.
    155. Virag T, Elrod DB, Liliom K, Sardar VM, Parrill AL, Yokoyama K, Durgam G, Deng W, Miller DD, Tigyi G. Fatty alcohol phosphates are subtype-selective agonists and antagonists of lysophosphatidic acid receptors. Mol Pharmacol 2003;63(5):1032-1042.
    156. Hasegawa Y, Erickson JR, Goddard GJ, Yu S, Liu S, Cheng KW, Eder A, Bandoh K, Aoki J, Jarosz R, Schrier AD, Lynch KR, Mills GB, Fang X. Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem.2003;278(14):11962-11969.
    157. Gududuru V, Zeng K, Tsukahara R, Makarova N, Fujiwara Y, Pigg KR, Baker DL, Tigyi G, Miller DD. Identification of Darmstoff analogs as selective agonists and antagonists of lysophosphatidic acid receptors. Bioorg Med Chem Lett. 2006; 16(2):451-456.
    158. Jalink K, Hengeveld T, Mulder S, Postma FR, Simon MF, Chap H, van der Marel GA, van Boom JH, van Blitterswijk WJ, Moolenaar WH. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells:structure-activity analysis. Biochem J.1995;307 (Pt 2):609-616.
    159. Hopper DW, Ragan SP, Hooks SB, Lynch KR, Macdonald TL. Structure-activity relationships of lysophosphatidic acid:conformationally restricted backbone mimetics. J Med Chem.1999;42(6):963-970.
    160. Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K. Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett.2000;478(1-2):159-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700