Mo-Zn-Al-O催化剂研制和和湿式氧化处理染料废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决传统湿式催化氧化(简称CWAO)工艺中存在反应条件苛刻、处理成本高和对设备要求严格等问题,本文通过对催化剂的改性研究,实现了可在常温常压条件下通过CWAO工艺有效处理阳离子红GTL染料废水。
     本文首先对催化剂的载体进行了遴选,采用浸渍方法制备出以Al203、拟薄水铝石、类水滑石和分子筛(4A、5A、13X)为载体、Fe、Mn或者Mo为活性成分的系列催化剂,考察了系列催化剂对阳离子红GTL染料废水的催化活性,优选出以Zn-Al类水滑石为载体、Mo为活性组分的Mo-Zn-Al-O负载型催化剂。XRD和XPS的分析表明,该催化剂中的钼一部分以M002形式存在、一部分与Zn形成ZnMoO4复合金属氧化物,而Al未形成晶体形态,以AlOx形式存在。
     为了研究载体类水滑石中的二价金属与三价金属的比例对催化剂性能的影响,本文首先采用共沉淀法制备出不同Zn-Al摩尔比的类水滑石,然后采用浸渍法制备出Mo-Zn-Al-O催化剂,并采用多种分析方法对其进行了表征,探讨了不同ZnAl摩尔比对该催化剂的结构及对阳离子红GTL催化活性的影响。研究结果表明,该催化剂中Zn/Al比为1:1时,对阳离子红GTL的脱色率和TOC去除率可分别达90.9%和65.8%,表明具有较好的催化活性,此时,该催化剂具有较低的Zeta电位(-17.5eV)、较大的比表面积(147m2/g)和特殊的晶体结构(ZnMoO4、ZnO和M002)、性质较活泼的Mo=O键、丰富的氧吸附活性位点(31.5a.u./g)及较强的氧化还原性能(Mo6+到Mo5+和Mo5+到Mo4+还原峰)。
     采用筛选试验设计方法研究了常温常压条件下使用Mo-Zn-Al-O催化剂CWAO降解阳离子红GTL染料废水的影响因素。实验结果表明,在催化降解过程中,影响阳离子红GTL染料降解的主要因素是pH值、阳离子红GTL初始浓度和催化剂用量。在此基础上,分别采用中心组合设计(CCD)、箱线图设计(BBD)、D-最优设计等实验设计方法对CWAO工艺的主要因素pH值、阳离子红GTL初始浓度、催化剂用量等进行优化,实验所得数据进行方差分析后得到相应的二次方程模型,在试验水平范围内,该二次方程模型方差分析得到CCD、D-最优设计和BBD三种设计方法的R2分别为0.97,0.94和0.99,其中经BBD设计优化出的数值更接近实际值,实验操作的最优条件是:pH值为4.5,阳离子红染料GTL初始浓度为284mg/L,催化剂用量为0.97g/L。此条件下阳离子红GTL染料脱色率可达97%。
     本文以阳离子红GTL染料浓度为284mg/L的废水作为处理对象,研究Mo-Zn-Al-O负载催化剂常温常压下湿式催化氧化过程的动力学。结果表明,该体系反应活化能为-312.36J/mol,反应速率常数为9×10-5。
     本文利用密度泛函理论方法和GC/MS、FT-IR、挥发酸的测定、自由基的抑制实验和ESR检测等实验手段研究了废水中阳离子红GTL染料经CWAO工艺的降解历程。结果表明,阳离子红GTL首先被吸附在催化剂表面,而催化剂中的活性组分钼离子可催化水中溶解氧生成羟自由基和单线态氧,吸附于催化剂表面的阳离子红GTL染料中的N=N偶氮键在可被羟自由基或单线态氧攻击而断裂,然后苯环结构被破坏,随着反应的进行,中间产物被氧化成已酸、乙醇和碳氢化合物。
Catalytic wet air oxidation process requires high temperature and high pressure which lead to high installation costs. In order to solve this problem, the catalyst was prepared and modified, which has ability to treat cationic red GTL dye wastewater under room temperature and atmospheric pressure.
     Firstly, the carrier of catalyst was selected. Al2O3、pseudoboehmite、LDHs or molecular sieve was as the carrier and Fe, Mn or Mo was as active compound to prepare the catalysts using impregnation method. The results show that Mo-Zn-Al-O catalyst prepared with Zn-Al as the carrier and Mo as active compound had a better catalytic activity. The XRD and XPS characterization results show that a part of Mo was present as MoO2and a part as ZnMoO4. Al was not in the crystal and was present as AlOx.
     The effect of Zn and Al molar ratio on the catalytic activity was studied to investigate the effect of M2+/M3+ratio in LDHs on the structure of the catalyst. A series of Zn-Al LDHs with different Zn/Al molar ratios were prepared using copreicipitation and Mo-Zn-Al-O catalyst was obtained. The structure of the catalysts was characterized using ICP-OES, Zeta potential, XRD, BET, FT-IR, H2-TPR, and O2-TPD. The catalytic activity of these catalysts on the degradation of cationic red GTL wastewater under room condition was investigated. The experimental results show that the highest color removal efficiency and TOC removal efficiency of cationic red GTL can reach90.9%and65.8%by the Mo-Zn-AI-O catalyst with1:1of Zn/Al molar ratio respectively. Associated with the characterization results of these catalysts, Mo-Zn-Al-O catalyst with1:1of Zn/Al molar ratio with highest catalytic activity could be contributed to its lowest zeta potential (-17.5eV), largest specific surface area (146.98m2/g), special crystalline phases (ZnMoO4, ZnO and MoO2), special Mo valences (reducibility from Mo6+to Mo5+and from Mo5+to Mo4+), largest number of active adsorption sites (31.5a.u./g).
     The factors in CWAO process on degradation of cationic red GTL were investigated. Application of Plackett-Burman Design and its following statistical analysis indicated that pH value of system, initial cationic red GTL concentration, the amount of catalysts were the three key factors significantly influencing catalytic activity. Considering decolorization efficiency as the response objective, a quadratic model was respectively obtained by Central Composite Design, Box-Behnken Design and D-optimal Design. Base on the analysis of variance, the coefficient of determination of three models were0.97,0.99and0.94repectively. This means that BBD model is closer to reality and97%of decolorization of cationic red GTL in CWAO over Mo-Zn-Al-O mixed oxide achieved. The optimal catalytic conditions were:pH value was4.5, the initial concentration of cationic red was284mg/L and the amount of catalysts was0.97g/L.
     The kinetic of the CWAO process on the degradation of284mg/L cationic red GTL dye wastewater was investigated. The results showed that the activation energy is-312.36J/mol, Reaction rate constant is9×10-5.
     The degradation mechanism of cationic red GTL was studied by density fuctional theory and electron spin resonance (ESR), FT-IR, GC-MS, acid measuring through GC, inhibit of radicals experiments and ESR technique. The results show that dye pollutants are adsorbed on the surface of catalysts by a hydrogen bonding interaction between hydroxyl groups and O atoms. The Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H2O to produce·OH and'O2. Azo bond of cationic red GTL adsorbed on the surface of catalyst is relatively easier to be attacked by free radicals in CWAO process. Once the-N=N-bond is broken, the color of dye is removed. After azo bond were attacked, the free radicals continued to react with the intermediates. With the continuous oxygen and the reaction time, these intermediates can be oxidized to acid, aldehyde, alcohol and hydrocarbons.
引文
1. 宾月景,祝万鹏,蒋展鹏等.催化湿式氧化催化剂及处理技术研究[J].环境科学,1999,20(2):42-44.
    2. 蔡乃才,黄行九,刘娟等.新型复合电极与偶氮染料分子的氧化降解反应的研究[J].化学学报,2002,60(4):574-579.
    3. 董丽丽,马子川,王洪义.新生态MnO2吸附法处理水溶性阴离子染料废水的研究[J].环境污染与防治,2004,26(2):98-100.
    4. 董振海,胥维昌.光催化降解染料废水的研究现状及展望[J].染料与染色,2003,40(3):175-176.
    5. 窦和瑞,朱精东,陈拥军等.催化湿式氧化中铜基催化剂的流失与控制[J].催化学报,2003,24(5):328-332.
    6. 杜鸿章,房廉清,江义等.难降解高浓度有机废水催化湿式氧化净化技术:Ⅰ.高活性、高稳定性的湿式氧化催化剂的研制[J].水处理技术,1997,23(2):83-87.
    7. 杜鸿章,房廉清,江义等.难降解高浓度有机废水催化湿式氧化净化技术:Ⅱ.反应工艺条件的研究[J].水处理技术,1997,23(3):160-164.
    8. 符德学,缪娟.超声协同钛铁双阳极电化学处理印染废水的研究[D],博士论文,2000.
    9. 付宏祥,蒋展鹏,谭业军.以乙酸为模型反应物的Ti-Ce复合氧化物湿式氧化催化剂的研制[J].催化学报,2000,21(4):375-377.
    10. 李宁,李光明,赵建夫等.催化湿式氧化处理高质量浓度苯酚废水[J].江苏大学学报,2008,29(4):344-347.
    11. 李祥,杨少霞,祝万鹏等.碳纳米管催化湿式氧化苯酚和苯胺的研究[J].环境科学,2008,9(2):2522-2528.
    12. 李志刚,胡筱敏,闫海生等Mn/Ce/La复合催化剂湿式氧化处理苯酚废水的研究[J].安全与环境学报,2008,8(2):65-67.
    13. 梁宏,曾抗美,杨基成等.多维电极法处理高色度活性染料模拟废水影响因素分析[J].环境污染治理技术与设备,2004,5(4):27-31.
    14. 刘兴旺,戴友芝.厌氧生物法处理活性染料废水的研究[J].湘潭大学自然科学学报,2005,27(2):1]6-119.
    15. 刘琰.常温常压催化湿式氧化工艺处理染料废水的研究[D].哈尔滨工业大学博士论文,2006.
    16. 刘琰,孙德智.Ce改性Fe203-CeO2/γ-Al203催化剂的表征及催化活性研究[J].功能材料,2006,37(6):915-918.
    17. 刘琰,孙德智.用于染料废水CWPO处理的Fe203-Ce02/y-Al2O3催化剂的制备及活性[J].化工学报,2006,57(10):2303-2308.
    18. 陆朝阳,沈莉莉,张全兴.吸附法处理染料废水的工艺及其机理研究进展[J].工业水处 理,2004,24(3):12-16.
    19. 钱仁渊,钱俊峰,云志.催化湿式氧化高浓度SDBS废水的研究[J].水资源保护,2007,2(6):48-51.
    20. 施银桃,夏东升,李海燕等.臭氧氧化法处理染料废水研究[J].化工环保,2004,24(增刊):20-22.
    21. 史惠祥,赵伟荣,汪大晕.偶氮染料的臭氧氧化机理研究[J].浙江大学学报(,2003,37(6):734-738.
    22. 谭亚军,蒋展鹏,余刚.湿式空气氧化法的几种改进途径[J].污染防治技术,1998,11(4):253-256.
    23. 温轶,方建慧,曹为民,等.碳纳米管电极电催化氧化降解活性艳红X-3B研究[J].电化学,2005,11(3):329-332.
    24. 王西奎,陈贯红,国伟林.水溶液中甲基橙的超声化学降解动力学研究[J].环境污染与防治,2004,26(1):6-7.
    25. 谢磊,杨润昌,周书天.高浓度甲基橙溶液的低压湿式催化氧化处理[J].环境工程,1999,17(6):69-71.
    26. 徐文东,文湘华.微生物在含染料废水处理中的应用[J].环境污染治理技术与设备,2002,1(2):9-16.
    27. 杨东虎,阚振荣,王丽等.染料脱色细菌的筛选及脱色条件的研究[J].河北大学学报自然科学版,2003,23(1):68-72.
    28. 杨婥,邱祖民,罗美.多相催化氧化处理染料废水铜系催化剂的研究[J].南昌大学学报,2004,26(1):66-68.
    29. 杨润昌,周书天.高浓度难降解有机废水低压湿式催化氧化处理.环境科学[J],1997,18(5):71-74.
    30. 叶亚平,唐牧,钱维兰等.动态强化微电解法处理染料废水及其机理[J].环境污染治理技术与设备,2004,5(6):27-32.
    31. 张桂兰,全燮,杨凤林等.染料废水在旋转式光催化反应器中的降解研究[J].环境科学,1999,20(5):77-81.
    32. 张宇峰,腾洁,张雪英等.印染废水处理技术的研究进展.工业水处理[J],2003,23(4):23-27.
    33. 章飞芳.化学氧化活性染料及其降解机理研究[D].中国科学院研究生院博士学位论文,2003.
    34. 赵彬侠,李红业,张小里等.催化湿式氧化法处理吡虫啉农药废水[J],化工环保2007,27(5):442-445.
    35. 赵伟荣,史惠祥,杨岳平等.二氮杂半氰类阳离子红染料的光降解动力学研究[J].高等化学工程学报,2004,13(1):99-104.
    36. Abdelmalek F.Gharbi S,Benstaali B,et al.Plasmachemical degradation of azo dyes by humid air plasma:Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste[J].Water Research,2004,38(9):2339-2347.
    37. Al-Dalama K,Stanislaus A.Temperature programmed reduction of SiO2-Al2O3 supported Ni, Mo and Ni Mo catalysts prepared with EDTA[J].Thermochimica Acta,2011,520(67-74.
    38. Al-Momani F,Touraud E,Degorce-Dumas J R,et al.Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis[J].Journal of Photochemistry and Photobiology A:Chemistry,2002,153(1-3):191-197.
    39. Arabatzis I M,Stergiopoulos T,Andreeva D,et al.Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation[J].Journal of Catalysis,2003,220 (1):127-135.
    40. Arena F,Negro J,Parmaliana A,et al.Improved MnCeOx Systems for the Catalytic Wet Oxidation (CWO) of Phenol in Wastewater Streams[J].Industrial & Engineering Chemistry Research,2007,46(21):6724-6731.
    41. Arena F,Trunfio G,Negro J,et al.Synthesis of highly dispersed MnCeOx catalysts via a novel redox-precipitation route[J].Materials Research Bulletin,2008,43(3):539-545.
    42. Arena F,Trunfio G,Negro J,et al.Optimization of the MnCeOx system for the catalytic wet oxidation of phenol with oxygen (CWAO)[J].Applied Catalysis B:Environmental,2008,85 (1-2):40-47.
    43. Armstrong N A. Pharmaceutical experimental design and interpretation[D].Taylor & Francies Group,Boca Raton,2006.
    44. Arslan-Alaton I,Ferry J L.Application of polyoxotungstates as environmental catalysts:wet air oxidation of acid dye Orange II[J].Dyes and Pigments,2002,54(1):25-36.
    45. Ay F,Catalkaya E C,Kargi F.A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment[J].Journal of Hazardous Materials,2009,162(1):230-236.
    46. Barbier J,Oliviero L,Renard B,et al.Role of ceria-supported noble metal catalysts (Ru, Pd, Pt) in wet air oxidation of nitrogen and oxygen containing compounds[J].Topics in Catalysis,2005,33(1):77-86.
    47. Betianu C,Caliman F A,Gavrilescu M,et al.Response surface methodology applied for Orange II photocatalytic degradation in TiO2 aqueous suspensions[J].Journal of Chemical Technology and Biotechnology,2008,83(11):1454-1465.
    48. Bezerra M A,Santelli R E,Oliveira E P,et al.Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J].Talanta,2008,76(5):965-977.
    49. Bianchi F,Careri M,Mangia A,et al.Experimental design for the optimization of the extraction conditions of polycyclic aromatic hydrocarbons in milk with a novel diethoxydiphenylsilane solid-phase microextraction fiber[J].Journal of Chromatography A,2008,1196-1197(2):41-45.
    50. Bianchini R M,Castellano P M,Kaufman T S.Development and validation of an HPLC method for the determination of process-related impurities in pridinol mesylate, employing experimental designs[J].Analytica Chimica Acta,2009,654(2):141-147.
    51. Bosco M,Larrechi M S.Rapid and quantitative evaluation of the effect of process variables on the kinetics of photocatalytic degradation of phenol using experimental design techniques and parallel factor (PARAFAC) analysis[J].Analytical and Bioanalytical Chemistry,2008,390(4):1203-1207.
    52. Box G E P,Behnken D W.Some new three level designs for the study of quantitative variables[J].Technometrics,1960,455-475.
    53. Calza P,Sakkas V A,Villioti A,et al.Multivariate experimental design for the photocatalytic degradation of imipramine::Determination of the reaction pathway and identification of intermediate products[J].Applied Catalysis B:Environmental,2008,84(3-4):379-388.
    54. Cao S,Chen G,Hu X,et al.Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts[J].Catalysis Today,2003,88 (1-2):37-47.
    55. Casas N,Blanquez P,Gabarrell X,et al.Degradation of Orange G by laccase:Fungal versus enzymatic process[J].Environmental technology,2007,28(10):1103-1110.
    56. Castillejos-Lopez E,Maroto-Valiente A,Nevskaia D M,et al.Comparative study of support effects in ruthenium catalysts applied for wet air oxidation of aromatic compounds[J]. Catalysis Today,2009,143(3-4):355-363.
    57. Chen H,Sayari A,Adnot A,et al.Composition-activity effects of Mn-Ce-0 composites on phenol catalytic wet oxidation[J].Applied Catalysis B:Environmental,2001,32(3):195-204.
    58. Chen I,Lin S S,Wang C H,et al.Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol[J].Applied Catalysis B:Environmental, 2004,50(1):49-58.
    59. Chen I,Lin S S,Wang C H,et al.CWAO of phenol using CeO2/Y-Al2O3 with promoter--Effectiveness of promoter addition and catalyst regeneration[J].Chemosphere, 2007,66(1):172-178.
    60. Cho I H,Zoh K D.Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system:Optimization and modeling using a response surface methodology (RSM) based on the central composite design[J].Dyes and Pigments,2007,75(3):533-543.
    61. Cripps CBumpus J A,Aust S D.Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium[J].Applied and Environmental Microbiology,1990,56(4): 1114-1118.
    62. Cristovao R O,Tavares A P M,Loureiro J M,et al.Optimisation of reactive dye degradation by laccase using Box-Behnken design[J].Environmental Technology,2008,29(12):1357-1364.
    63. Dajka K,Takacs E,Solpan D,et al.High-energy irradiation treatment of aqueous solutions of C.I. Reactive Black 5 azo dye:pulse radiolysis experiments[J].Radiation Physics and Chemistry,2003,67(3-4):535-538.
    64. Daneshvar N,Ashassi Sorkhabi H,Kasiri M B.Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections[J].Journal of Hazardous materials,2004,112(1-2):55-62.
    65. Daneshvar N,Ashassi-Sorkhabi H,Tizpar A.Decolorization of orange 11 by electrocoagulation method[J].Separation and Purification Technology,2003,31(2):153-162.
    66. Daneshvar N,Salari D,Khataee A R.Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J].Journal of Photochemistry and Photobiology A:Chemistry,2004,162(2-3):317-322.
    67. Davies M P,De Biasi V,Perrett D.Approaches to the rational design of molecularly imprinted polymers[J].Analytica Chimica Acta,2004,504(1):7-14.
    68. Debrus B,Lebrun P,Kindenge J M,et al.Development of a rapid, multi-class method for the confirmatory analysis of anti-inflammatory drugs in bovine milk using liquid chromatography tandem mass spectrometry[J].Journal of Chromatography A,2011,1218 (46):8132-8140.
    69. den Brok M W J,Nuijen B,Miranda E,et al.Development and validation of a liquid chromatography-ultraviolet absorbance detection assay using derivatisation for the novel marine anticancer agent ES-285 HCl [(2S,3R)-2-amino-3-octadecanol hydrochloride] and its pharmaceutical dosage form[J].Journal of Chromatography A,2003,1020(2):251-258.
    70. Deshpande G R,Roy A K,Rao N S,et al.Rapid Screening of Volatile Ion-Pair Reagents Using UHPLC and Robust Analytical Method Development Using DoE for an Acetyl Cholinesterase Inhibitor:Galantamine HBr[J].Chromatographia,2011,1-10.
    71. Duan A,Wan G,Zhao Z,et al.Characterization and activity of Mo supported catalysts for diesel deep hydrodesulphurization[J].Catalysis Today,2007,119(1-4):13-18.
    72. Duarte R M B O,Duarte A C.Optimizing size-exclusion chromatographic conditions using a composite objective function and chemometric tools:Application to natural organic matter profiling[J].Analytica Chimica Acta,2011,668(1):90-98.
    73. Eftaxias A,Font J,Fortuny A,et al.Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing[J].Applied Catalysis B:Environmental,2001,33(2):175-190.
    74. Feng J,Hu X,Yue P L.et al.A novel laponite clay-based Fe nanocomposite and its photo-catalytic activity in photo-assisted degradation of Orange II[J].Chemical Engineering Science,2003,58(3-6):679-685.
    75. Feng J,Wong R S K,Hu X,et al.Discoloration and mineralization of Orange II by using Fe3+-doped TiO2 and bentonite clay-based Fe nanocatalysts[J].Catalysis Today,2004,98(3): 441-446.
    76. Ferreira S L C,Bruns R E,Da Silva E G P,et al.Statistical designs and response surface techniques for the optimization of chromatographic systems[J].Journal of Chromatography A,2007,1158(1-2):2-14.
    77. Ferreira S L C,Bruns R E,Ferreira H S,et al.Box-Behnken design:An alternative for the optimization of analytical methods[J].Analytica Chimica Acta,2007,597(2):179-186.
    78. Ferreira S L C,Korn M G A,Ferreira H S,et al.Application of multivariate techniques in optimization of spectroanalytical methods[J].Applied Spectroscopy Reviews,2007,42(5): 475-491.
    79. Forgacs E,Cserhati T,Oros G.Removal of synthetic dyes from wastewaters:a review[J].Environment International,2004,30(7):953-971.
    80. Fu J,Zhao Y,Wu Q.Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology[J].Journal of Hazardous Materials,2007,144(1-2):499-505.
    81. Gaalova J,Barbier Jr J,Rossignol S.Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid[J].Journal of Hazardous Materials,2010,181(1-3):633-639.
    82. Ge J,Qu J.Degradation of azo dye acid red B on manganese dioxide in the absence and presence of ultrasonic irradiation[J].Journal of Hazardous Materials,2003,100(1-3):197-207.
    83. Ge J,Qu J. Ultrasonic irradiation enhanced degradation of azo dye on MnO2[J].Applied Catalysis B:Environmental,2004,47(2):133-140.
    84. Gomes H T,Figueiredo J L,Faria J L.Catalytic wet air oxidation of olive mill wastewater[J].Catalysis Today,2007,124(3-4):254-259.
    85. Gomes H T,Serp P,Kalck P,et al.Carbon supported platinum catalysts for catalytic wet air oxidation of refractory carboxylic acids[J].Topics in Catalysis,2005,33(1):59-68.
    86. Gomez V,Larrechi M S,Callao M P.Kinetic and adsorption study of acid dye removal using activated carbon[J].Chemosphere,2007,69(7):1151-1158.
    87. Gould D M,Griffith W P,Spiro M.Polyoxometalate catalysis of dye bleaching by hydrogen peroxide[J].Journal of Molecular Catalysis A:Chemical,2001,175(1-2):289-291.
    88. Guerrero-Perez M O,Herrera M C,Malpartida I,et al.Characterization and FT-IR study of nanostructured alumina-supported V-Mo-WO catalysts[J].Catalysis Today,2006,118(3-4): 360-365.
    89. Hadjmohammadi M R,Nazari S.Separation optimization of quercetin, hesperetin and chrysin in honey by micellar liquid chromatography and experimental design[J].Journal of Separation Science,2010,33(20):3144-3151.
    90. Harrelkas F,Azizi A,Yaacoubi A,et al.Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon[J].Desalination,2009,235(1-3):330-339.
    91. Hatambeygi N,Abedi G,Talebi M.Method development and validation for optimised separation of salicylic, acetyl salicylic and ascorbic acid in pharmaceutical formulations by hydrophilic interaction chromatography and response surface methodology[J].Journal of Chromatography A,2011,1218(35):5995-6003.
    92. Hibbert D B,Worsfold P J,Townshend A,et al.Encyclopedia of analytical science[D]. Elsevier,Oxford,2005,469.
    93. Hocevar S,Krasovec U O,Orel B,et al.CWO of phenol on two differently prepared CuO-CeO2 catalysts[J].Applied Catalysis B:Environmental,2000,28(2):113-125.
    94. Hsueh C L,Huang Y H,Wang C C,et al.Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system[J].Chemosphere,2005,58(10):1409-1414.
    95. Huang J,Wang X,Li S,et al.ZnO/MoO3 mixed oxide nanotube:A highly efficient and stable catalyst for degradation of dye by air under room conditions[J].Applied Surface Science,2010,257(1):116-121.
    96. Hung C M,Lou J C,Lin C H.Removal of ammonia solutions used in catalytic wet oxidation processes[J].Chemosphere,2003,52(6):989-995.
    97. Ince N H,Tezcanli-Guyer G.Impacts of pH and molecular structure on ultrasonic degradation of azo dyes[J].Ultrasonics,2004,42(1):591-596.
    98. Jain R,Mathur M,Sikarwar S,et al.Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments[J].Journal of Environmental Management,2007,85 (4):956-964.
    99. Jiye A,Trygg J,Gullberg J,et al.Extraction and GC/MS analysis of the human blood plasma metabolome[J].Analytical Chemistry,2005,77(24):8086-8094.
    100. Kalme S,Jadhav S,Jadhav M,et al.Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112[J].Enzyme and Microbial Technology,2009,44(2):65-71.
    101. Kim S K,Ihm S K.Effects of Ce addition and Pt precursor on the activity of Pt/Al2O3 catalysts for wet oxidation of phenol[J].Industrial & Engineering Chemistry Research,2002, 41(8):1967-1972.
    102. Kim S K,Ihm S K.Nature of carbonaceous deposits on the alumina supported transition metal oxide catalysts in the wet air oxidation of phenol[J].Topics in Catalysis,2005,33(1): 171-179.
    103. Konstantinou I K,Albanis T A.TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations::A review[J].Applied Catalysis B: Environmental,2004,49(1):1-14.
    104. Korbahti B K,Rauf M A.Application of response surface analysis to the photolytic degradation of Basic Red 2 dye[J].Chemical Engineering Journal,2008,138(1):166-171.
    105. Korbahti B K,Rauf M A.Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue[J].Chemical Engineering Journal,2008,136(1):25-30.
    106. Korbahti B K,Rauf M A.Determination of optimum operating conditions of carmine decoloration by UV/H2O2 using response surface methodology[J].Journal of Hazardous Materials,2009,161(1):281-286.
    107. Lee D K,Cho I C,Lee G S,et al.Catalytic wet oxidation of reactive dyes with H2/O2 mixture on Pd-Pt/Al2O3 catalysts[J].Separation and Purification Technology,2004,34(1-3):43-50.
    108. Lee E K,Jung K D,Joo O S,et al.Catalytic activity of Mo/MgO catalyst in the wet oxidation of H2S to sulfur at room temperature[J].Applied Catalysis A:General,2004,268(1-2):83-88.
    109. Lee S M,Kim Y QCho I H.Treatment of Dyeing Wastewater by TiO2/H2O2/UV Process: Experimental Design Approach for Evaluating Total Organic Carbon (TOC) Removal Efficiency[J].Journal of Environmental Science and HeaIth,2005,40(2):423-436.
    110. Lei L,Dai Q,Zhou M,et al.Decolorization of cationic red X-GRL by wet air oxidation: Performance optimization and degradation mechanism[J].Chemosphere,2007,68(6):1135-1142.
    111. Li N,Descorme C,Besson M.Catalytic wet air oxidation of 2-chlorophenol over Ru loaded CexZr1-xO2 solid solutions[J].Applied Catalysis B:Environmental,2007,76(1-2):92-100.
    112. Li X,Zhang M.Decolorization and biodegradability of dyeing wastewater treated by a TiOi-sensitized photo-oxidation process[J].Water Science and Technology,1996,34(9):49-55.
    113. Li X Z,Zhao Y G.Advanced treatment of dyeing wastewater for reuse[J]. Water Science and Technology,1999,39(10):249-255.
    114. Lin J,Su M,Wang X,et al.Multiparametric analysis of amino acids and organic acids in rat brain tissues using GC/MS[J].Journal of Separation Science,2008,31(15):2831-2838.
    115. Lin R Y,Chen B S,Chen G L,et al.Preparation of porous PMMA/Na+-montmorillonite cation-exchange membranes for cationic dye adsorption[J].Journal of Membrane Science,2009,326(1):117-129.
    116. Lin S S,Chang D J,Wang C H,et al.Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions[J]. Water Research,2003,37(4):793-800.
    117. Lin S S,Chen C L,Chang D J,et al.Catalytic wet air oxidation of phenol by various CeO2 catalysts[J].Water Research,2002,36(12):3009-3014.
    118. Lin Y,Ferronato CDeng N,et al.Photocatalytic degradation of methylparaben by TiO2: Multivariable experimental design and mechanism[J].Applied Catalysis B: Environmental,2009,88(1-2):32-41.
    119. Liu H L,Chiou Y R.Optimal decolonization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology[J].Chemical Engineering Journal,2005,112(1-3):173-179.
    120. Liu Y,Sun D.Development of Fe2O3-CeO2-TiO2/y-Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition[J].Applied Catalysis B: Environmental,2007,72(3-4):205-211.
    121. Lu R,Capen R,Zhong J,et al.A practical approach to optimization and validation of a HPLC assay for analysis of polyribosyl-ribitol phosphate in complex combination vaccines[J].Journal of Chromatography B,2006,832(2):208-215.
    122. Luck F. Wet air oxidation:past, present and future[J].Catalysis Today,1999,53(1):81-91.
    123. Ma H,Zhuo Q,Wang B.Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions[J].Environmental Science & Technology,2007,41(21):7491-7496.
    124. Malik P K.Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes:a case study of Acid Yellow 36[J].Dyes and Pigments,2003,56(3):239-249.
    125. Mantzavinos D,Hellenbrand R,Livingston A G,et al.Catalytic wet oxidation of p-coumaric acid:partial oxidation intermediates, reaction pathways and catalyst leaching[J].Applied Catalysis B:Environmental,1996,7(3-4):379-396.
    126. Mantzavinos D,Lauer E,Hellenbrand R,et al.Wet oxidation as a pretreatment method for wastewaters contaminated by bioresistant organics[J].Water Science and Technology,1997, 36(2):109-116.
    127. Masende Z P G,Kuster B F M,Ptasinski K J,et al.Support and dispersion effects on activity of platinum catalysts during wet oxidation of organic wastes[J].Topics in Catalysis,2005,33 (1):87-99.
    128. Massart D L,Vandeginste B G M,Buydens LMC,et al.Handbook of chemometrics and qualimetrics:part A[D].Elsevier,Amsterdam,1997.
    129. Merabet S,Robert D,Weber J V,et al.Photocatalytic degradation of indole in UV/TiO2: optimization and modelling using the response surface methodology (RSM)[J]. Environmental Chemistry Letters,2009,7(1):45-49.
    130. Merabet S,Schneider M,Robert D,et al.Optimization of the indole photodegradation on supported TiO (2):influences of temperature, concentration, TiO (2) amount and flow rate[J]. Water Science and Technology,2008,58(3):549.
    131. Mikulova J,Barbier Jr J,Rossignol S,et al.Wet air oxidation of acetic acid over platinum catalysts supported on cerium-based materials:Influence of metal and oxide crystallite size[J] Journal of Catalysis,2007,251 (1):172-181.
    132. Mikulova J,Rossignol S,Barbier Jr J,et al.Characterizations of platinum catalysts supported on Ce, Zr, Pr-oxides and formation of carbonate species in catalytic wet air oxidation of acetic acid[J].Catalysis Today,2007,124(3-4):185-190.
    133. Mikulova J,Rossignol S,Barbier Jr J,et al.Ruthenium and platinum catalysts supported on Ce, Zr, Pr-O mixed oxides prepared by soft chemistry for acetic acid wet air oxidation[J].Applicd Catalysis B:Environmental,2007,72(1-2):1-10.
    134. Milone C,Fazio M,Pistone A,et al.Catalytic wet air oxidation of p-coumaric acid on CeO2, platinum and gold supported on CeO2 catalysts[J].Applied Catalysis B:Environmental, 2006,68(1-2):28-37.
    135. Minh D P,Aubert G,Gallezot P,et al.Degradation of olive oil mill effluents by catalytic wet air oxidation:2-Oxidation of p-hydroxyphenylacetic and p-hydroxybenzoic acids over Pt and Ru supported catalysts[J].Applied Catalysis B:Environmental,2007,73(3-4):236-246.
    136. Moberg M,Bergquist J,Bylund D.A generic stepwise optimization strategy for liquid chromatography electrospray ionization tandem mass spectrometry methods[J].Journal of Mass Spectrometry,2006,41(10):1334-1345.
    137. Muruganandham M,Swaminathan M.Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology[J].Dyes and Pigments,2004,63(3):315-321.
    138. Neamtu M,Catrinescu C,Kettrup A.Effect of dealumination of iron (Ⅲ)--exchanged Y zeolites on oxidation of Reactive Yellow 84 azo dye in the presence of hydrogen peroxide[J].Applied Catalysis B:Environmental,2004,51(3):149-157.
    139. Neamtu M,Zaharia C,Catrinescu C,et al.Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL[J].Applied Catalysis B: Environmental,2004,48(4):287-294.
    140. Nistor I,Cao M,Debrus B,et al.Application of a new optimization strategy for the separation of tertiary alkaloids extracted from Strychnos usambarensis leavesa[J].Journal of Pharmaceutical and Biomedical Analysis,2011,56(1):30-37.
    141. Nousir S,Keav S,Barbier Jr J,et al.Deactivation phenomena during catalytic wet air oxidation (CWAO) of phenol over platinum catalysts supported on ceria and ceria-zirconia mixed oxides[J].Applied Catalysis B:Environmental,2008,84(3-4):723-731.
    142. OgUtveren U B,GOnen N,Koparal S.Removal of dye stuffs from waste water: Electrocoagulation of Acilan Blau using soluble anode[J].Journal of Environmental Science & Health Part A,1992,27(5):1237-1247.
    143. Ohta H,Goto S,Teshima H.Liquid-phase oxidation of phenol in a rotating catalytic basket reactor[J].Industrial & Engineering Chemistry Fundamentals,1980,19(2):180-185.
    144 Oliviero L,Jacques B J,Duprez D,et al.Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO2/C catalysts[J].Applied Catalysis B:Environmental,2000,25(4): 267-275.
    145. Ong S A,Toorisaka E,Hirata M,et al.Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-bioflm confgured packed column system[J].Journal of Environmental Sciences,2008,20(8):952-956.
    146. Ozdemir O,Armagan B,Turan M,et al.Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals[J].Dyes and Pigments,2004,62(1):49-60.
    147. Ozkan A,Ozkan M H,Gurkan R,et al.Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation:the effects of some inorganic anions on the photocatalysis[J].Journal of Photochemistry and Photobiology A:Chemistry,2004,163(l-2):29-35.
    148. Patterson D A,Metcalfe I S,Xiong F,et al.Wet air oxidation of linear alkylbenzene sulfonate 2. effect of pH[J].Industrial & Engineering Chemistry Research,2001,40(23):5517-5525.
    149. Peternel I T,Koprivanac N,Bozic A M L,et al.Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution[J].Journal of Hazardous Materials,2007,148(1-2):477-484.
    150. Pintar A,Batista J,Tisler T.Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts[J].Applied Catalysis B:Environmental,2008,84(1-2):30-41.
    151. Pintar A,Beri G,Besson M,et al.Catalytic wet-air oxidation of industrial effluents:total mineralization of organics and lumped kinetic modelling[J].Applied Catalysis B: Environmental,2004,47(3):143-152.
    152. Pintar A,Besson M,Gallezot P.Catalytic wet air oxidation of Kraft bleach plant effluents in a trickle-bed reactor over a Ru/TiO2 catalyst[J].Applied Catalysis B:Environmental.2001,31 (4):275-290.
    153. Pintar A,Levee J.Catalytic oxidation of aqueous p-chlorophenol and p-nitrophenol solutions[J].Chemical Engineering Science,1994,49(24):4391-4407.
    154. Pinzauti S,Gratteri P,Furlanetto S,et al.Experimental design in the development of voltammetric method for the assay of omeprazole[J].Journal of Pharmaceutical and Biomedical Analysis,1996,14(8-10):881-889.
    155 Quiming N S,Denola N L,Saito Y,et al.Chromatographic Behavior of Uric Acid and Methyl Uric Acids on a Diol Column in HILIC[J].Chromatographia,2008,67(7):507-515.
    156. Quintanilla A,Casas J A.Zazo J A.et al.Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst[J].Applied Catalysis B:Environmental,2006,62(1-2):115-120.
    157. Raffainer I I,von Rohr P R.Promoted wet oxidation of the azo dye orange II under mild conditions[J].Industrial & Engineering Chemistry Research,2001,40(4):1083-1089.
    158. Rauf M A,Marzouki N,Korbahti B K.Photolytic decolorization of Rose Bengal by UV/H2O2 and data optimization using response surface method[J].Journal of Hazardous Materials,2008,159(2-3):602-609.
    159. Rehorek A,Tauber M,Gubitz G.Application of power ultrasound for azo dye degradation[J].Ultrasonics Sonochemistry,2004,11(3-4):177-182.
    160. Rivas F J,Kolaczkowski S T,Beltran F J,et al.Development of a model for the wet air oxidation of phenol based on a free radical mechanism[J].Chemical Engineering Science,1998,53(14):2575-2586.
    161. Robert R,Barbati S,Ricq N,et al.Intermediates in wet oxidation of cellulose:identification of hydroxyl radical and characterization of hydrogen peroxide[J].Water Research,2002,36 (19):4821-4829.
    162. Rodriguez A,Garcia J,Ovejero G,et al.Wet air and catalytic wet air oxidation of several azodyes from wastewaters:the beneficial role of catalysis[J].Water Science and Technology,2009,60(8):1989-1999.
    163. Rodriguez A,Ovejero G,Romero M D,et al.Catalytic wet air oxidation of textile industrial wastewater using metal supported on carbon nanofibers[J].The Journal of Supercritical Fluids,2008,46(2):163-172.
    164. Sadana A.An Analysis of the Heterogeneously Catalyzed Free-Radical Oxidation of Phenol in Aqueous Solution[J].Industrial & Engineering Chemistry Process Design and Development,1979,18(1):50-56.
    165. Sadana A,Katzer J R.Involvement of free radicals in the aqueous-phase catalytic oxidation of phenol over copper oxide[J]Journal of Catalysis,1974,35(l):140-152.
    166. Sakkas V A,Islam M A,Stalikas C,et al.Photocatalytic degradation using design of experiments:A review and example of the Congo red degradation[J].Journal of Hazardous Materials,2010,175(1-3):33-44.
    167. Santos A,Yustos P,Quintanilla A,et al.Route of the catalytic oxidation of phenol in aqueous phase[J].Applied Catalysis B:Environmental,2002,39(2):97-113.
    168. Santos A,Yustos P,Rodroguez S,et al.Decolorization of textile dyes by wet oxidation using activated carbon as catalyst[J].Industrial & Engineering Chemistry Research,2007,46(8): 2423-2427.
    169. Sengil I A,Ozacar M.The decolorization of CI Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes[J].Journal of Hazardous Materials,2009, 161(2-3):1369-1376.
    170. Shu H Y,Huang C R.Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process[J].Chemosphere,1995,31(8):3813-3825.
    171. Silva A M T,Marques R,Quinta-Ferreira R M.Catalysts based in cerium oxide for wet oxidation of acrylic acid in the prevention of environmental risks[J].Applied Catalysis B: Environmental,2004,47(4):269-279.
    172. Slokar Y M,Majcen Le Marechal A.Methods of decoloration of textile wastewaters[J].Dyes and Pigments,1998,37(4):335-356.
    173. Solpan D,Guven O,Takacs E,et al.High-energy irradiation treatment of aqueous solutions of azo dyes:steady-state gamma radiolysis ex periments [J]. Radiation Physics and Chemistry,2003,67(3):531-534.
    174. Song S,Ying H,He Z,et al.Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis[J].Chemosphere,2007,66(9):1782-1788.
    175. Suarez-Ojeda M E,Stuber F,Fortuny A,et al.Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst[J].Applied Catalysis B:Environmental,2005, 58(1-2):105-114.
    176. Swaminathan K,Sandhya S,Carmalin Sophia A,et al.Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system[J].Chemosphere,2003,50 (5):619-625.
    177. Switzar L,Giera M,Lingeman H,et al.Protein digestion optimization for characterization of drug-protein adducts using response surface modeling[J].Journal of Chromatography A, 2011,1218(13):1715-1723.
    178. Taboada C D,Batista J,Pintar A,et al.Preparation, characterization and catalytic properties of carbon nanofiber-supported Pt, Pd, Ru monometallic particles in aqueous-phase reactions[J].Applied Catalysis B:Environmental,2009,89(3-4):375-382.
    179. Tardio J,Bhargava S,Eyer S,et al.Interactions between specific organic compounds during catalytic wet oxidation of Bayer liquor[J].Industrial & Engineering Chemistry Research, 2004,43(4):847-851.
    180. Tauber M M,Gubitz G M,Rehorek A.Degradation of azo dyes by oxidative processes-Laccase and ultrasound treatment[J].Bioresource Technology,2008,99(10):4213-4220.
    181. Tavares A P M,Cristovao R O,Loureiro J M,et al.Optimisation of reactive textile dyes degradation by laccase-mediator system[J].Journal of Chemical Technology and Biotechnology,2008,83(12):1609-1615.
    182. Tavares A P M,Cristovao R O,Loureiro J M,et al.Application of statistical experimental methodology to optimize reactive dye decolourization by commercial laccase[J].Journal of Hazardous Materials,2009,162(2-3):1255-1260.
    183. Tezcanli-Guyer G,Ince N H.Degradation and toxicity reduction of textile dyestuff by ultrasound[J].Ultrasonics Sonochemistry,2003,10(4-5):235-240.
    184. Vajnhandl S,Le Marechal A M.Case study of the sonochemical decolouration of textile azo dye Reactive Black 5[J].Journal of Hazardous Materials,2007,141(1):329-335.
    185. Vergote V,Baert B,Vandermeulen E,et al.LC-UV/MS characterization and DOE optimization of the iodinated peptide obestatin[J].Journal of Pharmaceutical and Biomedical Analysis,2008,46(1):127-136.
    186. Vincelet C,Roussel J M,Benanou D.Experimental designs dedicated to the evaluation of a membrane extraction method:membrane-assisted solvent extraction for compounds having different polarities by means of gas chromatography-mass detection[J].Analytical and Bioanalytical Chemistry,2010,396(6):2285-2292.
    187. Vitor V,Corso C R.Decolorization of textile dye by Candida albicans isolated from industrial effluents[J].Journal of Industrial Microbiology & Biotechnology,2008,35(11): 1353-1357.
    188. Vucicevic K,Popovic G,Nikolic K,et al.An experimental design approach to selecting the optimum HPLC conditions for the determination of 2-Arylimidazoline derivatives[J].Journal of Liquid Chromatography & Related Technologies,2009,32(5):656-667.
    189. Wang C,Yediler A,Lienert D,et al.Ozonation of an azo dye CI Remazol Black 5 and toxicological assessment of its oxidation products[J].Chemosphere,2003,52(7):1225-1232.
    190. Wang J,Jiang Z,Zhang L,et al.Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation[J].Ultrasonics Sonochemistry,2009,16(2):225-231.
    191. Wang J,Zhu W,He X,et al.Catalytic wet air oxidation of acetic acid over different ruthenium catalysts[J].Catalysis Communications,2008,9(13):2163-2167.
    192. Wang J,Zhu W,Yang S,et al.Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts[J].Applied Catalysis B:Environmental,2008,78(1-2):30-37.
    193. Wu J,Wang T.Effects of some water-quality and operating parameters on the decolorization of reactive dye solutions by ozone[J].Journal of Environmental Science and Health, 2001,36(7):1335-1347.
    194. Yan H,Wei M,Ma J,et al.Density functional theory study on the influence of cation ratio on the host layer structure of Zn/Al double hydroxides[J].Particuology,2010,8(6):212-220.
    195. Yang S,Zhu W,Jiang Z,et al.The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J].Applied Surface Science,2006,252(24):8499-8505.
    196. Yasar S,Kertmen M,Kitis M.Effect of cycle time on biodegradation of azo dye in sequencing batch reactor[J]. Process Safety and Environmental Protection,2008,86(6):455-460.
    197. Yeber M C,Soto C,Riveros R,et al.Optimization by factorial design of copper (Ⅱ) and toxicity removal using a photocatalytic process with TiO2 as semiconductor[J]. Chemical Engineering Journal,2009,152(l):14-19.
    198. Yoo E S,Libra J,Wiesmann U.Reduction of azo dyes by Desulfovibrio desulfuricans [J].Water Science & Technology,2000,41(12):15-22.
    199. Yu J,Wang X,Yue P L.Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains[J].Water Research,2001,35(15):3579-3586.
    200. Zhang Y,Li D,Chen Y,et al.Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition[J].Applied Catalysis B:Environmental, 2009,86(3-4):182-189.
    201. Zhao S,Wang X,Huo M.Catalytic wet air oxidation of phenol with air and micellar molybdovanadophosphoric polyoxometalates under room condition[J].Applied Catalysis B: Environmental,2010,97(1):127-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700